Chemical Composition and Biological Activity of Salvia officinalis L. Essential Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Salvia officinalis Leaf and Stem Morphology
2.2. Chemical Composition of S. officinalis Essential Oils
2.3. The Cytotoxicity of S. officinalis Essential Oils
2.4. Statistical Correlation of Cytotoxicity and Essential Oil Chemical Composition
3. Materials and Methods
3.1. Plant Material Origin
3.2. Scanning Electron Microscopy
3.3. Essential Oils Extraction, Gas Chromatography-Mass Spectrometry (GC-MS) Analyses
3.4. Cytotoxicity Assay
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Feky, A.M.; Aboulthana, W.M. Phytochemical and Biochemical Studies of Sage (Salvia officinalis L.). UK J. Pharm. Biosci. 2016, 4, 56. [Google Scholar] [CrossRef]
- Kokkini, S.; Karousou, R.; Hanlidou, E. HERBS|Herbs of the Labiatae. In Encyclopedia of Food Sciences and Nutrition; Elsevier Science: Amsterdam, the Netherlands, 2003. [Google Scholar] [CrossRef]
- Jug-Dujaković, M.; Ristić, M.; Pljevljakušić, D.; Dajić-Stevanović, Z.; Liber, Z.; Hančević, K.; Radić, T.; Šatović, Z. High Diversity of Indigenous Populations of Dalmatian Sage (Salvia officinalis L.) in Essential-Oil Composition. Chem. Biodivers. 2012, 9, 2309–2323. [Google Scholar] [CrossRef] [PubMed]
- Kintzios, S.E. Sage: The Genus Salvia; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Evaluation of Bioactive Properties and Phenolic Compounds in Different Extracts Prepared from Salvia officinalis L. Food Chem. 2014, 170, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Raal, A.; Orav, A.; Arak, E. Composition of the Essential Oil of Salvia officinalis L. from Various European Countries. Nat. Prod. Res. 2007, 21, 406–411. [Google Scholar] [CrossRef]
- KuŠtrak, D.; Kuftinec, J.; Blazevic, N. Yields and Composition of Sage Oils from Different Regions of the Yugoslavian Adriatic Coast. J. Nat. Prod. 1984, 47, 520–524. [Google Scholar] [CrossRef]
- Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer Properties of Essential Oils and Other Natural Products. Evid.-Based Complement. Altern. Med. 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, 1231–1249. [Google Scholar] [CrossRef] [PubMed]
- Dodoš, T.; Jankovi, S.; Marin, P.D.; Rajčevi, N. Essential Oil Composition and Micromorphological Traits of Satureja montana L., S. subspicata Bartel ex Vis., and S. kitaibelii Wierzb. Ex Heuff. Plant Organs. Plant 2021, 10, 511. [Google Scholar] [CrossRef] [PubMed]
- Ranđelović, V. Botanika; Punta: Niš, Serbia, 2008. [Google Scholar]
- Petković, B.; Merkulov, L.J.; Laušević, S. Anatomija Biljaka Sa Praktikumom; Prirodno-Matematički Fakultet, Univerzitet u Novom Sadu: Novi Sad, Serbia, 2004. [Google Scholar]
- Crang, R.; Lyons-Sobaski, S.; Wise, R. Plant Anatomy; Springer: OshKosh, WI, USA, 2018. [Google Scholar]
