Inoculation and Screening Methods for Major Sorghum Diseases Caused by Fungal Pathogens: Claviceps africana, Colletotrichum sublineola, Sporisorium reilianum, Peronosclerospora sorghi and Macrophomina phaseolina
Abstract
:1. Introduction
2. Claviceps africana
2.1. Inoculation Methods
2.2. Screening Methods
2.3. Key Facts
3. Colletotrichum sublineola
3.1. Inoculation Methods
3.2. Screening Methods
3.3. Key Facts
4. Sporisorium reilianum
4.1. Inoculation Methods
4.2. Screening Methods
4.3. Key Facts
5. Peronosclerospora sorghi
5.1. Inoculation Methods
5.2. Screening Methods
5.3. Key Facts
6. Macrophomina phaseolina
6.1. Inoculation Methods
6.2. Screening Methods
6.3. Key Facts
7. Innovative Biotechnologies and Methods for Detecting and Evaluating Diseases in Sorghum
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ananda, G.K.S.; Myrans, H.; Norton, S.L.; Gleadow, R.; Furtado, A.; Henry, R.J. Wild sorghum as a promising resource for crop improvement. Front. Plant Sci. 2022, 11, 1108. [Google Scholar] [CrossRef]
- Abreha, K.B.; Ortiz, R.; Carlsson, A.S.; Geleta, M. Understanding the sorghum–Colletotrichum sublineola interactions for enhanced host resistance. Front. Plant Sci. 2021, 12, 641969. [Google Scholar] [CrossRef]
- Pažoutová, S.; Frederickson, D.E. Genetic diversity of Claviceps africana on sorghum and Hyparrhenia. Plant Pathol. 2005, 54, 749–763. [Google Scholar] [CrossRef]
- Poloni, A.; Schirawski, J. Host specificity in Sporisorium reilianum is determined by distinct mechanisms in maize and sorghum. Mol. Plant Pathol. 2016, 17, 741–754. [Google Scholar] [CrossRef]
- Perumal, R.; Nimmakayala, P.; Erattaimuthu, S.R.; No, E.G.; Reddy, U.K.; Prom, L.K.; Odvody, G.N.; Luster, D.G.; Magill, C.W. Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi) and related species. BMC Genet. 2008, 9, 77. [Google Scholar] [CrossRef]
- Khanal, A.; Adhikari, P.; Kaiser, C.; Lipka, A.E.; Jamann, T.M.; Mideros, S.X. Genetic mapping of sorghum resistance to an Illinois isolate of Colletotrichum sublineola. Plant Genome 2022, 15, e20243. [Google Scholar] [CrossRef]
- Marquez, N.; Giachero, M.L.; Declerck, S.; Ducasse, D.A. Macrophomina phaseolina: General characteristics of pathogenicity and methods of control. Front. Plant Sci. 2021, 12, 634397. [Google Scholar] [CrossRef]
- Frederiksen, R.; Odvody, G. Compendium of Sorghum Diseases, 2nd ed.; American Phytopathological Society (APS Press): St. Paul, MN, USA, 2000; ISBN 978-0-89054-240-8. [Google Scholar]
- Tonapi, V.A.; Ryley, M.; Galea, V.; Bhuiyan, S.; Wearing, A. Iterative germination and innovative techniques for the production and inoculation of secondary conidia of sorghum ergot (Claviceps africana). Arch. Phytopathol. Plant Prot. 2009, 42, 248–255. [Google Scholar] [CrossRef]
- Frederickson, D.E.; Mantle, P.G. The path of infection of sorghum by Claviceps sorghi. Physiol. Mol. Plant Pathol. 1988, 33, 221–234. [Google Scholar] [CrossRef]
- Musabyimana, T.; Sehene, C.; Bandyopadhyay, R. Ergot resistance in sorghum in relation to flowering, inoculation technique and disease development. Plant Pathol. 1995, 44, 109–115. [Google Scholar] [CrossRef]
- Prom, L.K.; Erpelding, J.E.; Isakeit, T.; Montes, N. Inoculation techniques for identifying resistance in sorghum genotypes to sorghum ergot. J. New Seeds 2005, 7, 9–22. [Google Scholar] [CrossRef]
- Prom, L.K.; Isakeit, T.; Odvody, G.N.; Rush, C.M.; Kaufman, H.W.; Montes, N. Survival of Claviceps africana Within sorghum panicles at several Texas locations. Plant Dis. 2005, 89, 39–43. [Google Scholar] [CrossRef]
- Prom, L.; Perumal, R.; Erpelding, J.; Isakeit, T.; Montes, N.; Magill, C. A pictorial technique for mass screening of sorghum germplasm for anthracnose (Colletotrichum sublineolum) resistance. Open Agric. 2009, 3, 20–25. [Google Scholar] [CrossRef]
