From Hop to Beer: Influence of Different Organic Foliar Fertilisation Treatments on Hop Oil Profile and Derived Beers’ Flavour
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fertilisation Experiment
2.2. Plant Material Characterisation
2.3. Hop Cone Analysis
2.3.1. GC-MS Hop Oil Analysis
2.3.2. Cyranose 320 Analysis on Hop Cones
2.4. Brewing Trial Analysis
2.4.1. HS/SPME/GC-MS Analysis of Conditioned Dry-Hopped Beers
2.4.2. Cyranose 320 Analysis on Dry-Hopped Beers
2.4.3. Sensory Analysis
3. Materials and Methods
3.1. Experimental Design and Hop Cone Sampling
3.2. Hop Cone Sampling
3.3. Hop Cone Analysis
3.3.1. Hop Oil GC-MS Analysis
3.3.2. Hop Cone Electronic Nose Analysis
3.4. Brewing Trials
Brewing Process
3.5. Single-Hopped Beer Analysis
3.5.1. Determination of Standard Quality Attributes
3.5.2. HS/SPME/GC-MS Analysis
3.5.3. Beer Electronic Nose Analysis
3.5.4. Sensory Analysis
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, S.F.; Benedict, C.A.; Darby, H.; Hoagland, L.A.; Simonson, P.; Robert Sirrine, J.; Murphy, K.M. Challenges and Opportunities for Organic Hop Production in the United States. Agron. J. 2011, 103, 1645–1654. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yang, M.; Wang, J.; Wang, Z.; Fan, Z.; Kang, F.; Wang, Y.; Luo, Y.; Kuang, D.; Chen, Z.; et al. Agronomic Responses of Major Fruit Crops to Fertilization in China: A Meta-Analysis. Agronomy 2020, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Qi, Y.; Wu, J.; Shukla, M.K.; Sun, Q. Influence of the Application of Irrigated Water-Soluble Calcium Fertilizer on Wine Grape Properties. PLoS ONE 2019, 14, e0222104. [Google Scholar] [CrossRef]
- Osman Bursalioglu, E. The Effects of Fertilization on the Green Tea Elements. Environ. Res. Technol. 2019, 2, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Webster, D.R.; Edwards, C.G.; Spayd, S.E.; Peterson, J.C.; Seymour, B.J. Influence of vineyard nitrogen fertilization on the concentrations of monoterpenes, higher alcohols, and esters in aged Riesling wines. AJEV 1993, 44, 275–284. [Google Scholar] [CrossRef]
- Liu, M.Y.; Burgos, A.; Ma, L.; Zhang, Q.; Tang, D.; Ruan, J. Lipidomics Analysis Unravels the Effect of Nitrogen Fertilization on Lipid Metabolism in Tea Plant (Camellia Sinensis L.). BMC Plant Biol. 2017, 17, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.D.; Yang, M.S.; Renseigné, N.; Smith, D.L. Fertilizer Effect on the Yield and Terpene Components from the Flowerheads of Chrysanthemum Boreale M. (Compositae). Agron. Sustain. Dev. 2005, 25, 205. [Google Scholar] [CrossRef] [Green Version]