- Bisio, A.; Corallo, A.; Gastaldo, P.; Romussi, G.; Ciarallo, G.; Fontana, N.; De Tommasi, N.; Profumo, P. Glandular Hairs and Secreted Material in Salvia Blepharophylla Brandegee Ex Epling Grown in Italy. Ann. Bot. 1999, 83, 441–452. [Google Scholar] [CrossRef]
- Turner, G.W.; Gershenzon, J.; Croteau, R.B. Distribution of Peltate Glandular Trichomes on Developing Leaves of Peppermint. Plant Physiol. 2000, 124, 655–663. [Google Scholar] [CrossRef]
- Shepherd, R.W.; Bass, W.T.; Houtz, R.L.; Wagner, G.J. Phylloplanins of Tobacco Are Defensive Proteins Deployed on Aerial Surfaces by Short Glandular Trichomes. Plant Cell 2005, 17, 1851–1861. [Google Scholar] [CrossRef]
- Nguefack, J.; Leth, V.; Amvam Zollo, P.H.; Mathur, S.B. Evaluation of Five Essential Oils from Aromatic Plants of Cameroon for Controlling Food Spoilage and Mycotoxin Producing Fungi. Int. J. Food Microbiol. 2004, 94, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Augé, R.M.; Stodola, A.J.W.; Moore, J.L.; Klingeman, W.E.; Duan, X. Comparative Dehydration Tolerance of Foliage of Several Ornamental Crops. Sci. Hortic. 2003, 98, 511–516. [Google Scholar] [CrossRef]
- Tan, N.; Kaloga, M.; Radtke, O.A.; Kiderlen, A.F.; Öksüz, S.; Ulubelen, A.; Kolodziej, H. Abietane Diterpenoids and Triterpenoic Acids from Salvia Cilicica and Their Antileishmanial Activities. Phytochemistry 2002, 61, 881–884. [Google Scholar] [CrossRef] [PubMed]
- Calo, L.; García, I.; Gotor, C.; Romero, L.C. Leaf Hairs Influence Phytopathogenic Fungus Infection and Confer an Increased Resistance When Expressing a Trichoderma α-1,3-Glucanase. J. Exp. Bot. 2006, 57, 3911–3920. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Hall, J.T.; Wagner, G.J. Transgenic Nicotiana tabacum L. with Enhanced Trichome Exudate Cembratrieneols Has Reduced Aphid Infestation in the Field. Mol. Breed. 2004, 13, 49–57. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as Antioxidants in Plants: Location and Functional Significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Yan, A.; Pan, J.; An, L.; Gan, Y.; Feng, H. The Responses of Trichome Mutants to Enhanced Ultraviolet-B Radiation in Arabidopsis Thaliana. J. Photochem. Photobiol. B 2012, 113, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Ichie, T.; Inoue, Y.; Takahashi, N.; Kamiya, K.; Kenzo, T. Ecological Distribution of Leaf Stomata and Trichomes among Tree Species in a Malaysian Lowland Tropical Rain Forest. J. Plant Res. 2016, 129, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Schmiderer, C.; Grassi, P.; Novak, J.; Weber, M.; Franz, C. Diversity of Essential Oil Glands of Clary Sage (Salvia sclarea L., Lamiaceae). Plant Biol. 2008, 10, 433–440. [Google Scholar] [CrossRef]
- Pathan, A.K.; Bond, J.; Gaskin, R.E. Sample Preparation for SEM of Plant Surfaces. Mater. Today 2010, 12, 32–43. [Google Scholar] [CrossRef]
