Invasive Plant Species Driving the Biotic Homogenization of Plant-Frugivore Interactions in the Atlantic Forest Biodiversity Hotspot
Abstract
1. Introduction
2. Methods
2.1. Data Set
2.2. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diagne, C.; Leroy, B.; Vaissière, A.C.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Salles, J.M.; Bradshaw, C.J.A.; Courchamp, F. High and Rising Economic Costs of Biological Invasions Worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef]
- Perrings, C.; Dehnen-Schmutz, K.; Touza, J.; Williamson, M. How to Manage Biological Invasions under Globalization. Trends Ecol. Evol. 2005, 20, 212–215. [Google Scholar] [CrossRef]
- Hulme, P.E. Climate Change and Biological Invasions: Evidence, Expectations, and Response Options. Biol. Rev. 2017, 92, 1297–1313. [Google Scholar] [CrossRef]
- Cannas, S.A.; Marco, D.E.; Páez, S.A. Modelling Biological Invasions: Species Traits, Species Interactions, and Habitat Heterogeneity. Math. Biosci. 2003, 183, 93–110. [Google Scholar] [CrossRef]
- Simberloff, D.; Martin, J.L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M.; et al. Impacts of Biological Invasions: What’s What and the Way Forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Traveset, A.; Richardson, D.M. Mutualistic Interactions and Biological Invasions. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 89–113. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Morris, R.J. Ecological Networks Across Environmental Gradients. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 25–48. [Google Scholar] [CrossRef]
- Luna, P.; Dáttilo, W. Disentangling Plant-Animal Interactions into Complex Networks: A Multi-View Approach and Perspectives. In Plant-Animal Interactions; Del-Claro, K., Torezan-Silingardi, H.M., Eds.; Springer: Cham, Switzerland, 2021; pp. 261–281. [Google Scholar] [CrossRef]
- Levey, D.J.; Silva, W.R.; Galetti, M. Seed Dispersal and Frugivory: Ecology, Evolution, and Conservation; CABI: Wallingford, UK, 2002; ISBN 978-0-85199-977-7. [Google Scholar]
- Dew, J.L.; Boubli, J.P. Tropical Fruits and Frugivores; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Jordano, P. Fruits and Frugivory. In Seeds: The Ecology of Regeneration in Plant Communities; CABI: Wallingford, UK, 2000; pp. 125–166. ISBN 0851994326. [Google Scholar]
- Fragoso, J.M.V.; Silvius, K.M.; Correa, J.A. Long-Distance Seed Dispersal by Tapirs Increases Seed Survival and Aggregates Tropical Trees. Ecology 2003, 84, 1998–2006. [Google Scholar] [CrossRef]
- Jordano, P.; Forget, P.M.; Lambert, J.E.; Böhning-Gaese, K.; Traveset, A.; Wright, S.J. Frugivores and Seed Dispersal: Mechanisms and Consequences for Biodiversity of a Key Ecological Interaction. Biol. Lett. 2011, 7, 321–323. [Google Scholar] [CrossRef]
- Howe, H.F. Making Dispersal Syndromes and Networks Useful in Tropical Conservation and Restoration. Glob. Ecol. Conserv. 2016, 6, 152–178. [Google Scholar] [CrossRef]
- Wheelwright, N.T. Fruit-Size, Gape Width, and the Diets of Fruit-Eating Birds. Ecology 1985, 66, 808–818. [Google Scholar] [CrossRef]
- Galetti, M.; Guevara, R.; Côrtes, M.C.; Fadini, R.; Von Matter, S.; Leite, A.B.; Labecca, F.; Ribeiro, T.; Carvalho, C.S.; Collevatti, R.G.; et al. Functional Extinction of Birds Drives Rapid Evolutionary Changes in Seed Size. Science 2013, 340, 1086–1091. [Google Scholar] [CrossRef]
- Fleming, T.H.; Estrada, A. Frugivory and Seed Dispersal: Ecological and Evolutionary Aspects; Springer Science & Bussiness Media: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Brodie, J.F. Evolutionary Cascades Induced by Large Frugivores. Proc. Natl. Acad. Sci. USA 2017, 114, 11998–12002. [Google Scholar] [CrossRef] [PubMed]
