Unique Morphology of Sarcobatus baileyi Male Inflorescence and Its Botanical Implications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Duan, S.; Geng, B.; Cui, J.; Yang, Y. Schmeissneria: A missing link to angiosperms? BMC Evol. Biol. 2007, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shih, C.; Liu, Z.-J.; Lin, L.; Singh, K.J. Reconstructing the Callianthus plant–An early aquatic angiosperm from the Lower Cretaceous of China. Cretac. Res. 2021, 128, 104983. [Google Scholar] [CrossRef]
- Wang, X. The Dawn Angiosperms, 2nd ed.; Springer: Cham, Switzerland, 2018; p. 407. [Google Scholar]
- Han, G.; Liu, Z.; Wang, X. A Dichocarpum-like angiosperm from the Early Cretaceous of China. Acta Geol. Sin. (Engl. Ed.) 2017, 90, 1–8. [Google Scholar]
- Han, G.; Liu, Z.-J.; Liu, X.; Mao, L.; Jacques, F.M.B.; Wang, X. A whole plant herbaceous angiosperm from the Middle Jurassic of China. Acta Geol. Sin. (Engl. Ed.) 2016, 90, 19–29. [Google Scholar]
- Liu, Z.-J.; Wang, X. A perfect flower from the Jurassic of China. Hist. Biol. 2016, 28, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-J.; Wang, X. Yuhania: A unique angiosperm from the Middle Jurassic of Inner Mongolia, China. Hist. Biol. 2017, 29, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-J.; Wang, X. A novel angiosperm from the Early Cretaceous and its implications on carpel-deriving. Acta Geol. Sin. (Engl. Ed.) 2018, 92, 1293–1298. [Google Scholar] [CrossRef]
- Santos, A.A.; Wang, X. Pre-Carpels from the Middle Triassic of Spain. Plants 2022, 11, 2833. [Google Scholar] [CrossRef]
- Fu, Q.; Diez, J.B.; Pole, M.; Garcia-Avila, M.; Liu, Z.-J.; Chu, H.; Hou, Y.; Yin, P.; Zhang, G.-Q.; Du, K.; et al. An unexpected noncarpellate epigynous flower from the Jurassic of China. eLife 2018, 7, e38827. [Google Scholar] [CrossRef]
- Fu, Q.; Hou, Y.; Yin, P.; Diez, J.B.; Pole, M.; García-Ávila, M.; Wang, X. Micro-CT results exhibit ovules enclosed in the ovaries of Nanjinganthus. Sci. Rep. 2023, 13, 426. [Google Scholar] [CrossRef] [PubMed]
- Friis, E.M.; Crane, P.R.; Pedersen, K.R. The Early Flowers and Angiosperm Evolution; Cambridge University Press: Cambridge, UK, 2011; p. 596. [Google Scholar]
- Canright, J.E. The comparative morphology and relationships of the Magnoliaceae. III. Carpels. Am. J. Bot. 1960, 47, 145–155. [Google Scholar] [CrossRef]
- Sattler, R.; Lacroix, C. Development and evolution of basal cauline placentation: Basella rubra. Am. J. Bot. 1988, 75, 918–927. [Google Scholar] [CrossRef]
- Retallack, G.; Dilcher, D.L. Early angiosperm reproduction: Prisca reynoldsii, gen. et sp. nov. from the mid-Cretaceous coastal deposits in Kansas, U.S.A. Paläontogr. B 1981, 179, 103–107. [Google Scholar]
- Retallack, G.; Dilcher, D.L. A coastal hypothesis for the dispersal and rise to dominance of flowering plants. In Paleobotany, Paleoecology and Evolution; Niklas, K.J., Ed.; Praeger Publishers: New York, NY, USA, 1981; pp. 27–77. [Google Scholar]
- Retallack, G.; Dilcher, D.L. Arguments for a glossopterid ancestry of angiosperms. Paleobiology 1981, 7, 54–67. [Google Scholar] [CrossRef]
- Melville, R. A new theory of the angiosperm flower: I. The gynoecium. Kew Bull. 1962, 16, 1–50. [Google Scholar] [CrossRef]
- Melville, R. A new theory of the angiosperm flower: II. The androecium. Kew Bull. 1963, 17, 1–63. [Google Scholar] [CrossRef]
