Effects of Waterlogging at Flowering Stage on the Grain Yield and Starch Quality of Waxy Maize
Abstract
:1. Introduction
2. Results and Discussion
2.1. Grain Yield
2.2. Starch Content
2.3. Starch Granule Size
2.4. Starch Molecular Weight Distribution
2.5. Starch X-ray Diffraction
2.6. Pasting Property
2.7. Thermal Property
3. Materials and Methods
3.1. Experimental Design
3.2. Grain Yield
3.3. Starch Content
3.4. Starch Isolation
3.5. Starch Granule Size
3.6. Starch Molecular Weight
3.7. X-ray Diffraction
3.8. Pasting Property
3.9. Thermal Property
3.10. Statistical Design
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, K.; Harrison, M.T.; Yan, H.L.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.Y.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef] [PubMed]
- Mustroph, A. Improving Flooding Tolerance of Crop Plants. Agronomy 2018, 8, 3390. [Google Scholar] [CrossRef]
- Kaur, G.; Vikal, Y.; Kaur, L.; Kalia, A.; Mittal, A.; Kaur, D.; Yadav, I. Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. Plant Sci. 2021, 304, 110823. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.X.; Bi, W.S.; Ren, X.S.; Li, W.L.; Sun, L.; Li, J. Flooding has more adverse effects on the stem structure and yield of spring maize (Zea mays L.) than waterlogging in Northeast China. Eur. J. Agron. 2020, 117, 126054. [Google Scholar] [CrossRef]
- Wang, X.W.; Li, X.Y.; Gu, J.T.; Shi, W.Q.; Zhao, H.G.; Sun, C.; You, S.C. Drought and waterlogging status and dominant meteorological factors affecting maize (Zea mays L.) in different growth and development stages in Northeast China. Agronomy 2023, 13, 374. [Google Scholar] [CrossRef]
- Huang, C.; Gao, Y.; Qin, A.Z.; Liu, Z.G.; Zhao, B.; Ning, D.F.; Ma, S.T.; Duan, A.W.; Liu, Z.D. Effects of waterlogging at different stages and durations on maize growth and grain yields. Agric. Water Manage 2022, 261, 107334. [Google Scholar] [CrossRef]
- Hu, J.; Yu, W.Z.; Liu, P.; Zhao, B.; Zhang, J.W.; Ren, B.Z. Responses of canopy functionality, crop growth and grain yield of summer maize to shading, waterlogging, and their combination stress at different crop stages. Eur. J. Agron. 2023, 144, 126761. [Google Scholar] [CrossRef]
- Ren, B.Z.; Yu, W.Z.; Liu, P.; Zhao, B.; Zhang, J.W. Responses of photosynthetic characteristics and leaf senescence in summer maize to simultaneous stresses of waterlogging and shading. Crop J. 2023, 11, 269–277. [Google Scholar] [CrossRef]
- Dash, S.S.; Lenka, D.; Sahoo, J.P.; Tripathy, S.K.; Samal, K.C.; Lenka, D.; Panda, R.K. Biochemical characterization of maize (Zea mays L.) hybrids under excessive soil moisture stress. Cereal Res. Commun. 2022, 50, 875–884. [Google Scholar] [CrossRef]
- Otie, V.; Ping, A.; Udo, I.; Eneji, E. Brassinolide effects on maize (Zea mays L.) growth and yield under waterlogged conditions. J. Plant Nutr. 2019, 42, 954–969. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Responses of carbon metabolism and antioxidant system of summer maize to waterlogging at different stages. J. Agron. Crop Sci. 2018, 204, 505–514. [Google Scholar] [CrossRef]