- Van Holle, A.; Van Landschoot, A.; Roldán-Ruiz, I.; Naudts, D.; De Keukeleire, D. The Brewing Value of Amarillo Hops (Humulus Lupulus L.) Grown in Northwestern USA: A Preliminary Study of Terroir Significance. J. Inst. Brew. 2017, 123, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Rodolfi, M.; Chiancone, B.; Liberatore, C.M.; Fabbri, A.; Cirlini, M.; Ganino, T. Changes in Chemical Profile of Cascade Hop Cones According to the Growing Area. J. Sci. Food Agric. 2019, 99, 6011–6019. [Google Scholar] [CrossRef]
- Kishimoto, T.; Kobayashi, M.; Yako, N.; Iida, A.; Wanikawa, A. Comparison of 4-Mercapto-4-Methylpentan-2-One Contents in Hop Cultivars from Different Growing Regions. J. Agric. Food Chem. 2008, 56, 1051–1057. [Google Scholar] [CrossRef]
- Forster, A.; Gahr, A.; Schüll, F.; Bertazzoni, J. The Impact of Climatic Conditions on the Biogenesis of Various Compounds in Hops. BrewingScience 2021, 74, 160–171. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Iskra, A.E.; Lafontaine, S.R.; Trippe, K.M.; Massie, S.T.; Phillips, C.L.; Twomey, M.C.; Shellhammer, T.H.; Gent, D.H. Influence of Nitrogen Fertility Practices on Hop Cone Quality. J. Am. Soc. Brew. Chem. 2019, 77, 199–209. [Google Scholar] [CrossRef]
- De Keukeleire, J.; Janssens, I.; Heyerick, A.; Ghekiere, G.; Cambie, J.; Roldán-Ruiz, I.; Van Bockstaele, E.; De Keukeleire, D. Relevance of Organic Farming and Effect of Climatological Conditions on the Formation of α-Acids, β-Acids, Desmethylxanthohumol, and Xanthohumol in Hop (Humulus Lupulus L.). J. Agric. Food Chem. 2007, 55, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Brown, D. Fertilizers and Nutrient Management for Hops. Available online: https://www.canr.msu.edu/uploads/236/71516/fertilizer_and_nutrient_requirements_for_hops.pdf (accessed on 21 January 2023).
- Neve, R.A. Hops; Chapman and Hall: London, UK, 1991; p. 266. [Google Scholar]
- Greene, C.; Ferreira, G.; Carlson, A.; Cooke, B.; Waves, C.H.-A. Growing organic demand provides high-value opportunities for many types of producers. Amber Waves 2017. Available online: https://www.ers.usda.gov/amber-waves/2017/januaryfebruary/growing-organic-demand-provides-high-value-opportunities-for-many-types-of-producers/ (accessed on 10 April 2023).
- Rizzo, G.; Borrello, M.; Dara Guccione, G.; Schifani, G.; Cembalo, L. Organic food consumption: The relevance of the health attribute. Sustainability 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- Solarska, E.; Sosnowska, B. The Impact of Plant Protection and Fertilization on Content of Bioactive Substances in Organic Hops. Acta Sci. Pol.-Hortorum Cultus 2015, 14, 93–101. [Google Scholar]
- Rettberg, N.; Biendl, M.; Garbe, L.A. Hop Aroma and Hoppy Beer Flavor: Chemical Backgrounds and Analytical Tools—A Review. J. Am. Soc. Brew. Chem. 2018, 76, 1–20. [Google Scholar] [CrossRef]
- Gabrielyan, G.; Marsh, T.L.; McCluskey, J.J.; Ross, C.F. Hoppiness Is Happiness? Under-Fertilized Hop Treatments and Consumers’ Willingness to Pay for Beer. J. Wine Econ. 2018, 13, 160–181. [Google Scholar] [CrossRef]