- Ahn, E.; Prom, L.K.; Hu, Z.; Odvody, G.; Magill, C.W. Genome-wide association analysis for response of Senegalese sorghum accessions to Texas isolates of anthracnose. Plant Genome 2021, 14, e20097. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, H.E.; Cruet-Burgos, C.M.; Prom, L.K.; Knoll, J.E.; Stutts, L.R.; Vermerris, W. The inheritance of anthracnose (Colletotrichum sublineola) resistance in sorghum differential lines QL3 and IS18760. Sci. Rep. 2021, 11, 20525. [Google Scholar] [CrossRef] [PubMed]
- Xavier, K.V.; Pfeiffer, T.; Parreira, D.F.; Chopra, S.; Vaillancourt, L. Aggressiveness of Colletotrichum sublineola Strains from Sorghum bicolor and S. halepense to Sweet Sorghum Variety Sugar Drip, and Their Impact on Yield. Plant Dis. 2017, 101, 1578–1587. [Google Scholar] [CrossRef] [PubMed]
- Ahn, E.; Prom, L.K.; Odvody, G.; Magill, C. Late growth stages of johnsongrass can act as an alternate host of Colletotrichum sublineola. Plant Health Prog. 2020, 21, 60–62. [Google Scholar] [CrossRef]
- Prom, L.K.; Cuevas, H.E.; Isakeit, T.; Droleskey, R. Excised leaf method for high volume evaluation of Sorghum germplasm for resistance against Colletotrichum sublineolum. Plant Pathol. J. 2016, 15, 11–16. [Google Scholar] [CrossRef]
- Ahn, E.; Fall, C.; Prom, L.K.; Magill, C. Genome-wide association study of Senegalese sorghum seedlings responding to a Texas isolate of Colletotrichum sublineola. Sci. Rep. 2022, 12, 13025. [Google Scholar] [CrossRef]
- Ahn, E.; Prom, L.K.; Odvody, G.; Magill, C. Defense responses against the sorghum anthracnose pathogen in leaf blade and midrib tissue of johnsongrass and sorghum. Physiol. Mol. Plant Pathol. 2019, 106, 81–86. [Google Scholar] [CrossRef]
- Ahn, E.; Fall, C.; Fan, F.; Prom, L.K.; Magill, C. Johnsongrass rhizome tissue can be infected by Colletotrichum sublineola. Physiol. Mol. Plant Pathol. 2022, 121, 101860. [Google Scholar] [CrossRef]
- Harris, H.B.; Johnson, B.J.; Dobson, J.W., Jr.; Luttrell, E.S. Evaluation of anthracnose on grain sorghum. Crop Sci. 1964, 4, 440–444. [Google Scholar] [CrossRef]
- Thomas, M.D.; Sissoko, I.; Sacko, M. Development of leaf anthracnose and its effect on yield and grain weight of sorghum in West Africa. Plant Dis. 1996, 80, 151–153. [Google Scholar] [CrossRef]
- Ahn, E.; Odvody, G.; Prom, L.K.; Magill, C. Leaf angle distribution in Johnsongrass, leaf thickness in sorghum and Johnsongrass, and association with response to Colletotrichum sublineola. Sci. Rep. 2020, 10, 22320. [Google Scholar] [CrossRef]
- Lebeau, F.J.; Stokes, L.E.; Coleman, O.H. Anthracnose and red rot of sorghum. Tech. Bull. 1951, 1035, 1–20. [Google Scholar]
- Mehta, B.K. Variation in Pathogenicity of the Sorghum Head Smut Fungus. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 1965. [Google Scholar]
- Stewart, R.B.; Reyes, L. Head smut of sorghum and varietal reaction. Plant Dis. Rep. 1958, 42, 1133–1140. [Google Scholar]
- Osorio, J.A.; Frederiksen, R.A. Development of an infection assay for Sporisorium reilianum, the head smut pathogen on sorghum. Plant Dis. 1998, 82, 1232–1236. [Google Scholar] [CrossRef]
- Edmunds, L.K. Use of sporidial hypodermic injection to test sorghum for head smut resistance. Plant Dis. Rep. 1963, 47, 909–913. [Google Scholar]
- Craig, J.; Frederiksen, R.A. Comparison of sorghum seedling reactions to Sporisorium reilianum in relation to sorghum head smut resistance classes. Plant Dis. 1992, 76, 314–318. [Google Scholar] [CrossRef]
- Ahn, E.; Prom, L.K.; Fall, C.; Magill, C. Response of Senegalese sorghum seedlings to pathotype 5 of Sporisorium reilianum. Crops 2022, 2, 142–153. [Google Scholar] [CrossRef]
- Prom, L.K.; Perumal, R.; Isakeit, T.; Erattaimuthu, S.; Magill, C. Response of sorghum accessions against newly documented pathotypes 5 and 6 of head smut pathogen, Sporisorium reilianum. Am. J. Plant Sci. 2021, 12, 432–443. [Google Scholar] [CrossRef]
- Narayana, Y.D.; Mughogho, L.K.; Bandyopadhyay, R. Evaluation of greenhouse inoculation techniques to screen sorghum for resistance to downy mildew. Euphytica 1995, 86, 49–53. [Google Scholar] [CrossRef]
