Variability of Glucosinolates in Pak Choy (Brassica rapa subsp. chinensis) Germplasm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Glucosinolate Standards
2.2. Plant Materials, Sample Preparation and Compound Extraction
2.3. Identification and Quantification of GSLs Using UPLC-MS/MS
2.4. Statistical Analysis
3. Results and Discussion
3.1. Variability of GSL Metabolite Composition in Pak Choy Germplasm
3.2. Multivariate Analysis
3.2.1. Correlation Analysis
3.2.2. Variability of GSLs in Pak Choy Based on PCA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Carpene, C.; Gomez-Zorita, S.; Deleruyelle, S.; Carpene, M.-A. Novel strategies for preventing diabetes and obesity complications with natural polyphenols. Curr. Med. Chem. 2015, 22, 150–164. [Google Scholar] [CrossRef] [PubMed]
- Hedden, P.; Harrewijn, P.; Van Oosten, A.M.; Piron, P.G.M. Natural terpenoids as messengers: A multidisciplinary study of their production, biological functions, and practical applications. Ann. Bot. 2002, 90, 299–300. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential health benefits of plant food-derived bioactive components: An overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Yeo, Y.; Oh, S.; Cho, K.-S.; Park, Y.-E.; Park, S.K.; Lee, S.M.; Cho, H.S.; Park, S.-Y. Compositional analyses of diverse phytochemicals and polar metabolites from different-colored potato (Solanum tubersum L.) tubers. Food Sci. Biotechnol. 2017, 26, 1379–1389. [Google Scholar] [PubMed]
- Sakauchi, F.; Mori, M.; Washio, M.; Watanabe, Y.; Ozasa, K.; Hayashi, K.; Miki, T.; Nakao, M.; Mikami, K.; Ito, Y. Dietary habits and risk of urothelial cancer incidence in the JACC Study. J. Epidemiol. 2005, 15, S190–S195. [Google Scholar]
- Neuhouser, M.L.; Patterson, R.E.; Thornquist, M.D.; Omenn, G.S.; King, I.B.; Goodman, G.E. Fruits and vegetables are associated with lower lung cancer risk only in the placebo arm of the β-carotene and retinol efficacy trial (CARET). Cancer Epidemiol. Biomark. Prev. 2003, 12, 350–358. [Google Scholar]
- Jahangir, M.; Kim, H.K.; Choi, Y.H.; Verpoorte, R. Health-affecting compounds in Brassicaceae. Compr. Rev. Food Sci. Food Saf. 2009, 8, 31–43. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Xiang, Y.; Xiang, L.; Liu, Y.; He, X.; Zhou, X.; Liu, X.; Huang, Z. Extracts of Tsai Tai (Brassica chinensis): Enhanced antioxidant activity and anti-aging effects both in vitro and in Caenorhabditis elegans. Food Funct. 2016, 7, 943–952. [Google Scholar] [CrossRef]
- Li, P.; Su, T.; Zhao, X.; Wang, W.; Zhang, D.; Yu, Y.; Bayer, P.E.; Edwards, D.; Yu, S.; Zhang, F. Assembly of the non-heading pak choi genome and comparison with the genomes of heading Chinese cabbage and the oilseed yellow sarson. Plant Biotechnol. J. 2021, 19, 966–976. [Google Scholar] [CrossRef]
- Sun, X. Morphological and Genetic Characterization of the Leafy Head of Chinese Cabbage (Brassica rapa). Ph.D. Thesis, Wageningen University and Research, Wageningen, The Netherlands, 2018. [Google Scholar]
- Traka, M.; Mithen, R. Glucosinolates, isothiocyanates and human health. Phytochem. Rev. 2009, 8, 269–282. [Google Scholar] [CrossRef]
- Kim, S.-H.; Subramanian, P.; Hahn, B.-S. Glucosinolate diversity analysis in choy sum (Brassica rapa subsp. chinensis var. parachinensis) germplasms for functional food breeding. Foods 2023, 12, 2400. [Google Scholar] [CrossRef] [PubMed]