- Rodolfi, M.; Barbanti, L.; Giordano, C.; Rinaldi, M.; Fabbri, A.; Pretti, L.; Casolari, R.; Beghé, D.; Petruccelli, R.; Ganino, T. The Effect of Different Organic Foliar Fertilization on Physiological and Chemical Characters in Hop (Humulus Lupulus L., Cv Cascade) Leaves and Cones. Appl. Sci. 2021, 11, 6778. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington DC, USA, 1995. [Google Scholar]
- NIST. Mass Spectral Library (NIST/EPA/NIH). 2005. Available online: https://chemdata.nist.gov/ (accessed on 15 April 2022).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation, Pennsylvania State University: Carol Stream, PA, USA, 2007. [Google Scholar]
- Garcia, D.; Wu, Y.; Furlan, M.R.; Hassani, D.; Khalid, M.; Huang, D.; Ming, L.C. Dry Biomass and Volatile Oil Production of Achyrocline Satureioides Subjected to Agronomic Management Practices. Rev. Bras. Farmacogn. 2021, 31, 832–837. [Google Scholar] [CrossRef]
- Khammar, A.A.; Moghaddam, M.; Asgharzade, A.; Sourestani, M.M. Nutritive Composition, Growth, Biochemical Traits, Essential Oil Content and Compositions of Salvia Officinalis L. Grown in Different Nitrogen Levels in Soilless Culture. J. Soil Sci. Plant Nutr. 2021, 21, 3320–3332. [Google Scholar] [CrossRef]
- Vilanova, C.M.; Coelho, K.P.; Silva Araújo Luz, T.R.; Brandão Silveira, D.P.; Coutinho, D.F.; de Moura, E.G. Effect of Different Water Application Rates and Nitrogen Fertilisation on Growth and Essential Oil of Clove Basil (Ocimum Gratissimum L.). Ind. Crops Prod. 2018, 125, 186–197. [Google Scholar] [CrossRef]
- Ormeño, E.; Olivier, R.; Mévy, J.P.; Baldy, V.; Fernandez, C. Compost May Affect Volatile and Semi-Volatile Plant Emissions through Nitrogen Supply and Chlorophyll Fluorescence. Chemosphere 2009, 77, 94–104. [Google Scholar] [CrossRef]
- Peñuelas, J.; Estiarte, M. Can Elevated CO2 Affect Secondary Metabolism and Ecosystem Function? Trends Ecol. Evol. 1998, 13, 20–24. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Lai, Y.; He, G.; Wen, S.; He, H.; Li, Z.; Zhang, B.; Zhang, D. Transcriptomic Analysis Reveals the Significant Effects of Fertilization on the Biosynthesis of Sesquiterpenes in Phoebe Bournei. Genomics 2022, 114, 110375. [Google Scholar] [CrossRef]
- Lafontaine, S.; Varnum, S.; Roland, A.; Delpech, S.; Dagan, L.; Vollmer, D.; Kishimoto, T.; Shellhammer, T. Impact of Harvest Maturity on the Aroma Characteristics and Chemistry of Cascade Hops Used for Dry-Hopping. Food Chem. 2019, 278, 228–239. [Google Scholar] [CrossRef]
- Ordukaya, E.; Karlik, B. Fruit Juice–Alcohol Mixture Analysis Using Machine Learning and Electronic Nose. IEEJ Trans. Electr. Electron. Eng. 2016, 11, S171–S176. [Google Scholar] [CrossRef]
- Gardner, D.M.; Zoecklein, B.W.; Mallikarjunan, K. Electronic Nose Analysis of Cabernet Sauvignon (Vitis Vinifera L.) Grape and Wine Volatile Differences during Cold Soak and Postfermentation. Am. J. Enol. Vitic. 2011, 62, 81–90. [Google Scholar] [CrossRef]