- Safeeulla, K.M. Biology and Control of Downy Mildews of Pearl Millet, Sorghum and Finger Millet; Mysore University: Mysore, India, 1976; p. 304. [Google Scholar]
- Singh, S.D.; Gopinath, R. A seedling inoculation technique for detecting downy mildew resistance in pearl millet. Plant Dis. 1985, 69, 582–584. [Google Scholar]
- Prom, L.K.; Montes-Garcia, N.; Erpelding, J.E.; Perumal, R.; Medina-Ocegueda, S. Response of sorghum accessions from Chad and Uganda to natural infection by the downy mildew pathogen, Peronosclerospora sorghi in Mexico and the USA. J. Plant Dis. Prot. 2010, 117, 2–8. [Google Scholar] [CrossRef]
- Bock, C.H.; Jeger, M.J.; Mughogho, L.K.; Mtisi, E.; Cardwell, K.F. Production of conidia by Peronosclerospora sorghi on sorghum crops in Zimbabwe. Plant Pathol. 1998, 47, 243–251. [Google Scholar] [CrossRef]
- Das, I.K.; Rao, S.V. Charcoal/Stalk Rot. In Screening Techniques for Sorghum Diseases, 1st ed.; Information Bulletin No. 76; Thakur, R.P., Reddy, B.V.S., Mathur, K., Eds.; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 2007; p. 92. ISBN 978-92-9066-504-5. [Google Scholar]
- Bandara, Y.M.A.Y.; Perumal, R.; Little, C.R. Integrating resistance and tolerance for improved evaluation of sorghum lines against Fusarium stalk rot and charcoal rot. Phytoparasitica 2015, 43, 485–499. [Google Scholar] [CrossRef]
- Saha, S.; Chattopadhyay, D.; Krishnendu, A. Preparation of silver nanoparticles by bio-reduction using Nigrospora oryzae culture filtrate and its antimicrobial activity. Dig. J. Nanomater. Biostructures 2011, 6, 1519–1528. [Google Scholar]
- Zheng, L.; Lv, R.; Huang, J.; Jiang, D.; Hsiang, T. Isolation, purification, and biological activity of a phytotoxin produced by Stemphylium solani. Plant Dis. 2010, 94, 1231–1237. [Google Scholar] [CrossRef]
- Lin, Z.; Guo, W. Sorghum panicle detection and counting using Unmanned Aerial System images and deep learning. Front. Plant Sci. 2020, 11, 534853. [Google Scholar] [CrossRef]
- Dhaka, V.S.; Meena, S.V.; Rani, G.; Sinwar, D.; Kavita; Ijaz, M.F.; Woźniak, M. A survey of deep convolutional neural networks applied for prediction of plant leaf diseases. Sensors 2021, 21, 4749. [Google Scholar] [CrossRef]
- Tadmare, S.S.; Mahalakshmi, B. A survey on sorghum leaf disease detection and classification using Convolutional Neural Networks. Int. J. Sci. Res. Comput. Sci. Appl. Manag. Stud. 2019, 8, 1–5. [Google Scholar]
- Nagasubramanian, K.; Jones, S.; Singh, A.K.; Sarkar, S.; Singh, A.; Ganapathysubramanian, B. Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods 2019, 15, 98. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, X.; Chen, S.; Chen, J.; Liang, Z.; Chen, B.; Yang, X.; Zhou, G.; Zhang, T. On-site and visual detection of sorghum mosaic virus and rice stripe mosaic virus based on reverse transcription-recombinase-aided amplification and CRISPR/Cas12a. Front. Genome Ed. 2023, 5, 1124794. [Google Scholar] [CrossRef]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-wide association studies. Nat. Rev. Methods Prim. 2021, 1, 59. [Google Scholar] [CrossRef]
- Brachi, B.; Morris, G.P.; Borevitz, J.O. Genome-wide association studies in plants: The missing heritability is in the field. Genome Biol. 2011, 12, 232. [Google Scholar] [CrossRef] [PubMed]
- Ahn, E.; Hu, Z.; Perumal, R.; Prom, L.K.; Odvody, G.; Upadhyaya, H.D.; Magill, C.W. Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut. PLoS ONE 2019, 14, e0216671. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, S.; Xie, P.; Yang, D.; Wu, Y.; Cheng, S.; Du, K.; Xin, P.; Chu, J.; Yu, F.; et al. Creation of fragrant sorghum by CRISPR/Cas9. J. Integr. Plant Biol. 2022, 64, 961–964. [Google Scholar] [CrossRef] [PubMed]
- Char, S.N.; Lee, H.; Yang, B. Use of CRISPR/Cas9 for targeted mutagenesis in sorghum. Curr. Protoc. Plant Biol. 2020, 5, e20112. [Google Scholar] [CrossRef]