- Miękus, N.; Marszałek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C.; Świergiel, A.H. Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds. Molecules 2020, 25, 3804. [Google Scholar] [CrossRef]
- Traka, M. Health benefits of glucosinolates. Adv. Bot. Res. 2016, 80, 247–279. [Google Scholar]
- Krumbein, A.; Schonhof, I.; Schreiner, M. Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B. rapa subsp. chinensis and B. rapa subsp. rapa). J. Appl. Bot. Food Qual. 2005, 79, 168–174. [Google Scholar]
- Hanson, P.; Yang, R.Y.; Chang, L.C.; Ledesma, L.; Ledesma, D. Contents of carotenoids, ascorbic acid, minerals and total glucosinolates in leafy brassica pakchoi (Brassica rapa L. chinensis) as affected by season and variety. J. Sci. Food Agric. 2009, 89, 906–914. [Google Scholar] [CrossRef]
- Klopsch, R.; Witzel, K.; Börner, A.; Schreiner, M.; Hanschen, F.S. Metabolic profiling of glucosinolates and their hydrolysis products in a germplasm collection of Brassica rapa turnips. Food Res. Int. 2017, 100, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Gratacós-Cubarsí, M.; Ribas-Agusti, A.; García-Regueiro, J.A.; Castellari, M. Simultaneous evaluation of intact glucosinolates and phenolic compounds by UPLC-DAD-MS/MS in Brassica oleracea L. var. botrytis. Food Chem. 2010, 121, 257–263. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, B.; Yang, X.; Li, X.; Tan, W.; Zhang, X. Ultra-performance liquid chromatography-tandem mass spectrometry revealed the significantly different metabolic profiles of Auricularia cornea growing on weakly acidic and weakly alkaline substrates. Can. J. Microbiol. 2023, 69, 262–278. [Google Scholar] [CrossRef]
- Rathod, R.H.; Chaudhari, S.R.; Patil, A.S.; Shirkhedkar, A.A. Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) in practice: Analysis of drugs and pharmaceutical formulations. Future J. Pharm. Sci. 2019, 5, 1–26. [Google Scholar] [CrossRef]
- Walter, T.H.; Andrews, R.W. Recent innovations in UHPLC columns and instrumentation. TrAC Trends Anal. Chem. 2014, 63, 14–20. [Google Scholar] [CrossRef]
- Birch, C.S.; Bonwick, G.A. Ensuring the future of functional foods. Int. J. Food Sci. Technol. 2019, 54, 1467–1485. [Google Scholar] [CrossRef]
- Gul, K.; Singh, A.; Jabeen, R. Nutraceuticals and functional foods: The foods for the future world. Crit. Rev. Food Sci. Nutr. 2016, 56, 2617–2627. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Lee, G.-A.; Subramanian, P.; Hahn, B.-S. Quantification and diversity analyses of major glucosinolates in conserved chinese cabbage (Brassica rapa L. ssp. pekinensis) germplasms. Foods 2023, 12, 1243. [Google Scholar] [CrossRef] [PubMed]
- Sheliya, K.; Shah, K. Ultra performance liquid chromatography (UPLC): A modern chromatography technique. Pharma Sci. Monit. 2013, 4, 78–99. [Google Scholar]
- Wiesner, M.; Zrenner, R.; Krumbein, A.; Glatt, H.; Schreiner, M. Genotypic variation of the glucosinolate profile in pak choi (Brassica rapa ssp. chinensis). J. Agric. Food Chem. 2013, 61, 1943–1953. [Google Scholar] [CrossRef]
- Kołodziejski, D.; Koss-Mikołajczyk, I.; Abdin, A.Y.; Jacob, C.; Bartoszek, A. Chemical aspects of biological activity of isothiocyanates and indoles, the products of glucosinolate decomposition. Curr. Pharm. Des. 2019, 25, 1717–1728. [Google Scholar] [CrossRef]