- Mongelli, A.; Rodolfi, M.; Ganino, T.; Marieschi, M.; Dall’Asta, C.; Bruni, R. Italian Hop Germplasm: Characterization of Wild Humulus Lupulus L. Genotypes from Northern Italy by Means of Phytochemical, Morphological Traits and Multivariate Data Analysis. Ind. Crops Prod. 2015, 70, 16–27. [Google Scholar] [CrossRef]
- Montgomery, R.R.; Sauerwein, J.C. Standard Reference Materials Catalog-January 2007; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Zheng, X.Z.; Lan, Y.B.; Zhu, J.M.; Westbrook, J.; Hoffmann, W.C.; Lacey, R.E. Rapid Identification of Rice Samples Using an Electronic Nose. J. Bionic Eng. 2009, 6, 290–297. [Google Scholar] [CrossRef]
- Pathange, L.P.; Mallikarjunan, P.; Marini, R.P.; O’Keefe, S.; Vaughan, D. Non-Destructive Evaluation of Apple Maturity Using an Electronic Nose System. J. Food Eng. 2006, 77, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Baietto, M.; Wilson, A.D. Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading. Sensors 2015, 15, 899–931. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.F.; Ross, C.F. Determination of Flavour Compounds in Beer Using Stir-Bar Sorptive Extraction and Solid-Phase Microextraction. J. Inst. Brew. 2015, 121, 197–203. [Google Scholar] [CrossRef]
- Lafontaine, S.R.; Shellhammer, T.H. Impact of Static Dry-Hopping Rate on the Sensory and Analytical Profiles of Beer. J. Inst. Brew. 2018, 124, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Analytica, E.B.C. Hans Carl Getränke Fachverlag; Fachverlag Hans Carl: Nürenberg, Germany, 1998; Section: Method 7. [Google Scholar]
- Riu-Aumatell, M.; Miró, P.; Serra-Cayuela, A.; Buxaderas, S.; López-Tamames, E. Assessment of the Aroma Profiles of Low-Alcohol Beers Using HS-SPME-GC-MS. Food Res. Int. 2014, 57, 196–202. [Google Scholar] [CrossRef]
- Charry-Parra, G.; DeJesus-Echevarria, M.; Perez, F.J. Beer Volatile Analysis: Optimization of HS/SPME Coupled to GC/MS/FID. J. Food Sci. 2011, 76, C205–C211. [Google Scholar] [CrossRef] [PubMed]
- Aberl, A.; Coelhan, M. Determination of Volatile Compounds in Different Hop Varieties by Headspace-Trap GC/MS-in Comparison with Conventional Hop Essential Oil Analysis. J. Agric. Food Chem. 2012, 60, 2785–2792. [Google Scholar] [CrossRef]
- Ligor, M.; Stankevičius, M.; Wenda-Piesik, A.; Obelevičius, K.; Ragažinskiene, O.; Stanius, Ž.; Maruška, A.; Buszewski, B. Comparative Gas Chromatographic-Mass Spectrometric Evaluation of Hop (Humulus Lupulus L.) Essential Oils and Extracts Obtained Using Different Sample Preparation Methods. Food Anal. Methods 2014, 7, 1433–1442. [Google Scholar] [CrossRef] [Green Version]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 1999; ISBN 978-1-00-304072-9. [Google Scholar]