- Lakušić, B.S.; Ristić, M.S.; Slavkovska, V.N.; Stojanović, D.L.J.; Lakušić, D.V. Variations in Essential Oil Yields and Compositions of Salvia officinalis (Lamiaceae) at Different Developmental Stages. Bot. Serb. 2013, 37, 127–140. [Google Scholar]
- Privitera, G.; Luca, T.; Castorina, S.; Passanisi, R.; Ruberto, G.; Napoli, E. Anticancer Activity of Salvia officinalis Essential Oil and Its Principal Constituents against Hormone-Dependent Tumour Cells. Asian Pac. J. Trop. Biomed. 2019, 9, 24–28. [Google Scholar] [CrossRef]
- Russo, A.; Formisano, C.; Rigano, D.; Senatore, F.; Delfine, S.; Cardile, V.; Rosselli, S.; Bruno, M. Chemical Composition and Anticancer Activity of Essential Oils of Mediterranean Sage (Salvia officinalis L.) Grown in Different Environmental Conditions. Food Chem. Toxicol. 2013, 55, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Privitera, G. In Vitro Anti-Proliferative Effect of Salvia officinalis Essential Oil and Its Three Main Components on Human Lung Cancer Cells. Am. J. Phytomed. Clin. Ther. 2014, 2, 1159–1168. [Google Scholar]
- Keshavarz, M.; Bidmeshkipour, A.; Mostafaie, A.; Mansouri, K.; Mohammadi-Motlagh, H.-R. Anti Tumor Activity of Salvia Officinalis Is Due to Its Anti-Angiogenic, Anti-Migratory and Anti-Proliferative Effects. Cells 2011, 12, 477–482. [Google Scholar]
- de Sousa, D.P. Bioactive Essential Oils and Cancer; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-19144-7. [Google Scholar]
- Corsi, G.; Bottega, S. Glandular Hairs of Salvia officinalis: New Data on Morphology, Localization and Histochemistry in Relation to Function. Ann. Bot. 1999, 84, 657–664. [Google Scholar] [CrossRef]
- Harborne, J.B. Role of Secondary Metabolites in Chemical Defence Mechanisms in Plants. Ciba Found. Symp. 1990, 154, 126–139. [Google Scholar] [CrossRef]
- Bettaieb, I.; Zakhama, N.; Wannes, W.A.; Kchouk, M.E.; Marzouk, B. Water Deficit Effects on Salvia officinalis Fatty Acids and Essential Oils Composition. Sci. Hortic. 2009, 120, 271–275. [Google Scholar] [CrossRef]
- Charles, D.J.; Joly, R.J.; Simon, J.E. Effects of Osmotic Stress on the Essential Oil Content and Composition of Peppermint. Phytochemistry 1990, 29, 2837–2840. [Google Scholar] [CrossRef]
- Li, Y.-L.; Craker, L.E.; Potter, T. Effect of Light Level on Essential Oil Production of Sage (Salvia officinalis) and Thyme (Thymus vulgaris). Int. Symp. Med. Aromat. Plants 1996, 426, 419–426. [Google Scholar] [CrossRef]
- Ben Taarit, M.; Msaada, K.; Hosni, K.; Hammami, M.; Kchouk, M.E.; Marzouk, B. Plant Growth, Essential Oil Yield and Composition of Sage (Salvia officinalis L.) Fruits Cultivated under Salt Stress Conditions. Ind. Crops Prod. 2009, 30, 333–337. [Google Scholar] [CrossRef]