- Rhee, J.-H.; Choi, S.; Lee, J.-E.; Hur, O.-S.; Ro, N.-Y.; Hwang, A.-J.; Ko, H.-C.; Chung, Y.-J.; Noh, J.-J.; Assefa, A.D. Glucosinolate content in Brassica genetic resources and their distribution pattern within and between inner, middle, and outer leaves. Plants 2020, 9, 1421. [Google Scholar] [CrossRef]
- Kim, M.J.; Chiu, Y.-C.; Kim, N.K.; Park, H.M.; Lee, C.H.; Juvik, J.A.; Ku, K.-M. Cultivar-specific changes in primary and secondary metabolites in pak choi (Brassica rapa, Chinensis group) by methyl jasmonate. Int. J. Mol. Sci. 2017, 18, 1004. [Google Scholar] [CrossRef]
- He, H.; Ping, L.; Bonnema, G.; Dekker, M.; Verkerk, R. Genetic variation in glucosinolate content within Brassica rapa vegetables. Acta Hortic. 2012, 944, 129–140. [Google Scholar]
- Jang, M.; Hong, E.; Kim, G.H. Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables. J. Food Sci. 2010, 75, M412–M416. [Google Scholar] [CrossRef]
- Soundararajan, P.; Park, S.-G.; Won, S.Y.; Moon, M.-S.; Park, H.W.; Ku, K.-M.; Kim, J.S. Influence of genotype on high glucosinolate synthesis lines of Brassica rapa. Int. J. Mol. Sci. 2021, 22, 7301. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.R.; Jo, J.S.; Lee, J.G. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 2015, 20, 15827–15841. [Google Scholar] [CrossRef] [PubMed]
- Kristal, A.R.; Lampe, J.W. Brassica vegetables and prostate cancer risk: A review of the epidemiological evidence. Nutr. Cancer 2002, 42, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Van Rheenen, W.; Peyrot, W.J.; Schork, A.J.; Lee, S.H.; Wray, N.R. Genetic correlations of polygenic disease traits: From theory to practice. Nat. Rev. Genet. 2019, 20, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Neyhart, J.L.; Lorenz, A.J.; Smith, K.P. Multi-trait improvement by predicting genetic correlations in breeding crosses. G3 Genes Genomes Genet. 2019, 9, 3153–3165. [Google Scholar] [CrossRef] [PubMed]
- Girdthai, T.; Jogloy, S.; Vorasoot, N.; Akkasaeng, C.; Wongkaew, S.; Patanothai, A.; Holbrook, C. Inheritance of the physiological traits for drought resistance under terminal drought conditions and genotypic correlations with agronomic traits in peanut. Sabrao J. Breed. Genet. 2012, 44, 240–262. [Google Scholar]
- Camacho, D.; De La Fuente, A.; Mendes, P. The origin of correlations in metabolomics data. Metabolomics 2005, 1, 53–63. [Google Scholar] [CrossRef]
- Osman, M.A.; Mahmoud, G.I.; Shoman, S.S. Correlation between total phenols content, antioxidant power and cytotoxicity. Biointerface Res. Appl. Chem. 2020, 11, 10640–10653. [Google Scholar]
- Parveen, S.; Bukhari, N.; Nazir, M.; Qureshi, W.A.; Yaqoob, A.; Shahid, M. Phytochemical analysis, in-vitro biological activities and Pearson correlation of total polyphenolic content with antioxidant activities of Ziziphus mauritiana fruit pulp and seed during different ripening stages. South Afr. J. Bot. 2023, 157, 346–354. [Google Scholar] [CrossRef]
- Bernado, R. Breeding For Quantitative Traits in Plants; Stemma Press: Woodbury, MN, USA, 2002; p. 369. [Google Scholar]
- Sotelo, T.; Velasco, P.; Soengas, P.; Rodríguez, V.M.; Cartea, M.E. Modification of leaf glucosinolate contents in Brassica oleracea by divergent selection and effect on expression of genes controlling glucosinolate pathway. Front. Plant Sci. 2016, 7, 1012. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2022, 622, 178–210. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. A J. Chemom. Soc. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Hamany Djande, C.Y.; Piater, L.A.; Steenkamp, P.A.; Tugizimana, F.; Dubery, I.A. A metabolomics approach and chemometric tools for differentiation of barley cultivars and biomarker discovery. Metabolites 2021, 11, 578. [Google Scholar] [CrossRef] [PubMed]