- Melville, R. The origin of flowers. New Sci. 1964, 22, 494–496. [Google Scholar]
- Meeuse, A.D.J. From ovule to ovary: A contribution to the phylogeny of the megasporangium. Acta Biotheor. 1963, 16, 127–182. [Google Scholar] [CrossRef]
- Meeuse, A.D.J. Angiosperm phylogeny, floral morphology and pollination ecology. Acta Biotheor. 1972, 21, 145–166. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, W.; Xiang, Q.-Y. Evolution and developmental genetics of floral display-A review of progress. J. Syst. Evol. 2017, 55, 487–515. [Google Scholar] [CrossRef]
- Dreni, L.; Zhang, D. Flower development: The evolutionary history and functions of the AGL6 subfamily MADS-box genes. J. Exp. Bot. 2016, 67, 1625–1638. [Google Scholar] [CrossRef]
- Skinner, D.J.; Hill, T.A.; Gasser, C.S. Regulation of ovule development. Plant Cell 2004, 16, S32–S45. [Google Scholar] [CrossRef] [PubMed]
- Mathews, S.; Kramer, E.M. The evolution of reproductive structures in seed plants: A re-examination based on insights from developmental genetics. New Phytol. 2012, 194, 910–923. [Google Scholar] [CrossRef]
- Roe, J.L.; Nemhauser, J.L.; Zambryski, P.C. TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell 1997, 9, 335–353. [Google Scholar] [PubMed]
- Rounsley, S.D.; Ditta, G.S.; Yanofsky, M.F. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 1995, 7, 1259–1269. [Google Scholar] [PubMed]
- Cronquist, A. The Evolution and Classification of Flowering Plants, 2nd ed.; New York Botanical Garden: New York, NY, USA, 1988; p. 555. [Google Scholar]
- APG. APG IV: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- Bai, S.N.; Xu, Z.H. Unisexual cucumber flowers, sex and sex differentiation. In International Review of Cell and Molecular Biology; Jeon, K., Ed.; Academic Press: Amsterdam, The Netherlands, 2013; Volume 304, pp. 1–56. [Google Scholar]
- Posluszny, U.; Tomlinson, P.B. Aspects of inflorescence and floral development in the putative basal angiosperm Amborella trichopoda (Amborellaceae). Can. J. Bot. 2003, 81, 28–39. [Google Scholar] [CrossRef]
- Behnke, H.-D. Sarcobataceae—A new family of Caryophyllales. Taxon 1997, 46, 495–507. [Google Scholar] [CrossRef]
- Jepson, W.L. A Manual of the Flowering Plants of California; University of California Press: Berkeley, CA, USA, 1951; p. 1238. [Google Scholar]
- Munz, P.A.; Keck, D.D. A California Flora; University of California Press: Berkeley, CA, USA, 1959. [Google Scholar]
- Khan, M.A.; Gul, B.; Weber, D.J. Seed germination in relation to salinity and temperature in Sarcobatus vermiculatus. Biol. Plant. 2001, 45, 133–135. [Google Scholar] [CrossRef]
- Sanderson, S.C.; Stutz, H.C.; Stutz, M.; Roos, R.C. Chromosome races in Sarcobatus (Sarcobataceae, Caryophyllales). Great Basin Nat. 1999, 59, 301–314. [Google Scholar]
- Baillon, H.E. Développement de la fleur femelle du Sarcobatus. Bull. Soc. Linn. Paris 1887, 1, 649. [Google Scholar]
- Tomlinson, P.B.; Takaso, T. Seed cone structure in conifers in relation to development and pollination: A biological approach. Can. J. Bot. 2002, 80, 1250–1273. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, X.; Wu, X. Ginkgophytes; Science Press: Beijing, China, 2020; p. 458. [Google Scholar]
- Martens, P. Les Gnetophytes; Gebrueder Borntraeger: Berlin, Germany, 1971. [Google Scholar]