- Aquilani, B.; Laureti, T.; Poponi, S.; Secondi, L. Beer Choice and Consumption Determinants When Craft Beers Are Tasted: An Exploratory Study of Consumer Preferences. Food Qual. Prefer. 2015, 41, 214–224. [Google Scholar] [CrossRef]
Treatment | N Org. | P2O5 | K2O | Mg Chel | Zn Solub | Zn Chel | Mn Solub | Mn Chel | Fe Solub | Fe Chel. | Cu Solub | Cu Chel | B Solub | Mo Solub |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 30 | 1125 | 2070 | 360 | 45 | 45 | 120 | 120 | 120 | 120 | 45 | 45 | 15 | 18 |
T2 | 16,230 | - | 570 | 270 | 45 | 45 | 120 | 120 | 120 | 120 | 45 | 45 | 15 | 3 |
T3 | 16,080 | 3600 | 19,170 | 180 | 21 | 21 | - | - | 1950 | 1950 | - | - | - | - |
T4 | 16,080 | - | 16,770 | - | 66 | 66 | 120 | 120 | 2070 | 2070 | 45 | 45 | 345 | 3 |
Treatment | α-Acids % | β-Acids % | COH % | Ess. Oil Yield % | Moisture % |
---|---|---|---|---|---|
C | 4.3 ± 0.3 c | 5.3 ± 0.2 b | 26.2 ± 0.5 a | 1.1 ± 0.1 c | 11.1 ± 0.1 a |
T1 | 5.8 ± 0.4 b | 4.9 ± 0.5 b | 26.7 ± 0.5 a | 1.4 ± 0.1 b | 10.0 ± 0.1 a |
T2 | 7.0 ± 0.3 a | 6.4 ± 0.1 a | 26.8 ± 0.1 a | 1.8 ± 0.1 a | 10.1 ± 0.2 a |
T3 | 5.8 ± 0.6 b | 5.3 ± 0.2 b | 26.1 ± 0.4 a | 1.5 ± 0.2 b | 10.5 ± 0.2 a |
T4 | 5.1 ± 0.1 bc | 5.05 ± 0.2 b | 26.2 ± 0.4 a | 1.3 ± 0.1 b | 10.1 ± 0.1 a |
Terpenes | C | T1 | T2 | T3 | T4 | RI Calc * |
---|---|---|---|---|---|---|
α-Pinene | 0.1 ± 0.03 a | 0.2 ± 0.01 a | 0.3 ± 0.00 a | 0.2 ± 0.05 a | 0.3 ± 0.01 a | 1028 |
β-Pinene | 1.3 ± 0.22 b | 1.8 ± 0.02 ab | 1.9 ± 0.02 ab | 1.8 ± 0.20 ab | 2.0 ± 0.00 a | 1039 |
β-Myrcene | 47.3 ± 3.01 b | 58.5 ± 1.73 a | 57.9 ± 1.36 ab | 57.4 ± 1.39 ab | 56.5 ± 1.10 ab | 1173 |
Limonene | 1.0 ± 0.07 a | 1.2 ± 0.05 a | 1.1 ± 0.04 a | 12 ± 0.06 a | 1.2 ± 0.06 a | 1185 |
β-Linalool | 0.7 ± 0.19 a | 0.7 ± 0.03 a | 0.8 ± 0.03 a | 0.7 ± 0.03 a | 0.7 ± 0.01 a | 1544 |
β-Caryophyllene | 6.5 ± 1.08 a | 4.8 ± 0.60 ab | 4.3 ± 0.04 b | 4.6 ± 0.24 ab | 5.2 ± 0.60 ab | 1577 |
trans-Bergamotene | 0.7 ± 0.14 a | 0.4 ± 0.07 a | 0.5 ± 0.04 a | 0.5 ± 0.04 a | 0.5 ± 0.07 a | 1581 |
trans- β- Farnesene | 6.3 ± 0.60 a | 4.6 ± 0.63 a | 4.6 ± 0.41 a | 4.7 ± 0.14 a | 4.9 ± 0.23 a | 1645 |
α-Humulene | 15.2 ± 2.25 a | 9.6 ± 0.96 ab | 9.0 ± 0.57 b | 10.0 ± 1.08 ab | 11.6 ± 2.06 ab | 1658 |
Muurolene | 1.1 ± 0.13 a | 1.1 ± 0.29 a | 0.8 ± 0.04 b | 0.7 ± 0.00 b | 0.8 ± 0.04 ab | 1684 |
Methyl geranate | 0.8 ± 0.20 a | 0.7 ± 0.01 a | 0.7 ± 0.08 a | 0.7 ± 0.00 a | 0.7 ± 0.06 a | 1688 |
β-Selinene | 2.1 ± 0.21 a | 1.3 ± 0.79 ab | 1.8 ± 0.03 ab | 1.7 ± 0.08 ab | 1.7 ± 0.06 b | 1714 |
α-Selinene | 3.4 ± 0.11 a | 2.6 ± 1.13 ab | 2.9 ± 0.01 ab | 2.7 ± 0.04 b | 2.9 ± 0.05 ab | 1718 |
τ-Cadinene | 0.9 ± 0.11 a | 0.9 ± 0.61 ab | 0.6 ± 0.04 b | 0.6 ± 0.03 b | 0.7 ± 0.02 ab | 1755 |
δ-Cadinene | 1.5 ± 0.22 a | 0.9 ± 0.38 a | 0.9 ± 0.08 a | 0.9 ± 0.01 a | 1.0 ± 0.07 a | 1763 |
trans-1,4-Cadina diene | 0.1 ± 0.03 a | 0.5 ± 0.62 a | 0.1 ± 0.01 a | 0.1 ± 0.00 a | 0.1 ± 0.03 a | 1769 |