- Gosper, C.R.; Stansbury, C.D.; Vivian-Smith, G. Seed Dispersal of Fleshy-Fruited Invasive Plants by Birds: Contributing Factors and Management Options. Divers. Distrib. 2005, 11, 549–558. [Google Scholar] [CrossRef]
- Buckley, Y.M.; Anderson, S.; Catterall, C.P.; Corlett, R.T.; Engel, T.; Gosper, C.R.; Nathan, R.; Richardson, D.M.; Setter, M.; Spiegel, O.; et al. Management of Plant Invasions Mediated by Frugivore Interactions. J. Appl. Ecol. 2006, 43, 848–857. [Google Scholar] [CrossRef]
- Cordero, S.; Gálvez, F.; Fontúrbel, F.E. Ecological Impacts of Exotic Species on Native Seed Dispersal Systems: A Systematic Review. Plants 2023, 12, 261. [Google Scholar] [CrossRef]
- Kueffer, C.; Kronauer, L.; Edwards, P.J. Wider Spectrum of Fruit Traits in Invasive than Native Floras May Increase the Vulnerability of Oceanic Islands to Plant Invasions. Oikos 2009, 118, 1327–1334. [Google Scholar] [CrossRef]
- Giorgis, M.A.; Tecco, P.A.; Cingolani, A.M.; Renison, D.; Marcora, P.; Paiaro, V. Factors Associated with Woody Alien Species Distribution in a Newly Invaded Mountain System of Central Argentina. Biol. Invasions 2011, 13, 1423–1434. [Google Scholar] [CrossRef]
- Bascompte, J.; Jordano, P. Mutualistic Networks; Princeton University Press: Princeton, NJ, USA, 2013; ISBN 9780691131269. [Google Scholar]
- Hagen, M.; Kissling, W.D.; Rasmussen, C.; De Aguiar, M.A.M.; Brown, L.E.; Carstensen, D.W.; Alves-Dos-Santos, I.; Dupont, Y.L.; Edwards, F.K.; Genini, J.; et al. Biodiversity, Species Interactions and Ecological Networks in a Fragmented World, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; Volume 46, ISBN 9780123969927. [Google Scholar]
- Dáttilo, W.; Rico-Gray, V. Ecological Networks in the Tropics; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-68227-3. [Google Scholar]
- Spotswood, E.N.; Meyer, J.Y.; Bartolome, J.W. An Invasive Tree Alters the Structure of Seed Dispersal Networks between Birds and Plants in French Polynesia. J. Biogeogr. 2012, 39, 2007–2020. [Google Scholar] [CrossRef]
- Costa, A.; Heleno, R.; Dufrene, Y.; Huckle, E.; Gabriel, R.; Harrison, X.; Schabo, D.G.; Farwig, N.; Kaiser-Bunbury, C.N. Seasonal Variation in Impact of Non-Native Species on Tropical Seed Dispersal Networks. Funct. Ecol. 2022, 36, 2713–2726. [Google Scholar] [CrossRef]
- Van Kleunen, M.; Weber, E.; Fischer, M. A Meta-Analysis of Trait Differences between Invasive and Non-Invasive Plant Species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Van Kleunen, M.; Dawson, W.; Dostal, P. Research on Invasive-Plant Traits Tells Us a Lot. Trends Ecol. Evol. 2011, 26, 317. [Google Scholar] [CrossRef]
- Crestani, A.C.; Mello, M.A.R.; Cazetta, E. Interindividual variations in plant and fruit traits affect the structure of a plant-frugivore network. Acta Oecol 2019, 95, 120–127. [Google Scholar] [CrossRef]
- Frost, C.M.; Allen, W.J.; Courchamp, F.; Jeschke, J.M.; Saul, W.C.; Wardle, D.A. Using Network Theory to Understand and Predict Biological Invasions. Trends Ecol. Evol. 2019, 34, 831–843. [Google Scholar] [CrossRef]
- Rojas, T.N.; Gallo, M.C.F.; Vergara-Tabares, D.L.; Nazaro, M.G.; Zampini, I.C.; Isla, M.I.; Blendinger, P.G. Being Popular or Freak: How Alien Plants Integrate into Native Plant-Frugivore Networks. Biol. Invasions 2019, 21, 2589–2598. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Kraus, F.; Tingley, R.; Li, Y. Risk of Biological Invasions Is Concentrated in Biodiversity Hotspots. Front. Ecol. Environ. 2016, 14, 411–417. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; Gil, P.R.; Hoffman, M.; Pilgrim, J.; Brooks, T.; Goettsch, C.M.; Lamoreux, J.; da Fonseca, G.A.B. Hotspots Revisited Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions; Chicago University Press: Chicago, IL, USA, 2005. [Google Scholar]
- Metzger, J.P. Conservation Issues in the Brazilian Atlantic Forest. Biol. Conserv. 2009, 142, 1138–1140. [Google Scholar] [CrossRef]
