Recommendations for the Assessment of Potential Environmental Effects of Genome-Editing Applications in Plants in the EU
Abstract
:1. Introduction
- Requirements for ERA and approval of NGT products, which on one hand maintain the current high standards of protection and, on the other hand, are proportionate to the risks associated with such applications (i.e., in line with the risk profiles of these applications).
- Provisions for conducting a sustainability analysis to examine whether and in which way NGT products contribute to sustainability.
- Appropriate traceability and labelling provisions for NGT products taking into consideration questions related to their implementation and enforcement.
- Mechanisms for future-proofing the regulatory framework and ensuring the adaptability of the legislation regarding future technological developments.
2. Challenges Regarding the EC Proposal for a Case-By-Case Risk Assessment of Genome-Edited Plants
2.1. General Conclusions on Risk Assessment versus Appropriate Guidance for a Case-By-Case Risk Assessment
2.2. General Comparability of Genome-Edited Plants with Conventionally Bred Plants
2.3. Selective Use of the EFSA Opinions to Conclude on the Safety/Risks of Genome-Edited Plants
2.4. Generalized Conclusions Regarding the Detection and Identification of Genome-Edited Plants
3. Comparability of Genome-Edited and Conventionally Bred Plants
- Theoretical assumption of the “likeness” of mutations introduced with different techniques.
- Consideration of the depth of intervention, i.e., the complexity in the resulting phenotypic outcomes.
- Consideration of the difference in the occurrence of unintended genetic modifications.
- Consideration of the higher speed of development of genome-edited plants.
3.1. “Likeness” of Mutations Introduced by Different Techniques
3.2. Depth of Intervention and Possible Complex Modifications
3.3. Difference in the Occurrence of Unintended Genetic Modifications
3.4. Higher Technical Speed of Genome Editing in Plant Development
4. Considerations for the Assessment of Trait-Related Effects in Genome-Edited Plants
4.1. Trait Categories Developed Currently in Genome-Edited Plants
4.2. Simple versus Complex Traits Developed with Genome Editing
4.3. Risk Considerations for Different Genome-Edited Plants with Traits from Different Trait Categories
- Herbicide resistance (HR) (different genome-edited HR crops, Section 4.3.1).
- Disease resistance (genome-edited apple trees, Section 4.3.2).
- Altered composition (genome-edited wheat, Section 4.3.3).
- De novo domestication (genome-edited tomato, Section 4.3.4).
4.3.1. Genome-Edited HR Crop Plants
4.3.2. Disease-Resistant (DR), Genome-Edited Apple Trees
4.3.3. Genome-Edited Wheat with Low Gluten Content
4.3.4. De Novo-Domesticated, Genome-Edited Tomato
5. Considerations Concerning the Assessment of Unintended Genetic Modifications and Their Consequences on a Case-By-Case Basis
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission; Joint Research Centre. New Genomic Techniques: State of the Art Review; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Wang, J.Y.; Doudna, J.A. CRISPR technology: A decade of genome editing is only the beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef]
- Turnbull, C.; Lillemo, M.; Hvoslef-Eide, T.A.K. Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom—A Review. Front. Plant Sci. 2021, 12, 630396. [Google Scholar] [CrossRef]
- Eckerstorfer, M.F.; Engelhard, M.; Heissenberger, A.; Simon, S.; Teichmann, H. Plants Developed by New Genetic Modification Techniques-Comparison of Existing Regulatory Frameworks in the EU and Non-EU Countries. Front. Bioeng. Biotechnol. 2019, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Friedrichs, S.; Takasu, Y.; Kearns, P.; Dagallier, B.; Oshima, R.; Schofield, J.; Moreddu, C. An overview of regulatory approaches to genome editing in agriculture. Biotechnol. Res. Innov. 2019, 3, 208–220. [Google Scholar] [CrossRef]
- Entine, J.; Felipe, M.S.S.; Groenewald, J.-H.; Kershen, D.L.; Lema, M.; McHughen, A.; Nepomuceno, A.L.; Ohsawa, R.; Ordonio, R.L.; Parrott, W.A.; et al. Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Res. 2021, 30, 551–584. [Google Scholar] [CrossRef] [PubMed]