Terpenes | BC | BT1 | BT2 | BT3 | BT4 | RI Calc * |
---|---|---|---|---|---|---|
β-Myrcene | 0.4 ± 0.19 a | 0.6 ± 0.09 a | 0.3 ± 0.08 a | 0.3 ± 0.12 a | 0.2 ± 0.03 a | 991 |
Linalool | 1.3 ± 0.15 a | 0.9 ± 0.06 bc | 0.9 ± 0.00 c | 0.9 ± 0.01 abc | 1.1 ± 0.01 ab | 1099 |
Terpineol | 0.2 ± 0.05 a | 0.1 ± 0.00 b | 0.1 ± 0.00 b | 0.1 ± 0.00 b | 0.1 ± 0.00 b | 1188 |
Citronellol | 1.1 ± 0.08 a | 07 ± 0.07 ab | 0.6 ± 0.04 b | 0.7 ± 0.02 ab | 0.6 ± 0.02 ab | 1228 |
Geraniol | 0.2 ± 0.02 b | 0.3 ± 0.04 a,b | 0.4 ± 0.05 a | 0.4 ± 0.05 a | 0.4 ± 0.01 a | 1255 |
Methyl geranate | 0.1 ± 0.02 b | 0.4 ± 0.01 a | 0.3 ± 0.01 ab | 0.4 ± 0.00 a | 0.4 ± 0.01 a | 1302 |
Hedonic Score for Beer Samples | |||||
---|---|---|---|---|---|
Sensory Attribute | BC | BT1 | BT2 | BT3 | BT4 |
Appearance | 5.6 ± 1.5 a | 5.8 ± 1.3 a | 5.7 ± 1.2 a | 5.7 ± 1.1 a | 5.8 ± 1.3 a |
Odour | 6.1 ± 1.2 b | 6.0 ± 1.3 b | 5.1 ± 1.3 ab | 5.4 ± 1.3 ab | 5.2 ± 1.0 a |
Flavour/aroma | 5.7 ± 1.3 b | 5.8 ± 1.3 b | 5.1 ± 1.2 a | 5.3 ± 1.3 ab | 5.1 ± 1.3 a |
Taste | 5.3 ± 1.3 a | 5.4 ± 1.3 a | 5.3 ± 1.3 a | 5.2 ± 1.3 a | 5.4 ± 1.3 a |
Overall Acceptability | 6.0 ± 1.2 a | 6.1 ± 0.9 a | 5.7 ± 1.1 a | 5.8 ± 1.4 a | 5.8 ± 1.3 a |
Preference + | 166 | 164 | 174 | 174 | 172 |
Parameter | Value | Unit |
pH | 7.33 | |
EC | 264 | µS/cm |
CEC | 30.86 | cmolc/Kg |
Element | Value | Unit |
(N) tot | 2 | g/Kg |
Organic matter | 3.1 | % w/w |
(P) available | 17.8 | mg/kg |
(P2O5) available | 40.9 | mg/kg |
Ca | 13.65 | mmol/L |
Mg | 1.1 | mmol/L |
K | 1.23 | mmol/L |
Na | 0.22 | mmol/L |
Zn | 41 | mg/kg |
Fe | 17.4 | g/kg |
B | 11 | mg/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodolfi, M.; Valentoni, A.; Pretti, L.; Sanna, M.; Guidotti, S.; Marchioni, I.; Ganino, T. From Hop to Beer: Influence of Different Organic Foliar Fertilisation Treatments on Hop Oil Profile and Derived Beers’ Flavour. Plants 2023, 12, 1861. https://doi.org/10.3390/plants12091861
Rodolfi M, Valentoni A, Pretti L, Sanna M, Guidotti S, Marchioni I, Ganino T. From Hop to Beer: Influence of Different Organic Foliar Fertilisation Treatments on Hop Oil Profile and Derived Beers’ Flavour. Plants. 2023; 12(9):1861. https://doi.org/10.3390/plants12091861
Chicago/Turabian StyleRodolfi, Margherita, Antonio Valentoni, Luca Pretti, Manuela Sanna, Simone Guidotti, Ilaria Marchioni, and Tommaso Ganino. 2023. "From Hop to Beer: Influence of Different Organic Foliar Fertilisation Treatments on Hop Oil Profile and Derived Beers’ Flavour" Plants 12, no. 9: 1861. https://doi.org/10.3390/plants12091861
APA StyleRodolfi, M., Valentoni, A., Pretti, L., Sanna, M., Guidotti, S., Marchioni, I., & Ganino, T. (2023). From Hop to Beer: Influence of Different Organic Foliar Fertilisation Treatments on Hop Oil Profile and Derived Beers’ Flavour. Plants, 12(9), 1861. https://doi.org/10.3390/plants12091861