- Tian, L.X.; Li, J.; Bi, W.S.; Zuo, S.Y.; Li, L.J.; Li, W.L.; Sun, L. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) Under field conditions. Agric. Water Manag. 2019, 218, 250–258. [Google Scholar] [CrossRef]
- Ren, B.Z.; Dong, S.T.; Zhao, B.; Liu, P.; Zhang, J.W. Responses of nitrogen metabolism, uptake and translocation of maize to waterlogging at different growth stages. Front. Plant Sci. 2017, 8, 3389. [Google Scholar] [CrossRef] [PubMed]
- Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef]
- Fan, H.Y.; Zhou, Z.Q.; Yang, C.N.; Jiang, Z.; Li, J.T.; Cheng, X.X.; Guo, Y.J. Effects of waterlogging on amyloplasts and programmed cell death in endosperm cells of Triticum aestivum L. Protoplasma 2013, 250, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wu, X.J.; Xin, L.; Jiang, H.D.; Wang, X.; Cai, J.; Jiang, D. Waterlogging and simulated acid rain after anthesis deteriorate starch quality in wheat grain. Plant Growth Regul. 2018, 85, 257–265. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, M.; Huang, X.; Liu, J.; Wang, X.; Cai, J.; Dai, T.B.; Cao, W.X.; Jiang, D. Effect of post-anthesis waterlogging on biosynthesis and granule size distribution of starch in wheat grains. Plant Physiol. Biochem. 2018, 132, 222–228. [Google Scholar] [CrossRef]
- Arata, A.F.; Dinolfo, M.I.; Martinez, M.; Lazaro, L. Effects of waterlogging during grain filling on yield components, nitrogen uptake and grain quality in bread wheat. Cereal Res. Commun. 2019, 47, 42–52. [Google Scholar] [CrossRef]
- Li, H.W.; Wang, Z.S.; Zhuo, Q.C.; Zhang, B.; Wang, F.H.; Jiang, D. Starch granule size distribution and pasting characteristic response to post-anthesis combined stress of waterlogging and shading. Agriculture 2020, 10, 384. [Google Scholar] [CrossRef]
- Chen, Z.K.; Du, Y.F.; Mao, Z.L.; Zhang, Z.J.; Li, P.; Cao, C.G. Grain starch, fatty acids, and amino acids determine the pasting properties in dry cultivation plus rice cultivars. Food Chem. 2022, 373, 131472. [Google Scholar] [CrossRef]
- Xiong, R.Y.; Xie, J.X.; Chen, L.M.; Yang, T.T.; Tan, X.M.; Zhou, Y.J.; Pan, X.H.; Zeng, Y.J.; Shi, Q.H.; Zhang, J.; et al. Water irrigation management affects starch structure and physicochemical properties of indica rice with different grain quality. Food Chem. 2021, 347, 129045. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Chen, T.; Zhang, H.; Cao, J.; Li, X.; Wang, X.; Wang, Y.; Yao, S.; Gao, Y.; Chen, Y.; et al. Effect of waterlogging stress on grain nutritional quality and pod yield of peanut (Arachis hypogaea L.). J. Agron. Crop Sci. 2023, 209, 286–299. [Google Scholar] [CrossRef]
- Yu, X.R.; Yu, H.; Zhang, J.; Shao, S.S.; Xiong, F.; Wang, Z. Endospermstructure and physicochemical properties of starches from normal, waxy, and super-sweet maize. Int. J. Food Prop. 2015, 18, 2825–2839. [Google Scholar] [CrossRef]
- Lu, D.L.; Cai, X.M.; Lu, W.P. Effects of water deficit during grain filling on the physicochemical properties of waxy maize starch. Starch-Starke 2015, 67, 692–700. [Google Scholar] [CrossRef]