- Smyth, S.J. Canadian regulatory perspectives on genome engineered crops. GM Crops Food 2017, 8, 35–43. [Google Scholar] [CrossRef]
- Spranger, T. Case C-528/16: Questions Raised by the ECJ’s Judgement on Gene Editing Technology. Int. Chem. Regul. Law Rev. 2018, 1, 173–176. [Google Scholar] [CrossRef]
- European Commission; Directorate General for Research and Innovation; European Commission’s Group of Chief Scientific Advisors. New Techniques in Agricultural Biotechnology; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-66222-5. [Google Scholar]
- Schulman, A.H.; Oksman-Caldentey, K.-M.; Teeri, T.H. European Court of Justice delivers no justice to Europe on genome-edited crops. Plant Biotechnol. J. 2020, 18, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Purnhagen, K.P.; Kok, E.; Kleter, G.; Schebesta, H.; Visser, R.G.F.; Wesseler, J. EU court casts new plant breeding techniques into regulatory limbo. Nat. Biotechnol. 2018, 36, 799–800. [Google Scholar] [CrossRef]
- Council of the European Union. Council Decision (EU) 2019/1904 of 8 November 2019 requesting the Commission to submit a study in light of the Court of Justice’s judgment in Case C-528/16 regarding the status of novel genomic techniques under Union law, and a proposal, if appropriate in view of the outcomes of the study. Off. J. Eur. Union 2019, L293, 103–104. [Google Scholar]
- European Commission. Study on the Status of New Genomic Techniques under Union Law and in Light of the Court of Justice Ruling in Case C-528/16; Commission Staff Working Document SWD(2021) 92 Final, 2021. Available online: https://ec.europa.eu/food/plant/gmo/modern_biotech/new-genomic-techniques_en (accessed on 10 May 2021).
- European Commission; Joint Research Centre. Current and Future Market Applications of New Genomic Techniques; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- European Commission; Directorate General for Research and Innovation. European Group on Ethics in Science and New Technologies Opinion on the Ethics of Genome Editing; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Naegeli, H.; Bresson, J.-L.; Dalmay, T.; Dewhurst, I.C.; Epstein, M.M.; Firbank, L.G.; Guerche, P.; Hejatko, J.; Moreno, F.J.; Mullins, E.; et al. Applicability of the EFSA Opinion on site-directed nucleases type 3 for the safety assessment of plants developed using site-directed nucleases type 1 and 2 and oligonucleotide-directed mutagenesis. EFSA J. 2020, 18, e06299. [Google Scholar] [CrossRef] [PubMed]
- Naegeli, H.; Bresson, J.-L.; Dalmay, T.; Dewhurst, I.C.; Epstein, M.M.; Firbank, L.G.; Guerche, P.; Hejatko, J.; Moreno, F.J.; Nogue, F.; et al. Evaluation of existing guidelines for their adequacy for the molecular characterisation and environmental risk assessment of genetically modified plants obtained through synthetic biology. EFSA J. 2021, 19, e06301. [Google Scholar] [CrossRef] [PubMed]
- Paraskevopoulos, K.; Federici, S. Overview of EFSA and European national authorities’ scientific opinions on the risk assessment of plants developed through New Genomic Techniques. EFSA J. 2021, 19, e06314. [Google Scholar] [CrossRef]
- Mullins, E.; Bresson, J.-L.; Dalmay, T.; Dewhurst, I.C.; Epstein, M.M.; Firbank, L.G.; Guerche, P.; Hejatko, J.; Moreno, F.J.; Naegeli, H.; et al. Updated scientific opinion on plants developed through cisgenesis and intragenesis. EFSA J. 2022, 20, e07621. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Genetically Modified Organisms. Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis. EFSA J. 2012, 10, 2561. [Google Scholar] [CrossRef]
- Mullins, E.; Bresson, J.-L.; Dalmay, T.; Dewhurst, I.C.; Epstein, M.M.; Firbank, L.G.; Guerche, P.; Hejatko, J.; Moreno, F.J.; Naegeli, H.; et al. Criteria for risk assessment of plants produced by targeted mutagenesis, cisgenesis and intragenesis. EFSA J. 2022, 20, e07618. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Inception Impact Assessment—Legislation for Plants Produced by Certain New Genomic Techniques Ares(2021)5835503, Brussels. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=PI_COM%3AAres%282021%295835503&qid=1653750745009 (accessed on 19 April 2023).