- Zavada, M.S.; Crepet, W.L. Pollen grain wall structure of Caytonanthus arberi (Caytoniales). Plant Syst. Evol. 1986, 153, 259–264. [Google Scholar] [CrossRef]
- Taylor, T.N.; Taylor, E.L.; Krings, M. Paleobotany: The Biology and Evolution of Fossil Plants, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2009; p. 1230. [Google Scholar]
- Farjon, A. A Monograph of Cupressaceae and Sciadopitys; Royal Botanic Gardens, Kew: Richmond, UK, 2005. [Google Scholar]
- Crane, P.R. The morphology and relationships of the Bennettitales. In Systematic and Taxonomic Approaches in Palaeobotany; Spicer, R.A., Thomas, B.A., Eds.; The Systematics Association Special Volume; Clarendon Press: Oxford, UK, 1986; Volume 31, pp. 163–175. [Google Scholar]
- Fu, Q.; Liu, J.; Wang, X. Offspring development conditioning (ODC): A universal evolutionary trend in sexual reproduction of organisms. J. Northwest Univ. (Nat. Sci. Ed.) 2021, 51, 163–172. [Google Scholar] [CrossRef]
- Rothwell, G.W.; Stockey, R.A. Independent evolution of seed enclosure in the bennettitales: Evidence from the anatomically preserved cone Foxeoidea connatum gen. et sp. nov. In Plants in the Mesozoic Time: Innovations, Phylogeny, Ecosystems; Gee, C.T., Ed.; Indiana University Press: Bloomington, IN, USA, 2010; pp. 51–64. [Google Scholar]
- Rothwell, G.W.; Stockey, R.A. Anatomically preserved Cycadeoidea (Cycadeoidaceae), with a reevaluation of systematic characters for the seed cones of Bennettitales. Am. J. Bot. 2002, 89, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, G.W.; Crepet, W.L.; Stockey, R.A. Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. Am. J. Bot. 2009, 96, 296–322. [Google Scholar] [CrossRef] [PubMed]
- Jagel, A.; Dörken, V.M. Morphology and morphogenesis of the seed cones of the Cupressaceae—Part II: Cupressoideae. Bull. Cupressus Conserv. Proj. 2015, 4, 51–78. [Google Scholar]
- Schulz, C.; Jagel, A.; Stützel, T. Cone morphology in Juniperus in the light of cone evolution in Cupressaceae s.l. Flora 2003, 198, 161–177. [Google Scholar] [CrossRef]
- Bai, S.N. Are unisexual flowers an appropriate model to study plant sex determination? J. Exp. Bot. 2020, 71, 4625–4628. [Google Scholar] [CrossRef]
- Sauquet, H.; von Balthazar, M.; Magallón, S.; Doyle, J.A.; Endress, P.K.; Bailes, E.J.; Barroso de Morais, E.; Bull-Hereñu, K.; Carrive, L.; Chartier, M.; et al. The ancestral flower of angiosperms and its early diversification. Nat. Commun. 2017, 8, 16047. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Xu, X.; Wang, X. Unique Morphology of Sarcobatus baileyi Male Inflorescence and Its Botanical Implications. Plants 2023, 12, 1917. https://doi.org/10.3390/plants12091917
Liu W, Xu X, Wang X. Unique Morphology of Sarcobatus baileyi Male Inflorescence and Its Botanical Implications. Plants. 2023; 12(9):1917. https://doi.org/10.3390/plants12091917
Chicago/Turabian StyleLiu, Wenzhe, Xiuping Xu, and Xin Wang. 2023. "Unique Morphology of Sarcobatus baileyi Male Inflorescence and Its Botanical Implications" Plants 12, no. 9: 1917. https://doi.org/10.3390/plants12091917
APA StyleLiu, W., Xu, X., & Wang, X. (2023). Unique Morphology of Sarcobatus baileyi Male Inflorescence and Its Botanical Implications. Plants, 12(9), 1917. https://doi.org/10.3390/plants12091917