- Tabarelli, M.; Pinto, L.P.; Silva, J.M.C.; Hirota, M.; Bede, L. Challenges and Opportunities for Biodiversity Conservation in the Brazilian Atlantic Forest. Conserv. Biol. 2005, 19, 695–700. [Google Scholar] [CrossRef]
- Both, C.; Melo, A.S. Diversity of Anuran Communities Facing Bullfrog Invasion in Atlantic Forest Ponds. Biol. Invasions 2015, 17, 1137–1147. [Google Scholar] [CrossRef]
- Vitule, J.R.S.; Occhi, T.V.T.; Carneiro, L.; Daga, V.S.; Frehse, F.A.; Bezerra, L.A.V.; Forneck, S.; de Pereira, H.S.; Freitas, M.O.; Hegel, C.G.Z.; et al. Non-Native Species Introductions, Invasions, and Biotic Homogenization in the Atlantic Forest. In The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-diverse Forest; Marques, M.C.M., Grelle, C.E.V., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 269–295. ISBN 978-3-030-55322-7. [Google Scholar]
- Bello, C.; Galetti, M.; Montan, D.; Pizo, M.A.; Mariguela, T.C.; Culot, L.; Bufalo, F.; Labecca, F.; Pedrosa, F.; Constantini, R.; et al. Atlantic Frugivory: A Plant–Frugivore Interaction Data Set for the Atlantic Forest. Ecology 2017, 98, 1729. [Google Scholar] [CrossRef]
- Tabarelli, M.; Aguiar, A.V.; Ribeiro, M.C.; Metzger, J.P.; Peres, C.A. Prospects for Biodiversity Conservation in the Atlantic Forest: Lessons from Aging Human-Modified Landscapes. Biol. Conserv. 2010, 143, 2328–2340. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J.; Hirota, M.M. The Brazilian Atlantic Forest: How Much Is Left, and How Is the Remaining Forest Distributed? Implications for Conservation. Biol. Conserv. 2009, 142, 1141–1153. [Google Scholar] [CrossRef]
- Almeida-Neto, M.; Guimarães, P.R.J.; Loyota, R.D.; Ulrich, W. A Consistent Metric for Nestedness Analysis in Ecological Systems: Reconciling Concept and Measurement. Oikos 2008, 117, 13. [Google Scholar] [CrossRef]
- Dormann, C.F.; Strauss, R. A Method for Detecting Modules in Quantitative Bipartite Networks. Methods Ecol. Evol. 2014, 5, 90–98. [Google Scholar] [CrossRef]
- Patefield, W.M. Algorithm AS 159: An Efficient Method of Generating Random R × C Tables with Given Row and Column Totals. J. R. Stat. Soc. Ser. C Appl. Stat. 1981, 30, 91–97. [Google Scholar] [CrossRef]
- Saavedra, S.; Stouffer, D.B.; Uzzi, B.; Bascompte, J. Strong Contributors to Network Persistence Are the Most Vulnerable to Extinction. Nature 2011, 478, 233–235. [Google Scholar] [CrossRef]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The Modularity of Pollination Networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef] [PubMed]
- Martín González, A.M.; Dalsgaard, B.; Olesen, J.M. Centrality Measures and the Importance of Generalist Species in Pollination Networks. Ecol. Complex. 2010, 7, 36–43. [Google Scholar] [CrossRef]
- Katz, L. A New Status Index Derived from Sociometric Analysis. Psychometrika 1953, 18, 39–43. [Google Scholar] [CrossRef]
- Cruz, C.P.; Luna, P.; Guevara, R.; Hinojosa-Díaz, I.A.; Villalobos, F.; Dáttilo, W. Climate and Human Influence Shape the Interactive Role of the Honeybee in Pollination Networks beyond Its Native Distributional Range. Basic Appl. Ecol. 2022, 63, 186–195. [Google Scholar] [CrossRef]
- Baselga, A.; Orme, C.D.L. Betapart: An R Package for the Study of Beta Diversity. Methods Ecol. Evol. 2012, 3, 808–812. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the Turnover and Nestedness Components of Beta Diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Dormann, C.F.; Gruber, B.; Fründ, J. Introducing the Bipartite Package: Analysing Ecological Networks. R News 2008, 8, 8–11. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Wagner, H. Vegan: Community Ecology Package. R Package. version 2.6-4 (R-Project repository). 2022. Available online: https://cran.r-project.org/package=vegan (accessed on 14 December 2022).