- Eckerstorfer, M.F.; Grabowski, M.; Lener, M.; Engelhard, M.; Simon, S.; Dolezel, M.; Heissenberger, A.; Lüthi, C. Biosafety of Genome Editing Applications in Plant Breeding: Considerations for a Focused Case-Specific Risk Assessment in the EU. BioTech 2021, 10, 10. [Google Scholar] [CrossRef]
- Eckerstorfer, M.F.; Miklau, M.; Gaugitsch, H. New Plant Breeding Techniques and Risks Associated with Their Application; Umweltbundesamt GmbH: Vienna, Austria, 2014. [Google Scholar]
- Eckerstorfer, M.F.; Dolezel, M.; Heissenberger, A.; Miklau, M.; Reichenbecher, W.; Steinbrecher, R.A.; Waßmann, F. An EU Perspective on Biosafety Considerations for Plants Developed by Genome Editing and Other New Genetic Modification Techniques (nGMs). Front. Bioeng. Biotechnol. 2019, 7, 31. [Google Scholar] [CrossRef]
- EFSA Panel on Genetically Modified Organisms. Scientific opinion addressing the safety assessment of plants developed using Zinc Finger Nuclease 3 and other Site-Directed Nucleases with similar function. EFSA J. 2012, 10, 2943. [Google Scholar] [CrossRef]
- Voytas, D.F. Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant Biol. 2013, 64, 327–350. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Xia, L. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement. Front. Plant Sci. 2016, 7, 1928. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Genetically Modified Organisms. Guidance on the environmental risk assessment of genetically modified plants. EFSA J. 2010, 8, 1879. [Google Scholar] [CrossRef]
- EFSA Panel on Genetically Modified Organisms. Guidance for risk assessment of food and feed from genetically modified plants. EFSA J. 2011, 9, 2150. [Google Scholar] [CrossRef]
- Monroe, J.G.; Srikant, T.; Carbonell-Bejerano, P.; Becker, C.; Lensink, M.; Exposito-Alonso, M.; Klein, M.; Hildebrandt, J.; Neumann, M.; Kliebenstein, D.; et al. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 2022, 602, 101–105. [Google Scholar] [CrossRef]
- Kawall, K. New Possibilities on the Horizon: Genome Editing Makes the Whole Genome Accessible for Changes. Front. Plant Sci. 2019, 10, 525. [Google Scholar] [CrossRef]
- Abdelrahman, M.; Wei, Z.; Rohila, J.S.; Zhao, K. Multiplex Genome-Editing Technologies for Revolutionizing Plant Biology and Crop Improvement. Front. Plant Sci. 2021, 12, 721203. [Google Scholar] [CrossRef] [PubMed]
- Menz, J.; Modrzejewski, D.; Hartung, F.; Wilhelm, R.; Sprink, T. Genome Edited Crops Touch the Market: A View on the Global Development and Regulatory Environment. Front. Plant Sci. 2020, 11, 586027. [Google Scholar] [CrossRef] [PubMed]
- Kawall, K. The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. Plants 2021, 10, 2259. [Google Scholar] [CrossRef] [PubMed]
- European Network of GMO Laboratories. Detection of Food and Feed Plant Products Obtained by New Mutagenesis Techniques JRC116289, Joint Research Centre, Ispra (VA), Italy, 2019. Available online: https://gmo-crl.jrc.ec.europa.eu/doc/JRC116289-GE-report-ENGL.pdf (accessed on 20 July 2022).