- Tucker, A.O.; Maciarello, M.J. Essential Oils of Cultivars of Dalmatian Sage (Salvia officinalis L.). J. Essent. Oil Res. 1990, 2, 139–144. [Google Scholar] [CrossRef]
- Widiyastuti, Y.; Sholikhah, I.Y.M.; Haryanti, S. Cytotoxic Activities of Ethanolic and Dichloromethane Extract of Leaves, Stems, and Flowers of Jarong [Stachytarpheta jamaicensis (L.) Vahl.] on HeLa and T47D Cancer Cell Line. AIP Conf. Proc. 2019, 2202, 020101. [Google Scholar]
- Pudełek, M.; Catapano, J.; Kochanowski, P.; Mrowiec, K.; Janik-Olchawa, N.; Czyż, J.; Ryszawy, D. Therapeutic Potential of Monoterpene α-Thujone, the Main Compound of Thuja occidentalis L. Essential Oil, against Malignant Glioblastoma Multiforme Cells in Vitro. Fitoterapia 2019, 134, 172–181. [Google Scholar] [CrossRef]
- Nikolić, B.; Vasilijević, B.; Mitić-Ćulafić, D.; Vuković-Gačić, B.; Knežević-Vukćević, J. Comparative Study of Genotoxic, Antigenotoxic and Cytotoxic Activities of Monoterpenes Camphor, Eucalyptol and Thujone in Bacteria and Mammalian Cells. Chem. Biol. Interact 2015, 242, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.M.; Peng, J.Q.; Chen, Y.; Tao, L.; Zhang, Y.Y.; Fu, L.Y.; De Long, Q.; Shen, X.C. 1,8-Cineole: A Review of Source, Biological Activities, and Application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef] [PubMed]
- Akiel, M.A.; Alshehri, O.Y.; Aljihani, S.A.; Almuaysib, A.; Bader, A.; Al-Asmari, A.I.; Alamri, H.S.; Alrfaei, B.M.; Halwani, M.A. Viridiflorol Induces Anti-Neoplastic Effects on Breast, Lung, and Brain Cancer Cells through Apoptosis. Saudi J. Biol. Sci. 2022, 29, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Girola, N.; Figueiredo, C.R.; Farias, C.F.; Azevedo, R.A.; Ferreira, A.K.; Teixeira, S.F.; Capello, T.M.; Martins, E.G.A.; Matsuo, A.L.; Travassos, L.R.; et al. Camphene Isolated from Essential Oil of Piper cernuum (Piperaceae) Induces Intrinsic Apoptosis in Melanoma Cells and Displays Antitumor Activity in Vivo. Biochem. Biophys. Res. Commun. 2015, 467, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Liang, Z.; Mi, Q.; Guo, Y. Limonene Terpenoid Obstructs Human Bladder Cancer Cell (T24 Cell Line) Growth by Inducing Cellular Apoptosis, Caspase Activation, G2/M Phase Cell Cycle Arrest and Stops Cancer Metastasis. J. BUON 2020, 25, 280–285. [Google Scholar]
- Singh, H.; Kumar, R.; Mazumder, A.; Salahuddin, S.; Yadav, R.K.; Chauhan, B.; Abdulah, M. Camphor and Menthol as Anticancer Agents: Synthesis, Structure-Activity Relationship and Interaction with Cancer Cell Lines. Anticancer Agents Med. Chem. 2022, 22, 614–623. [Google Scholar] [CrossRef]
- Rajput, A.; Kasar, A.; Thorat, S.; Kulkarni, M. Borneol: A Plant-Sourced Terpene with a Variety of Promising Pharmacological Effects. Nat. Prod. J. 2023, 13, 13–28. [Google Scholar]