- Yang, H.; Wen, Z.R.; Huang, T.Q.; Lu, W.P.; Lu, D.L. Effects of waterlogging at grain formation stage on starch structure and functionality of waxy maize. Food Chem. 2019, 294, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.L.; Cai, X.M.; Shi, Y.X.; Zhao, J.R.; Lu, W.P. Effects of waterlogging after pollination on the physicochemical properties of starch from waxy maize. Food Chem. 2015, 179, 232–238. [Google Scholar] [CrossRef]
- Jiang, D.; Fan, X.M.; Dai, T.B.; Cao, W.X. Nitrogen fertiliser rate and post-anthesis waterlogging effects on carbohydrate and nitrogen dynamics in wheat. Plant Soil. 2008, 304, 301–314. [Google Scholar] [CrossRef]
- Yang, H.; Huang, T.Q.; Ding, M.Q.; Lu, D.L.; Lu, W.P. Effects of waterlogging around flowering stage on the grain yield and eating properties of fresh waxy maize. Cereal Chem. 2016, 93, 605–611. [Google Scholar] [CrossRef]
- Zheng, C.F.; Jiang, D.; Dai, T.B.; Jing, Q.; Cao, W.X. Effects of salt and waterlogging stress at post-anthesis stage on wheat grain yield and quality. Chin. J. Appl. Ecol. 2009, 20, 2391–2398. [Google Scholar]
- Zeng, R.E.; Chen, T.T.; Wang, X.Y.; Cao, J.; Li, X.; Xu, X.Y.; Chen, L.; Xia, Q.; Dong, Y.L.; Huang, L.P.; et al. Physiological and expressional regulation on photosynthesis, starch and sucrose metabolism response to waterlogging stress in peanut. Front. Plant Sci. 2021, 12, 601771. [Google Scholar] [CrossRef]
- Yang, H.; Shen, X.; Ding, M.Q.; Lu, D.L.; Lu, W.P. Effects of high temperature after pollination on grain development and endogenous hormone contents of waxy maize. J. Maize Sci. 2017, 25, 55–60. [Google Scholar]
- Hsieh, C.F.; Liu, W.C.; Whaley, J.K.; Shi, Y.C. Structure and functional properties of waxy starches. Food Hydrocolloids 2019, 94, 238–254. [Google Scholar] [CrossRef]
- Wu, A.C.; Gilbert, R.G. Molecular weight distributions of starch branches reveal genetic constraints on biosynthesis. Biomacromolecules 2010, 11, 3539–3547. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, Q.; Xu, X.; Qi, L.; Dong, Z.; Luo, Z.; Lu, X.; Peng, X. Structural changes of waxy and normal maize starches modified by heat moisture treatment and their relationship with starch digestibility. Carbohydr. Polym. 2017, 177, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.L.; Guo, H.F.; Dong, C.; Lu, W.P. Starch granule size distribution and thermal properties of waxy maize cultivars in growing seasons. Acta Agron. Sin. 2010, 36, 1998–2003. [Google Scholar]
- Liu, L.M.; Klocke, N.; Yan, S.P.; Rogers, D.; Schlegel, A.; Lamm, F.; Chang, S.I.; Wang, D.H. Impact of deficit irrigation on maize physical and chemical properties and ethanol yield. Cereal Chem. 2023, 90, 453–462. [Google Scholar] [CrossRef]
- Li, S.; Xu, X.Z.; Guo, W.S.; Li, X.; Cheng, F. Study and application of negative pressure water supplying, controlling pot device and irrigation system. J. Shanghai Jiaotong Univ. (Agric. Sci.) 2008, 26, 478–482. [Google Scholar]
- Hansen, J.; Møller, I. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal. Biochem. 1975, 68, 87–94. [Google Scholar] [CrossRef]
- GB/T 8885-2017; Edible Corn Starch—Code for Recommended National Standards. Standards Press of China: Beijing, China, 2017.