- Grohmann, L.; Keilwagen, J.; Duensing, N.; Dagand, E.; Hartung, F.; Wilhelm, R.; Bendiek, J.; Sprink, T. Detection and Identification of Genome Editing in Plants: Challenges and Opportunities. Front. Plant Sci. 2019, 10, 236. [Google Scholar] [CrossRef]
- Ribarits, A.; Eckerstorfer, M.; Simon, S.; Stepanek, W. Genome-Edited Plants: Opportunities and Challenges for an Anticipatory Detection and Identification Framework. Foods 2021, 10, 430. [Google Scholar] [CrossRef]
- Ribarits, A.; Stepanek, W.; Hochegger, R.; Narendja, F.; Prat, N.; Eckerstorfer, M.; Wögerbauer, M. Analyse von Nachweismethoden für Genomeditierte und Klassische GV-Pflanzen; Bundesamt für Naturschutz: Bonn, Germany, 2022; ISBN 9783896243836. [Google Scholar]
- Fraiture, M.-A.; Guiderdoni, E.; Meunier, A.-C.; Papazova, N.; Roosens, N.H. ddPCR strategy to detect a gene-edited plant carrying a single variation point: Technical feasibility and interpretation issues. Food Control 2022, 137, 108904. [Google Scholar] [CrossRef]
- Bertheau, Y. Advances in identifying GM plants: Toward the routine detection of ‘hidden’ and ‘new’ GMOs. In Developing Smart Agri-Food Supply Chains: Using Technology to Improve Safety and Quality; Manning, L., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2021; pp. 87–150. ISBN 9781786767493. [Google Scholar]
- Shearer, H. Regulation of Plants with Novel Traits: Canadian Perspectives on the “Novelty” Trigger; NABC Report 26: New DNA-Editing Approaches: Methods, Applications and Policy for Agriculture. 2014. Available online: https://hdl.handle.net/1813/51439 (accessed on 20 August 2022).
- Zhang, J. Important genomic regions mutate less often than do other regions. Nature 2022, 602, 38–39. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.J. Tuning mutagenesis by functional outcome. Nat. Rev. Genet. 2022, 23, 135. [Google Scholar] [CrossRef]
- Gould, F.; Amasino, R.M.; Brossard, D.; Buell, C.R.; Dixon, R.A.; Falck-Zepeda, J.B.; Gallo, M.A.; Giller, K.E.; Glenna, L.L.; Griffin, T.; et al. Toward product-based regulation of crops. Science 2022, 377, 1051–1053. [Google Scholar] [CrossRef]
- Wolter, F.; Schindele, P.; Puchta, H. Plant breeding at the speed of light: The power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol. 2019, 19, 176. [Google Scholar] [CrossRef] [PubMed]
- Haut Conseil des Biotechnologies. Scientific Opinion on New Plant Breeding Techniques. Available online: http://www.hautconseildesbiotechnologies.fr/en/avis/avis-sur-nouvelles-techniques-dobtention-plantes-new-plant-breeding-techniques-npbt (accessed on 10 May 2021).