- Aydin, E.; Türkez, H.; Taşdemir, Ş. Anticancer and Antioxidant Properties of Terpinolene in Rat Brain Cells. Arch. Hig. Rada Toksikol. 2013, 64, 415–424. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, P.F.; Munari, C.C.; Nicolella, H.D.; Veneziani, R.C.S.; Tavares, D.C. Manool, a Salvia officinalis Diterpene, Induces Selective Cytotoxicity in Cancer Cells. Cytotechnology 2016, 68, 2139–2143. [Google Scholar] [CrossRef]
- Talbot, M.J.; White, R.G. Methanol Fixation of Plant Tissue for Scanning Electron Microscopy Improves Preservation of Tissue Morphology and Dimensions. Plant Methods 2013, 9, 1–7. [Google Scholar] [CrossRef]
- Bomblies, K.; Shukla, V.; Graham, C. Scanning Electron Microscopy (SEM) of Plant Tissues. Cold Spring Harb. Protoc. 2008, 3, 106–108. [Google Scholar] [CrossRef]
- Linstrom, P.J.; Mallard, W.G. (Eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014. [Google Scholar]
Compounds | KI | SO-SP | SO-LA | SO-HV | SO-SV | SO-MA | SO-LO | SO-KO | ID |
---|---|---|---|---|---|---|---|---|---|
α-Pinene | 942 | 1.5 | 2.1 | 3.1 | 1.4 | 2.8 | 3.5 | 3.3 | KI, MS |
Camphene | 959 | 3.8 | 2.9 | 2.1 | 3.7 | 5.0 | 2.5 | 7.4 | KI, MS |
β-Pinene | 985 | 1.0 | 1.3 | 0.4 | 0.8 | 0.9 | 1.1 | 1.8 | KI, MS |
β-Myrcene | 994 | 0.5 | 0.6 | 0.7 | 0.8 | 0.8 | 0.7 | 0.7 | KI, MS |
p-Cymene | 1031 | 0.8 | 0.8 | 1.3 | 0.9 | 1.0 | 1.0 | 0.6 | KI, MS |
Limonene | 1035 | 1.6 | 1.4 | 1.8 | 2.3 | 2.3 | 1.8 | 3.0 | KI, MS |
γ-Terpinene | 1065 | 0.0 | 0.3 | 0.2 | 0.2 | 0.0 | 0.3 | 0.0 | KI, MS |
α-Terpinolene | 1092 | 0.0 | 0.4 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | KI, MS |
1,8-Cineole | 1039 | 8.1 | 7.2 | 4.2 | 9.9 | 8.6 | 9.8 | 9.8 | KI, MS |
Linalool | 1103 | 0.0 | 0.0 | 0.4 | 0.4 | 0.4 | 0.3 | 0.6 | KI, MS |
α-Thujone (cis) | 1111 | 26.5 | 32.5 | 42.6 | 25.3 | 27.3 | 33.1 | 12.6 | KI, MS |
β-Thujone (trans) | 1112 | 13.8 | 9.5 | 7.4 | 12.2 | 6.7 | 3.7 | 1.3 | KI, MS |
Camphor | 1150 | 23.6 | 20.5 | 12.4 | 22.1 | 18.2 | 13.3 | 33.3 | KI, MS |
Borneol | 1172 | 3.5 | 3.2 | 2.6 | 4.0 | 3.3 | 3.8 | 5.7 | KI, MS |
Terpinen-4-ol | 1182 | 0.0 | 0.8 | 0.8 | 0.6 | 0.5 | 0.7 | 0.6 | KI, MS |
p-Cymen-8-ol | 1191 | 0.0 | 0.1 | 0.9 | 0.0 | 0.0 | 0.2 | 0.0 | KI, MS |
α-Terpineol | 1195 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.2 | 0.0 | KI, MS |
Bornyl acetate | 1288 | 3.3 | 0.2 | 1.0 | 2.3 | 1.4 | 1.9 | 3.3 | KI, MS |
Thymol | 1302 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | KI, MS |
Carvacrol | 1312 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.2 | 0.0 | KI, MS |
α-Humulene | 1456 | 1.8 | 2.0 | 2.3 | 2.8 | 2.2 | 3.0 | 3.6 | KI, MS |
Viridiflorol | 1593 | 9.3 | 6.4 | 8.2 | 5.3 | 5.2 | 8.5 | 7.7 | KI, MS |
trans-β-Caryophyllene | 1422 | 0.0 | 0.7 | 0.1 | 0.3 | 0.0 | 1.1 | 0.7 | KI, MS |
Caryophyllene oxide | 1584 | 0.0 | 0.7 | 0.1 | 0.0 | 0.0 | 0.7 | 0.0 | KI, MS |