- Csardi, G.; Nepusz, T. The Igraph Software Package for Complex Network Research. Int. J. Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Bascompte, J.; Jordano, P. Plant-Animal Mutualistic Networks: The Architecture of Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 567–593. [Google Scholar] [CrossRef]
- Plein, M.; Langsfeld, L.; Neuschulz, E.L.; Schulthei, C.; Ingmann, L.; Topfer, T.; Bohning-Gaese, K.; Schleuning, M. Constant Properties of Plant-Frugivore Networks despite Fluctuations in Fruit and Bird Communities in Space and Time. Ecology 2013, 94, 1296–1306. [Google Scholar] [CrossRef]
- Simmons, B.I.; Sutherland, W.J.; Dicks, L.V.; Albrecht, J.; Jordano, P.; González-varo, J.P.; Farwig, N.; García, D. Moving from Frugivory to Seed Dispersal: Incorporating the Functional Outcomes of Interactions in Plant—Frugivore Networks. J. Anim. Ecol. 2018, 87, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Carreira, D.C.; Dáttilo, W.; Bruno, D.L.; Percequillo, A.R.; Ferraz, K.M.P.M.B.; Galetti, M. Small Vertebrates Are Key Elements in the Frugivory Networks of a Hyperdiverse Tropical Forest. Sci. Rep. 2020, 10, id10594. [Google Scholar] [CrossRef]
- Donatti, C.I.; Guimarães, P.R.; Galetti, M.; Pizo, M.A.; Marquitti, F.M.D.; Dirzo, R. Analysis of a Hyper-Diverse Seed Dispersal Network: Modularity and Underlying Mechanisms. Ecol. Lett. 2011, 14, 773–781. [Google Scholar] [CrossRef]
- Vidal, M.M.; Hasui, E.; Pizo, M.A.; Tamashiro, J.Y.; Silva, W.R.; Guimarães, P.R., Jr. Frugivores at Higher Risk of Extinction Are the Key Elements of a Mutualistic Network. Ecology 2014, 95, 3440–3447. [Google Scholar] [CrossRef]
- Acevedo-Quintero, J.F.; Zamora-Abrego, J.G.; García, D. From Structure to Function in Mutualistic Interaction Networks: Topologically Important Frugivores Have Greater Potential as Seed Dispersers. J. Anim. Ecol. 2020, 89, 2181–2191. [Google Scholar] [CrossRef] [PubMed]
- Krishna, A.; Guimaraes, P.R., Jr.; Jordano, P.; Bascompte, J. A Neutral-Niche Theory of Nestedness in Mutualistic Networks. Oikos 2008, 117, 1609–1618. [Google Scholar] [CrossRef]
- Dáttilo, W.; Marquitti, F.M.D.; Guimarães, P.R.; Izzo, T.J. The Structure of Ant—Plant Ecological Networks: Is Abundance Enough? Ecology 2014, 95, 475–485. [Google Scholar] [CrossRef]
- Montoya-Arango, S.; Acevedo-Quintero, J.F.; Parra, J.L. Abundance and Size of Birds Determine the Position of the Species in Plant-Frugivore Interaction Networks in Fragmented Forests. Community Ecol. 2019, 20, 75–82. [Google Scholar] [CrossRef]
- Luna, P.; García-Chávez, J.H.; Izzo, T.; Sosa, V.J.; Del-Claro, K.; Dáttilo, W. Neutral and Niche-Based Factors Simultaneously Drive Seed and Invertebrate Removal by Red Harvester Ants. Ecol. Entomol. 2021, 46, 816–826. [Google Scholar] [CrossRef]
- Heleno, R.H.; Ramos, J.A.; Memmott, J. Integration of Exotic Seeds into an Azorean Seed Dispersal Network. Biol. Invasions 2013, 15, 1143–1154. [Google Scholar] [CrossRef]