- Chu, P.; Agapito-Tenfen, S.Z. Unintended Genomic Outcomes in Current and Next Generation GM Techniques: A Systematic Review. Plants 2022, 11, 2997. [Google Scholar] [CrossRef]
- Modrzejewski, D.; Hartung, F.; Sprink, T.; Krause, D.; Kohl, C.; Wilhelm, R. What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: A systematic map. Environ. Evid. 2019, 8, 27. [Google Scholar] [CrossRef]
- Pixley, K.V.; Falck-Zepeda, J.B.; Paarlberg, R.L.; Phillips, P.W.B.; Slamet-Loedin, I.H.; Dhugga, K.S.; Campos, H.; Gutterson, N. Genome-edited crops for improved food security of smallholder farmers. Nat. Genet. 2022, 54, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Gao, C. Genome engineering for crop improvement and future agriculture. Cell 2021, 184, 1621–1635. [Google Scholar] [CrossRef] [PubMed]
- Eckerstorfer, M.F.; Dolezel, M.; Heissenberger, A.; Miklau, M.; Steinbrecher, R.A. Risk Assessment of Plants Developed by New Genetic Modification Techniques (nGMs): Biosafety Considerations for Plants Developed by Genome Editing and Other New Genetic Modification Techniques (nGMs) and Considerations for Their Regulation; BfN Skripten No. 592, Bonn, Germany. 2020. Available online: https://www.bfn.de/sites/default/files/BfN/service/Dokumente/skripten/skript592.pdf (accessed on 16 August 2022).
- Kawall, K.; Cotter, J.; Then, C. Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environ. Sci. Eur. 2020, 32, 106. [Google Scholar] [CrossRef]
- Schütte, G.; Eckerstorfer, M.; Rastelli, V.; Reichenbecher, W.; Restrepo-Vassalli, S.; Ruohonen-Lehto, M.; Saucy, A.-G.W.; Mertens, M. Herbicide resistance and biodiversity: Agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ. Sci. Eur. 2017, 29, 5. [Google Scholar] [CrossRef] [PubMed]
- Sedeek, K.E.M.; Mahas, A.; Mahfouz, M. Plant Genome Engineering for Targeted Improvement of Crop Traits. Front. Plant Sci. 2019, 10, 114. [Google Scholar] [CrossRef]
- Aglawe, S.B.; Magar, N.D.; Dhawane, Y.; Bhamare, D.; Shah, P.; Devi, S.J.S.R.; Kumar, S.P.J.; Barbadikar, K.M. Genome Editing Crops in Food and Futuristic Crops. In Recent Advances in Food Biotechnology; Kumar, A., Patruni, K., Singh, V., Eds.; Springer: Singapore, 2022; pp. 401–445. ISBN 978-981-16-8124-0. [Google Scholar]
- Hussain, A.; Ding, X.; Alariqi, M.; Manghwar, H.; Hui, F.; Li, Y.; Cheng, J.; Wu, C.; Cao, J.; Jin, S. Herbicide Resistance: Another Hot Agronomic Trait for Plant Genome Editing. Plants 2021, 10, 621. [Google Scholar] [CrossRef]
- Ishii, T.; Araki, M. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops Food 2017, 8, 44–56. [Google Scholar] [CrossRef]
- Defarge, N.; Otto, M.; Hilbeck, A. A Roundup herbicide causes high mortality and impairs development of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Sci. Total Environ. 2023, 865, 161158. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Nan, P.; Gu, Z.; Ge, X.; Feng, Y.-Q.; Lu, B.-R. Overexpressing Exogenous 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Genes Increases Fecundity and Auxin Content of Transgenic Arabidopsis Plants. Front. Plant Sci. 2018, 9, 233. [Google Scholar] [CrossRef]
- Nelson, R.; Wiesner-Hanks, T.; Wisser, R.; Balint-Kurti, P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 2018, 19, 21–33. [Google Scholar] [CrossRef]
- Ali, Q.; Yu, C.; Hussain, A.; Ali, M.; Ahmar, S.; Sohail, M.A.; Riaz, M.; Ashraf, M.F.; Abdalmegeed, D.; Wang, X.; et al. Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture. Front. Plant Sci. 2022, 13, 860281. [Google Scholar] [CrossRef] [PubMed]