- Ghisoni, S.; Lucini, L.; Rocchetti, G.; Chiodelli, G.; Farinelli, D.; Tombesi, S.; Trevisan, M. Untargeted metabolomics with multivariate analysis to discriminate hazelnut (Corylus avellana L.) cultivars and their geographical origin. J. Sci. Food Agric. 2020, 100, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.; Yang, Y.; Tao, H.; Mustafa, G.; Meng, F.; Sun, B.; Wang, J.; Zhao, Y.; Zhang, F. Biofortification of health-promoting glucosinolates in cruciferous sprouts along the whole agro-food chain. Trends Food Sci. Technol. 2023, 140, 104164. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, F.; Wang, X.; Zhao, X.; Zhang, D.; Yu, Y.; Xu, J. Genetic diversity and marker-trait associations in a collection of Pak-choi (Brassica rapa L. ssp. chinensis Makino) Accessions. Genes Genom. 2010, 32, 419–428. [Google Scholar] [CrossRef]
- Park, S.-Y.; Lim, S.-H.; Ha, S.-H.; Yeo, Y.; Park, W.T.; Kwon, D.Y.; Park, S.U.; Kim, J.K. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. botrytis). J. Agric. Food Chem. 2013, 61, 6999–7007. [Google Scholar] [CrossRef]
Class | Glucosinolate | Abbreviation | Molecular Formula | Molecular Weight (g/mol) | Source |
---|---|---|---|---|---|
Aliphatic GSL | Glucoiberin | GIB | C11H21NO10S3 | 423.5 | Phytolab |
Sinigrin | SIN | C10H16KNO9S2 | 397.5 | Phytoplan | |
Glucocheirolin | GCH | C11H20KNO11S3 | 477.6 | Phytoplan | |
Glucoerucin | GER | C12H23NO9S3 | 421.5 | Phytoplan | |
Glucoraphanin | GRA | C12H23NO10S3 | 437.5 | Phytoplan | |
Gluconapin | GNA | C11H10NO9S2 | 373.4 | Phytoplan | |
Progoitrin | PRO | C11H19NO10S2 | 389.4 | Phytolab | |
Epiprogoitrin | EPI | C11H19NO10S2 | 389.4 | Phytolab | |
Glucoraphasatin | GRH | C12H21NO10S3 | 435.5 | Phytoplan | |
Glucoraphanin | GRE | C12H23NO10S3 | 437.5 | Phytolab | |
Glucoberteroin | GBE | C13H25NO9S3 | 435.5 | Phytoplan | |
Glucobrassicanapin | GBN | C12H21NO9S2 | 387.4 | Phytolab | |
Aromatic GSL | Glucotropaeolin | GTL | C14H19NO9S2 | 409.4 | Phytoplan |
Gluconasturtiin | GNS | C15H21NO9S2 | 423.5 | Phytoplan | |
Glucobarbarin | GBB | C15H21NO10S2 | 439.5 | Phytoplan | |
Sinalbin | SNB | C14H19NO10S2 | 425.4 | Phytolab | |
Indolic GSL | Glucobrassicin | GBC | C16H20N2O9S2 | 448.5 | Phytoplan |
Class | Name | Abbreviation | RT (min) | MRM Transition | CID (ev) | Dwell Time (sec) | Calibration Curve Parameters |
---|---|---|---|---|---|---|---|
Aliphatic | Progoitrin | PRO | 5.94 | 387.77 > 194.85 | 25 | 0.029 | Y = 8.2526X + 28.1501 (r2 = 0.961) |
Sinigrin | SIN | 6.56 | 357.75 > 161.84 | 25 | 0.029 | Y = 12.7878X − 11.1181 (r2 = 0.999) | |
Gluconapin | GNA | 7.78 | 371.74 > 258.74 | 25 | 0.029 | Y = 8.36216X + 29.5397 (r2 = 0.994) | |
Glucoiberin | GIB | 7.98 | 421.62 > 357.73 | 25 | 0.029 | Y = 33.6632X + 446.334 (r2 = 0.997) | |
Epiprogoitrin | EPI | 8.06 | 387.7 > 258.74 | 25 | 0.029 | Y = 7.4939X − 6.76519 (r2 = 0.999) | |
Glucocheirolin | GCH | 8.38 | 437.71 > 258.74 | 25 | 0.029 | Y =20.7762X + 39.3608 (r2 = 0.986) | |
Glucoraphanin | GRA | 8.39 | 435.59 > 177.78 | 25 | 0.029 | Y = 25.0808X +60.584 (r2 = 0.983) | |
Glucoraphenin | GRE | 8.53 | 433.66 > 258.81 | 25 | 0.029 | Y = 15.2565X + 3.62242 (r2 = 0.988) | |