- Chatterjee, P.; Jakimo, N.; Lee, J.; Amrani, N.; Rodríguez, T.; Koseki, S.R.T.; Tysinger, E.; Qing, R.; Hao, S.; Sontheimer, E.J.; et al. An engineered ScCas9 with broad PAM range and high specificity and activity. Nat. Biotechnol. 2020, 38, 1154–1158. [Google Scholar] [CrossRef]
- Brinkman, E.K.; van Steensel, B. Rapid quantitative evaluation of CRISPR genome editing by TIDE and TIDER. Methods Mol. Biol. 2019, 1961, 29–44. [Google Scholar]
- Jin, S.; Lin, Q.; Gao, Q.; Gao, C. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs). Nat. Protoc. 2023, 18, 831–853. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Machin, F.; Wang, S.; Saplaoura, E.; Kragler, F. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks. Nat. Biotechnol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Ahn, E.; Prom, L.; Magill, C. Diseases of Johnsongrass (Sorghum halepense): Possible role as a reservoir of pathogens affecting other plants. Weed Sci. 2021, 69, 393–403. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef]
Pathogen | Disease | Phylum | Lifestyle | Overwintering Structure | Primary Inoculum | Secondary Inoculum | Environmental Conditions |
---|---|---|---|---|---|---|---|
Claviceps africana | ergot | Ascomycota | Biotrophic | Unclear, but potentially sclerotia | Unclear, but potentially sclerotia | Primary and secondary conidia from honeydew | Cool and rainy weather at anthesis |
Sporisorium reilianum | Head smut | Basidiomycota | Biotrophic | Teliospore | Teliospore | Soilborne Teliospore | Favorable environmental conditions are poorly understood |
Peronosclerospora sorghi | Downy mildew | Oomycota | Biotrophic | Oospore | Oospore | Conidia | Minimum soil temperature at 10 °C Conidial production at 18 °C |
Colletotrichum sublineola | Anthracnose | Ascomycota | Hemibiotrophic | Microsclerotia | Microsclerotia Seed transmission Alternative hosts (ex: Johnsongrass) | Conidia | Light at 22–30 °C |
Macrophomina phaseolina | Charcoal rot | Ascomycota | Hemibiotrophic | Sclerotia | Sclerotia | Conidia | Hot and dry weather conditions High soil temperature (35–37 °C) |
Disease Rating | Description |
---|---|
1 | One internode invaded but the rot does not pass through any nodal area. |
2 | Two internodes invaded. |
3 | Three internodes invaded. |
4 | More than three internodes invaded. |
5 | Five most internodes invaded with the shredding of stalks and death of plants. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, E.; Fall, C.; Botkin, J.; Curtin, S.; Prom, L.K.; Magill, C. Inoculation and Screening Methods for Major Sorghum Diseases Caused by Fungal Pathogens: Claviceps africana, Colletotrichum sublineola, Sporisorium reilianum, Peronosclerospora sorghi and Macrophomina phaseolina. Plants 2023, 12, 1906. https://doi.org/10.3390/plants12091906
Ahn E, Fall C, Botkin J, Curtin S, Prom LK, Magill C. Inoculation and Screening Methods for Major Sorghum Diseases Caused by Fungal Pathogens: Claviceps africana, Colletotrichum sublineola, Sporisorium reilianum, Peronosclerospora sorghi and Macrophomina phaseolina. Plants. 2023; 12(9):1906. https://doi.org/10.3390/plants12091906
Chicago/Turabian StyleAhn, Ezekiel, Coumba Fall, Jacob Botkin, Shaun Curtin, Louis K. Prom, and Clint Magill. 2023. "Inoculation and Screening Methods for Major Sorghum Diseases Caused by Fungal Pathogens: Claviceps africana, Colletotrichum sublineola, Sporisorium reilianum, Peronosclerospora sorghi and Macrophomina phaseolina" Plants 12, no. 9: 1906. https://doi.org/10.3390/plants12091906
APA StyleAhn, E., Fall, C., Botkin, J., Curtin, S., Prom, L. K., & Magill, C. (2023). Inoculation and Screening Methods for Major Sorghum Diseases Caused by Fungal Pathogens: Claviceps africana, Colletotrichum sublineola, Sporisorium reilianum, Peronosclerospora sorghi and Macrophomina phaseolina. Plants, 12(9), 1906. https://doi.org/10.3390/plants12091906