Manool | 2052 | 0.0 | 0.0 | 0.0 | 1.2 | 2.6 | 3.8 | 0.0 | KI, MS |
TOTAL | 99.1 | 94.0 | 93.0 | 96.8 | 89.2 | 95.2 | 96.0 | ||
Yield | 0.56 | 0.91 | 1.58 | 2.14 | 1.58 | 0.65 | 1.93 |
Terpene Compounds | SO-SP | SO-LA | SO-HV | SO-SV | SO-MA | SO-LO | SO-KO |
Monoterpene hydrocarbons | 9.2 | 9.8 | 9.6 | 10.4 | 12.8 | 10.9 | 16.8 |
Derivatives of monoterpenes | 78.8 | 74.4 | 72.7 | 76.8 | 66.4 | 67.2 | 67.2 |
Sesquiterpenes | 11.1 | 9.8 | 10.7 | 8.4 | 7.4 | 13.3 | 12.0 |
Diterpene | 0.0 | 0.0 | 0.0 | 1.2 | 2.6 | 3.8 | 0.0 |
Functional Groups | SO-SP | SO-LA | SO-HV | SO-SV | SO-MA | SO-LO | SO-KO |
Alkenes | 10.2 | 11.7 | 10.7 | 12.6 | 14.0 | 14.0 | 20.5 |
Alcohols | 12.8 | 10.6 | 12.2 | 11.5 | 12.0 | 17.3 | 14.6 |
Ketones | 63.9 | 62.5 | 62.4 | 59.6 | 52.2 | 50.1 | 47.2 |
Aromatic | 0.8 | 1.1 | 2.4 | 0.9 | 1.0 | 1.4 | 0.6 |
Others | 11.4 | 8.1 | 5.3 | 12.2 | 10.0 | 12.4 | 13.1 |
Structure | SO-SP | SO-LA | SO-HV | SO-SV | SO-MA | SO-LO | SO-KO |
Acylic (n = 0) | 0.5 | 0.6 | 1.1 | 1.2 | 1.2 | 1.0 | 1.3 |
Cyclic (n = 1) | 4.2 | 6.2 | 7.7 | 7.1 | 6.0 | 7.4 | 7.8 |
Cyclic (n = 2) | 85.1 | 80.1 | 75.9 | 83.2 | 76.8 | 77.6 | 79.2 |
Cyclic (n > 2) | 9.3 | 7.1 | 8.3 | 5.3 | 5.2 | 9.2 | 7.7 |
Number of Oxygen Atoms | SO-SP | SO-LA | SO-HV | SO-SV | SO-MA | SO-LO | SO-KO |
n = 0 | 11.0 | 12.5 | 12.0 | 13.5 | 15.0 | 15.0 | 21.1 |
n = 1 | 84.8 | 81.3 | 80.0 | 81.0 | 72.8 | 78.3 | 71.6 |
n = 2 | 3.3 | 0.2 | 1.0 | 2.3 | 1.4 | 1.9 | 3.3 |
Number of Unsaturated Bonds in Molecules | SO-SP | SO-LA | SO-HV | SO-SV | SO-MA | SO-LO | SO-KO |
n = 0 | 20.9 | 16.8 | 15.0 | 19.2 | 17.1 | 22.1 | 23.2 |
n = 1 | 73.5 | 70.7 | 70.1 | 68.4 | 62.8 | 60.7 | 63.6 |
n = 2 | 1.6 | 2.8 | 2.5 | 4.7 | 5.3 | 7.3 | 4.3 |
n = 3 | 2.3 | 2.6 | 3.0 | 3.6 | 3.0 | 3.7 | 4.3 |
Ar * | 0.8 | 1.1 | 2.4 | 0.9 | 1.0 | 1.4 | 0.6 |
Samples | HF77FA | HDF-Tert | BEAS-2B | MDA-MB-231 |
---|---|---|---|---|
SO-SP | 511.00 ± 34.77 | 819.00 ± 1.73 | 279.00 ± 80.61 | 423.00 ± 30.81 |
SO-LA | 732.00 ± 31.32 | >1000 | 408.00 ± 6.24 | 618.67 ± 136.14 |
SO-HV | 585.33 ± 49.14 | 853.00 ± 5.20 | 347.67 ± 33.01 | 514.33 ± 94.84 |
SO-SV | 669.00 ± 12.12 | 828.50 ± 122.33 | 363.67 ± 1.15 | 778.00 ± 67.51 |
SO-MA | 539.00 ± 46.51 | 839.33 ± 15.50 | 218.00 ± 14.11 | 535.00 ± 122.14 |
SO-LO | 419.00 ± 25.51 | 817.33 ± 7.02 | 229.00 ± 33.78 | 446.67 ± 67.28 |
SO-KO | 784.00 ± 7.00 | 954.50 ± 57.28 | 350.00 ± 25.36 | 618.00 ± 113.50 |
Terpene Compounds vs. IC50 | HF77FA | HDF-Tert | BEAS-2B | MDA-MB-213 |
Monoterpene hydrocarbons | ns | r = 0.8789 p = 0.0106 | ns | ns |
Derivatives of monoterpenes | ns | ns | ns | ns |
Sesquiterpenes | ns | ns | ns | ns |
Diterpene | r = −0.6704 p = 0.0497 | ns | r = −0.7589 p = 0.0239 | ns |
Unidentified | ns | ns | ns | ns |
Functional Groups vs. IC50 | HF77FA | HDF-Tert | BEAS-2B | MDA-MB-213 |
Alkenes | ns | r = 0.8327 p = 0.0198 | ns | ns |