Glucobrassicanapin | GBN | 8.60 | 385.71 > 258.87 | 25 | 0.029 | Y = 7.2514X + 47.2841 (r2 = 0.992) | |
Glucoerucin | GER | 8.73 | 419.69 > 258.74 | 25 | 0.029 | Y = 6.77393X + 73.6679 (r2 = 0.984) | |
Glucoberteroin | GBE | 9.18 | 433.72 > 275.06 | 25 | 0.029 | Y = 6.09397X + 63.1212 (r2 = 0.997) | |
Glucoraphasatin | GRH | 9.62 | 417.63 > 258.81 | 25 | 0.029 | Y = 15.5149X − 5.95281 (r2 = 0.997) | |
Aromatic | Glucobarbarin | GBB | 8.64 | 437.71 > 274.75 | 25 | 0.029 | Y = 9.29915X− 0.454779 (r2 = 0.999) |
Glucotropaeolin | GTL | 8.88 | 407.72 > 258.87 | 25 | 0.029 | Y = 18.2122X − 3.93949 (r2 = 0.999) | |
Sinalbin | SNB | 9.10 | 423.62 > 258.74 | 25 | 0.029 | Y = 49.7228X − 33.0636 (r2 = 0.999) | |
Gluconasturtiin | GNS | 9.34 | 421.69 > 274.87 | 25 | 0.029 | Y = 4.36109X − 90.233 (r2 = 0.961) | |
Indolyl | Glucobrassicin | GBC | 9.31 | 446.69 > 204.94 | 25 | 0.029 | Y = 6.39827X + 2.6232 (r2 = 0.997) |
Class | Glucosinolates | Range | Median |
---|---|---|---|
Aliphatic GSL | Glucoiberin | 0~35.069 | 0.375 |
Sinigrin | 0.162~7878.972 | 4.722 | |
Glucocheirolin | 0.078~239.664 | 5.256 | |
Glucoerucin | 0~2564.479 | 49.366 | |
Glucoraphanin | 0.162~1558.413 | 172.591 | |
Gluconapin | 117.379~19,009.896 | 6713.083 | |
Progoitrin | 2.303~4116.955 | 1132.364 | |
Epiprogoitrin | 1.629~3333.335 | 843.059 | |
Glucoraphasatin | 0.025~6.134 | 0.231 | |
Glucoraphenin | 0.0168~228.202 | 0.981 | |
Glucoberteroin | 0~3491.342 | 148.188 | |
Glucobrassicanapin | 0.263~8744.337 | 3139.729 | |
Aromatic GSL | Glucotropaeolin | 0.311~30.651 | 6.451 |
Gluconasturtiin | 74.282~2148.237 | 678.72 | |
Glucobarbarin | 0.937~10.505 | 3.171 | |
Sinalbin | 0~3.704 | 0.086 | |
Indolic GSL | Glucobrassicin | 77.984~1294.483 | 351.011 |
Principal Component (Eigenvectors) | |||
---|---|---|---|
GSL | PC1 | PC2 | PC3 |
GIB | −0.156 | 0.478 | 0.225 |
SIN | −0.192 | 0.455 | 0.210 |
GCH | −0.135 | 0.461 | 0.292 |
GER | 0.365 | 0.251 | −0.268 |
GBE | 0.317 | 0.228 | −0.304 |
GNA | 0.180 | −0.099 | 0.290 |
PRO | 0.187 | −0.187 | 0.324 |
EPI | 0.145 | −0.187 | 0.327 |
GRH | 0.271 | 0.098 | −0.167 |
GRA | −0.006 | 0.003 | −0.064 |
GRE | 0.230 | 0.001 | 0.366 |
GBN | 0.119 | −0.181 | −0.007 |
GTL | 0.268 | −0.008 | 0.320 |
GNS | 0.331 | 0.034 | 0.229 |
GBB | 0.197 | 0.296 | −0.053 |
SNB | 0.285 | 0.150 | −0.188 |
GBC | 0.395 | 0.063 | 0.033 |
Eigen value | 3.843 | 3.293 | 2.480 |
Proportion (%) | 22.604 | 19.373 | 14.591 |
Cumulative (%) | 22.604 | 41.976 | 56.567 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Ochar, K.; Hwang, A.; Lee, Y.-J.; Kang, H.J. Variability of Glucosinolates in Pak Choy (Brassica rapa subsp. chinensis) Germplasm. Plants 2024, 13, 9. https://doi.org/10.3390/plants13010009
Kim S-H, Ochar K, Hwang A, Lee Y-J, Kang HJ. Variability of Glucosinolates in Pak Choy (Brassica rapa subsp. chinensis) Germplasm. Plants. 2024; 13(1):9. https://doi.org/10.3390/plants13010009
Chicago/Turabian StyleKim, Seong-Hoon, Kingsley Ochar, Aejin Hwang, Yoon-Jung Lee, and Hae Ju Kang. 2024. "Variability of Glucosinolates in Pak Choy (Brassica rapa subsp. chinensis) Germplasm" Plants 13, no. 1: 9. https://doi.org/10.3390/plants13010009
APA StyleKim, S.-H., Ochar, K., Hwang, A., Lee, Y.-J., & Kang, H. J. (2024). Variability of Glucosinolates in Pak Choy (Brassica rapa subsp. chinensis) Germplasm. Plants, 13(1), 9. https://doi.org/10.3390/plants13010009