- Vizentin-bugoni, J.; Sperry, J.H.; Kelley, J.P.; Gleditsch, J.M.; Foster, J.T. Ecological Correlates of Species ’ Roles in Highly Invaded Seed Dispersal Networks. Proc. Natl. Acad. Sci. USA 2021, 118, e2009532118. [Google Scholar] [CrossRef]
- Fricke, E.C.; Svenning, J.C. Accelerating Homogenization of the Global Plant–Frugivore Meta-Network. Nature 2020, 585, 74–78. [Google Scholar] [CrossRef]
- Ramos-Robles, M.; Dáttilo, W.; Díaz-Castelazo, C.; Andresen, E. Fruit Traits and Temporal Abundance Shape Plant-Frugivore Interaction Networks in a Seasonal Tropical Forest. Sci. Nat. 2018, 105, 29. [Google Scholar] [CrossRef]
- Albrecht, J.; Hagge, J.; Schabo, D.G.; Schaefer, H.M.; Farwig, N. Reward Regulation in Plant–Frugivore Networks Requires Only Weak Cues. Nat. Commun. 2018, 9, 4838. [Google Scholar] [CrossRef]
- Pizo, M.A.; Morales, J.M.; Ovaskainen, O.; Carlo, T.A. Frugivory Specialization in Birds and Fruit Chemistry Structure Mutualistic Networks across the Neotropics. Am. Nat. 2021, 197, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Cazetta, E.; Schaefer, H.M.; Galetti, M. Does Attraction to Frugivores or Defense against Pathogens Shape Fruit Pulp Composition? Oecologia 2008, 155, 277–286. [Google Scholar] [CrossRef]
- Klasing, K.C. Comparative Avian Nutrition; CABI: Wallingford, UK, 1998. [Google Scholar]
- Herrera, C.M. Plant-Vertebrate Seed Dispersal Systems in the Mediterranean: Ecological, Evolutionary, and Historical Determinants. Annu. Rev. Ecol. Syst. 1995, 26, 705–727. [Google Scholar] [CrossRef]
- Githiru, M.; Lens, L.; Bennur, L.A.; Ogol, C.P.K.O. Effects of Site and Fruit Size on the Composition of Avian Frugivore Assemblages in a Fragmented Afrotropical Forest. Oikos 2002, 96, 320–330. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dáttilo, W.; Luna, P.; Villegas-Patraca, R. Invasive Plant Species Driving the Biotic Homogenization of Plant-Frugivore Interactions in the Atlantic Forest Biodiversity Hotspot. Plants 2023, 12, 1845. https://doi.org/10.3390/plants12091845
Dáttilo W, Luna P, Villegas-Patraca R. Invasive Plant Species Driving the Biotic Homogenization of Plant-Frugivore Interactions in the Atlantic Forest Biodiversity Hotspot. Plants. 2023; 12(9):1845. https://doi.org/10.3390/plants12091845
Chicago/Turabian StyleDáttilo, Wesley, Pedro Luna, and Rafael Villegas-Patraca. 2023. "Invasive Plant Species Driving the Biotic Homogenization of Plant-Frugivore Interactions in the Atlantic Forest Biodiversity Hotspot" Plants 12, no. 9: 1845. https://doi.org/10.3390/plants12091845
APA StyleDáttilo, W., Luna, P., & Villegas-Patraca, R. (2023). Invasive Plant Species Driving the Biotic Homogenization of Plant-Frugivore Interactions in the Atlantic Forest Biodiversity Hotspot. Plants, 12(9), 1845. https://doi.org/10.3390/plants12091845