- Paul, N.C.; Park, S.-W.; Liu, H.; Choi, S.; Ma, J.; MacCready, J.S.; Chilvers, M.I.; Sang, H. Plant and Fungal Genome Editing to Enhance Plant Disease Resistance Using the CRISPR/Cas9 System. Front. Plant Sci. 2021, 12, 700925. [Google Scholar] [CrossRef] [PubMed]
- Malnoy, M.; Viola, R.; Jung, M.-H.; Koo, O.-J.; Kim, S.; Kim, J.-S.; Velasco, R.; Nagamangala Kanchiswamy, C. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front. Plant Sci. 2016, 7, 1904. [Google Scholar] [CrossRef] [PubMed]
- Mallinger, R.E.; Gaines-Day, H.R.; Gratton, C. Do managed bees have negative effects on wild bees?: A systematic review of the literature. PLoS ONE 2017, 12, e0189268. [Google Scholar] [CrossRef] [PubMed]
- Caffier, V.; Lasserre-Zuber, P.; Giraud, M.; Lascostes, M.; Stievenard, R.; Lemarquand, A.; van de Weg, E.; Expert, P.; Denancé, C.; Didelot, F.; et al. Erosion of quantitative host resistance in the apple × Venturia inaequalis pathosystem. Infect. Genet. Evol. 2014, 27, 481–489. [Google Scholar] [CrossRef]
- Kumari, C.; Sharma, M.; Kumar, V.; Sharma, R.; Sharma, P.; Kumar, P.; Irfan, M. Genome Editing Technology for Genetic Amelioration of Fruits and Vegetables for Alleviating Post-Harvest Loss. Bioengineening 2022, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-León, S.; Gil-Humanes, J.; Ozuna, C.V.; Giménez, M.J.; Sousa, C.; Voytas, D.F.; Barro, F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018, 16, 902–910. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, K.; Chen, K.; Gao, C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genom. 2014, 41, 63–68. [Google Scholar] [CrossRef]
- Andersson, M.; Turesson, H.; Nicolia, A.; Fält, A.-S.; Samuelsson, M.; Hofvander, P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 2017, 36, 117–128. [Google Scholar] [CrossRef]
- Sun, Y.; Jiao, G.; Liu, Z.; Zhang, X.; Li, J.; Guo, X.; Du, W.; Du, J.; Francis, F.; Zhao, Y.; et al. Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes. Front. Plant Sci. 2017, 8, 298. [Google Scholar] [CrossRef]
- Jiang, W.Z.; Henry, I.M.; Lynagh, P.G.; Comai, L.; Cahoon, E.B.; Weeks, D.P. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol. J. 2017, 15, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Chen, S.; Tian, H.; Fu, D.; Zhu, B.; Luo, Y.; Zhu, H. Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing. Front. Plant Sci. 2018, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Kawall, K. Genome-edited Camelina sativa with a unique fatty acid content and its potential impact on ecosystems. Environ. Sci. Eur. 2021, 33, 38. [Google Scholar] [CrossRef]
- Li, T.; Yang, X.; Yu, Y.; Si, X.; Zhai, X.; Zhang, H.; Dong, W.; Gao, C.; Xu, C. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 2018, 36, 1160–1163. [Google Scholar] [CrossRef]
- Zsögön, A.; Čermák, T.; Naves, E.R.; Notini, M.M.; Edel, K.H.; Weinl, S.; Freschi, L.; Voytas, D.F.; Kudla, J.; Peres, L.E.P. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 2018, 36, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Fernie, A.R.; Yan, J. De Novo Domestication: An Alternative Route toward New Crops for the Future. Mol. Plant 2019, 12, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Saleem, F.; Wani, S.H.; Abdelmohsen, S.A.M.; Alyousef, H.A.; Abdelbacki, A.M.M.; Alkallas, F.H.; Tamam, N.; Elansary, H.O. De-novo Domestication for Improving Salt Tolerance in Crops. Front. Plant Sci. 2021, 12, 681367. [Google Scholar] [CrossRef] [PubMed]