Alcohols | ns | ns | ns | ns |
Ketones | ns | ns | ns | ns |
Aromatic | ns | ns | ns | ns |
Other compounds | ns | ns | ns | ns |
Structure vs. IC50 | HF77FA | HDF-Tert | BEAS-2B | MDA-MB-213 |
Acylic (n = 0) | ns | ns | ns | ns |
Cyclic (n = 1) | ns | ns | ns | ns |
Cyclic (n = 2) | ns | ns | ns | ns |
Cyclic (n > 2) | ns | ns | ns | r = −0.7736 p = 0.0206 |
Number of Oxygen Atoms vs. IC50 | HF77FA | HDF-Tert | BEAS-2B | MDA-MB-213 |
n = 0 | ns | r = 0.8276 p = 0.0210 | ns | ns |
n = 1 | ns | r = −0.8485 p = 0.0163 | ns | ns |
n = 2 | ns | ns | ns | ns |
Number of Unsaturated Bonds vs. IC50 | HF77FA | HDF-Tert | BEAS-2B | MDA-MB-213 |
n = 0 | ns | ns | ns | ns |
n = 1 | ns | ns | ns | ns |
n = 2 | ns | ns | ns | ns |
n = 3 | ns | ns | ns | ns |
Ar | ns | ns | ns | ns |
Individual Compounds vs. IC50 | HF77FA | HDF-Tert | BEAS-2B | MDA-MB-213 |
Camphene | ns | r = 0.7848 p = 0.0322 | ns | ns |
Limonene | ns | r = 0.8069 p = 0.0262 | ns | ns |
Camphor | r = 0.7044 p = 0.0386 | r = 0.7435 p = 0.0451 | ns | ns |
Borneol | ns | r = 0.7823 p = 0.0330 | ns | ns |
trans-β-Caryophyllene | ns | ns | ns | ns |
Caryophyllene oxide | ns | ns | ns | ns |
α-Terpinolene | Ns | ns | r = 0.7028 p = 0.0391 | r = 0.6844 p = 0.0449 |
Viridiflorol | ns | ns | ns | r = −0.7764 p = 0.0200 |
Manool | ns | ns | r = −0.7706 p = 0.0213 | ns |
Name of Location | Latitude | Longitude | Approximate Elevation |
---|---|---|---|
Sipan (SO-SP) | 42°43′25.26″ N | 17°52′34.21″ E | 57 m |
Lastovo (SO-LA) | 42°45′4.93″ N | 16°52′36.64″ E | 102 m |
Hvar (SO-HV) | 43°10′23.18″ N | 16°26′18.28″ E | 37 m |
Seget Vranjica (SO-SV) | 43°30′50.37″ N | 16°11′13.29″ E | 19 m |
Marina (SO-MA) | 43°30′37.31″ N | 16°7′35.36″ E | 8 m |
Lozovac (SO-LO) | 43°48′1.90″ N | 15°57′36.18″ E | 183 m |
Kornati (SO-KO) | 43°49′46.18″ N | 15°16′17.12″ E | 16 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jažo, Z.; Glumac, M.; Paštar, V.; Bektić, S.; Radan, M.; Carev, I. Chemical Composition and Biological Activity of Salvia officinalis L. Essential Oil. Plants 2023, 12, 1794. https://doi.org/10.3390/plants12091794
Jažo Z, Glumac M, Paštar V, Bektić S, Radan M, Carev I. Chemical Composition and Biological Activity of Salvia officinalis L. Essential Oil. Plants. 2023; 12(9):1794. https://doi.org/10.3390/plants12091794
Chicago/Turabian StyleJažo, Zvonimir, Mateo Glumac, Vlatka Paštar, Sanida Bektić, Mila Radan, and Ivana Carev. 2023. "Chemical Composition and Biological Activity of Salvia officinalis L. Essential Oil" Plants 12, no. 9: 1794. https://doi.org/10.3390/plants12091794
APA StyleJažo, Z., Glumac, M., Paštar, V., Bektić, S., Radan, M., & Carev, I. (2023). Chemical Composition and Biological Activity of Salvia officinalis L. Essential Oil. Plants, 12(9), 1794. https://doi.org/10.3390/plants12091794