- Lin, L.S.; Guo, D.W.; Zhao, L.X.; Zhang, X.D.; Wang, J.; Zhang, F.M.; Wei, C.X. Comparative structure of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocolloid 2016, 52, 19–28. [Google Scholar] [CrossRef]
- Cai, C.H.; Lin, L.S.; Man, J.M.; Zhao, L.X.; Wang, Z.F.; Wei, C.X. Different structural properties of high-amylose maize starch fractions varying in granule size. J. Agric. Food Chem. 2014, 62, 11711–11721. [Google Scholar] [CrossRef]
Year | Hybrid | Water | PV (mPa·s) | TV (mPa·s) | BD (mPa·s) | FV (mPa·s) | SB (mPa·s) | Ptemp (°C) |
---|---|---|---|---|---|---|---|---|
2014 | SYN5 | CK | 1384 ± 1 d | 1256 ± 6 a | 128 ± 7 d | 1660 ± 20 a | 404 ± 14 a | 76.1 ± 0.4 bc |
WS | 998 ± 26 e | 927 ± 24 e | 71 ± 2 e | 1181 ± 32 e | 254 ± 8 de | 75.3 ± 0.4 c | ||
YN7 | CK | 1378 ± 42 d | 1275 ± 34 a | 103 ± 8 d | 1692 ± 52 a | 417 ± 18 a | 76.1 ± 0.4 bc | |
WS | 1016 ± 2 e | 983 ± 3 de | 33 ± 1 f | 1299 ± 12 cd | 316 ± 9 b | 75.3 ± 0.4 c | ||
2015 | SYN5 | CK | 1586 ± 20 b | 1134 ± 4 b | 452 ± 16 c | 1427 ± 6 b | 293 ± 2 bc | 77.9 ± 0.4 a |
WS | 1477 ± 29 c | 1022 ± 22 cd | 455 ± 7 c | 1246 ± 22 de | 224 ± 0 e | 76.3 ± 0.4 bc | ||
YN7 | CK | 1791 ± 4 a | 1075 ± 5 bc | 717 ± 9 a | 1344 ± 1 bc | 270 ± 6 cd | 76.3 ± 0.5 bc | |
WS | 1659 ± 13 b | 1061 ± 5 c | 599 ± 9 b | 1354 ± 9 bc | 293 ± 4 bc | 77.1 ± 0.4 ab |
Year | Hybrid | Water | ΔHgel (J/g) | To (°C) | Tp (°C) | Tc (°C) | ΔHret (J/g) | %R (%) |
---|---|---|---|---|---|---|---|---|
2014 | SYN5 | CK | 8.84 ± 0.24 abc | 69.6 ± 0.1 d | 75.6 ± 0.0 de | 82.4 ± 0.1 c | 3.5 ± 0.0 a | 39.7 ± 0.9 a |
WS | 8.74 ± 0.22 bcd | 68.5 ± 0.1 e | 74.8 ± 0.0 f | 81.9 ± 0.1 c | 2.9 ± 0.1 b | 33.0 ± 0.3 b | ||
YN7 | CK | 8.53 ± 0.12 cd | 70.2 ± 0.0 cd | 75.5 ± 0.0 e | 82.3 ± 0.0 c | 2.7 ± 0.2 b | 31.9 ± 1.5 b | |
WS | 8.23 ± 0.07 d | 68.3 ± 0.1 e | 74.6 ± 0.0 f | 83.1 ± 0.1 b | 2.1 ± 0.2 c | 24.9 ± 1.9 c | ||
2015 | SYN5 | CK | 8.93 ± 0.07 abc | 72.5 ± 0.0 a | 77.8 ± 0.2 a | 84.7 ± 0.0 a | 3.6 ± 0.1 a | 40.8 ± 1.8 a |
WS | 9.36 ± 0.11 a | 70.4 ± 0.1 cd | 76.2 ± 0.1 b | 83.3 ± 0.2 b | 4.1 ± 0.2 a | 43.2 ± 2.2 a | ||
YN7 | CK | 8.83 ± 0.11 abcd | 71.4 ± 0.6 b | 76.0 ± 0.0 c | 82.9 ± 0.1 b | 3.6 ± 0.1 a | 40.6 ± 1.1 a | |
WS | 9.16 ± 0.30 ab | 70.9 ± 0.2 bc | 75.8 ± 0.2 cd | 83.0 ± 0.2 b | 3.7 ± 0.2 a | 40.0 ± 0.7 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Cai, X.; Lu, D. Effects of Waterlogging at Flowering Stage on the Grain Yield and Starch Quality of Waxy Maize. Plants 2024, 13, 108. https://doi.org/10.3390/plants13010108
Yang H, Cai X, Lu D. Effects of Waterlogging at Flowering Stage on the Grain Yield and Starch Quality of Waxy Maize. Plants. 2024; 13(1):108. https://doi.org/10.3390/plants13010108
Chicago/Turabian StyleYang, Huan, Xuemei Cai, and Dalei Lu. 2024. "Effects of Waterlogging at Flowering Stage on the Grain Yield and Starch Quality of Waxy Maize" Plants 13, no. 1: 108. https://doi.org/10.3390/plants13010108
APA StyleYang, H., Cai, X., & Lu, D. (2024). Effects of Waterlogging at Flowering Stage on the Grain Yield and Starch Quality of Waxy Maize. Plants, 13(1), 108. https://doi.org/10.3390/plants13010108