- Curtin, S.; Qi, Y.; Peres, L.E.P.; Fernie, A.R.; Zsögön, A. Pathways to de novo domestication of crop wild relatives. Plant Physiol. 2022, 188, 1746–1756. [Google Scholar] [CrossRef]
- Razzaq, A.; Wani, S.H.; Saleem, F.; Yu, M.; Zhou, M.; Shabala, S. Rewilding crops for climate resilience: Economic analysis and de novo domestication strategies. J. Exp. Bot. 2021, 72, 6123–6139. [Google Scholar] [CrossRef] [PubMed]
- Lema, M. Regulatory Assessment of Off-Target Changes and Spurious DNA Insertions in Gene-Edited Organisms for Agri-Food Use. J. Regul. Sci. 2021, 9, 1–15. [Google Scholar] [CrossRef]
- Park, J.; Yoon, J.; Kwon, D.; Han, M.-J.; Choi, S.; Park, S.; Lee, J.; Lee, K.; Lee, J.; Lee, S.; et al. Enhanced genome editing efficiency of CRISPR PLUS: Cas9 chimeric fusion proteins. Sci. Rep. 2021, 11, 16199. [Google Scholar] [CrossRef]
- Sturme, M.H.J.; van der Berg, J.P.; Bouwman, L.M.S.; de Schrijver, A.; de Maagd, R.A.; Kleter, G.A.; Battaglia-de Wilde, E. Occurrence and Nature of Off-Target Modifications by CRISPR-Cas Genome Editing in Plants. ACS Agric. Sci. Technol. 2022, 2, 192–201. [Google Scholar] [CrossRef]
- Arndell, T.; Sharma, N.; Langridge, P.; Baumann, U.; Watson-Haigh, N.S.; Whitford, R. gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnol. 2019, 19, 71. [Google Scholar] [CrossRef]
- Braatz, J.; Harloff, H.-J.; Mascher, M.; Stein, N.; Himmelbach, A.; Jung, C. CRISPR-Cas9 Targeted Mutagenesis Leads to Simultaneous Modification of Different Homoeologous Gene Copies in Polyploid Oilseed Rape (Brassica napus). Plant Physiol. 2017, 174, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Spranger, T.M. Die “history of safe use” im europäischen Gentechnikrecht. NuR 2021, 43, 746–751. [Google Scholar] [CrossRef]
Trait Category | Single-Gene Knockouts | Complex Modifications |
---|---|---|
Enhanced breeding | 85% (17) | 15% (3) |
Herbicide resistance | 66% (2) | 33% (1) 1 |
Agronomic value | 57% (35) | 43% (26) |
Biotic stress resistance | 53% (15) | 47% (13) |
Food and feed quality | 51% (24) | 49% (23) |
Abiotic stress resistance | 50% (3) | 50% (3) |
Industrial utilization | 13% (1) | 87% (7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckerstorfer, M.F.; Dolezel, M.; Engelhard, M.; Giovannelli, V.; Grabowski, M.; Heissenberger, A.; Lener, M.; Reichenbecher, W.; Simon, S.; Staiano, G.; et al. Recommendations for the Assessment of Potential Environmental Effects of Genome-Editing Applications in Plants in the EU. Plants 2023, 12, 1764. https://doi.org/10.3390/plants12091764
Eckerstorfer MF, Dolezel M, Engelhard M, Giovannelli V, Grabowski M, Heissenberger A, Lener M, Reichenbecher W, Simon S, Staiano G, et al. Recommendations for the Assessment of Potential Environmental Effects of Genome-Editing Applications in Plants in the EU. Plants. 2023; 12(9):1764. https://doi.org/10.3390/plants12091764
Chicago/Turabian StyleEckerstorfer, Michael F., Marion Dolezel, Margret Engelhard, Valeria Giovannelli, Marcin Grabowski, Andreas Heissenberger, Matteo Lener, Wolfram Reichenbecher, Samson Simon, Giovanni Staiano, and et al. 2023. "Recommendations for the Assessment of Potential Environmental Effects of Genome-Editing Applications in Plants in the EU" Plants 12, no. 9: 1764. https://doi.org/10.3390/plants12091764