Health Benefits of the Alkaloids from Lobeira (Solanum lycocarpum St. Hill): A Comprehensive Review
Abstract
:1. Introduction
2. Search Strategy and Studies Selection
3. Lobeira (Solanum lycocarpum St. Hill)
3.1. Taxonomy
3.2. Botanical Information
4. Alkaloids Found in Lobeira
5. Biological Activities Reported for Alkaloids from Lobeira
5.1. Antioxidant Activity
5.2. Anticancer and Antigenotoxic Activities
Bioactivity | Plant Part | Extract Type | Method/Model | Major Findings | Ref. |
---|---|---|---|---|---|
Antioxidant | Unripe and ripe fruits | Hydroethanolic extract (70% ethanol) | ORAC-based in vitro assay |
| [17] |
Ripe fruit | Ethanolic extract | DPPH-based in vitro assay |
| [18] | |
Ripe fruit | Ethyl acetate and hydroethanolic fractions from ethanolic extract | DPPH- and FRAP-based in vitro assays |
| [19] | |
Ripe fruit | Dichloromethane fraction from ethanolic extract | DPPH- and FRAP-based in vitro assays |
| [20] | |
Antigenotoxic | Unripe fruit | Hydroethanolic extract (80% ethanol; 6.57% of solasonine and 4.60% of solamargine) | MMS-treated Chinese hamster lung fibroblast cells (V79) |
| [21] |
Unripe fruit | Hydroethanolic extract (80% ethanol; 6.57% of solasonine and 4.60% of solamargine) | Doxorubicin-treated Chinese hamster lung fibroblast cells (V79) |
| [22] | |
Unripe fruit | Hydroethanolic extract (80% ethanol; 6.57% of solasonine and 4.60% of solamargine) | Doxorubicin-induced Swiss mice treated intragastrically with hydroethanolic extract (0.25, 0.50, 1.0, and 2.0 g/kg bw) |
| [22] | |
Unripe fruit | Hydroethanolic extract (96% ethanol) | MMC-induced Swiss mice treated intraperitoneally with hydroethanolic extract (5, 10, 25, 50, or 80 mg/kg bw) |
| [44] | |
Fruit | Alkaloid extract (45.09% of solasonine and 44.37% of solamargine) | MMS-treated Chinese hamster lung fibroblast cells (V79) |
| [26] | |
Fruit | Alkaloid extract (45% of solasonine and 44% of solamargine) | MMS-induced Swiss mice treated intragastrically with alkaloid extract (15, 30, and 60 mg/kg bw) for 14 days |
| [27] | |
Fruit | Solasonine and solamargine isolated from lobeira | MMS-treated Chinese hamster lung fibroblast cells (V79) |
| [43] | |
Anticancer | Fruit | Alkaloid extract (AE) (42.86% of solasonine and 47.96% of solamargine) and natural lipid-based nanoparticles loading AE (NLN-AE) | Bladder cancer cells (RT4) |
| [30] |
Fruit | Alkaloid extract (AE) (42.86% of solasonine and 47.96% of solamargine) and nanoparticles loading AE (NP-AE) | Bladder cancer cells (RT4) |
| [40] | |
Fruit | Alkaloid extract (AE) (42.86% of solasonine and 47.96% of solamargine) and folic acid-functionalized polymeric nanoparticles loading AE (FNP-AE) | Bladder cancer cells (RT4) |
| [41] | |
Fruit | Alkaloid extract (42.86% of solasonine and 47.96% of solamargine) | Bladder cancer cells (RT4) and patient-derived xenografts (PDX) bladder cancer cells |
| [29] | |
Fruit | Alkaloid extract (45% of solasonine and 44% of solamargine) | DMH-induced colon cancer in Wistar rats treated intragastrically with alkaloid extract (15, 30, and 60 mg/kg bw) for 4 weeks |
| [27] | |
Fruit | Alkaloid extract, solasonine, and solamargine | Murine melanoma (B16F10), human colon carcinoma (HT29), human breast adenocarcinoma (MCF-7), human cervical adenocarcinoma (HeLa), human hepatocellular liver carcinoma (HepG2), and human glioblastoma (MO59J, U343, and U251) cells |
| [38] | |
Fruit | Solasonine and solamargine isolated from lobeira fruit | Human breast adenocarcinoma cells (MCF-7) |
| [39] | |
Fruit | Solamargine and YVO4:Eu3+:CPTES:SM | Syngeneic C57BL/6 mouse melanoma model (B16F10 cells) treated subcutaneously with solamargine (5 or 10 mg/kg bw) and YVO4:Eu3+:CPTES:SM (10 mg solamargine/kg bw) for 5 days |
| [31] | |
Antiparasitic | Leaves | Infusion at room temperature | In vitro antileishmanial activity against promastigotes forms of Leishmania guyanensis (strain AMC2014), L. major (strain MHOM/IR/1972/NADIM5), and L. donovani (strain GEDII) and intracellular (THP-1 human acute monocytic leukemia cells) amastigotes form of L. donovani (strain BHU814) |
| [45] |
Fruit | Hydroethanolic extract (96% ethanol; 4.6% of solasonine and 4.4% of solamargine), solasonine, solamargine, and solasodine | In vitro antileishmanial activity against Leishmania infantum promastigotes and intracellular (mouse peritoneal macrophages) amastigotes forms |
| [46] | |
Fruit | Alkaloid extract (44.4% of solasonine and 45.1% of solamargine) | C57BL/6 mice infected with Leishmania mexicana promastigotes treated topically with a formulation containing alkaloid extract (10 μmol/L each alkaloid) for 6 weeks |
| [28] | |
Fruit | Alkaloid extract, solasonine, solamargine, and solasodine | In vitro antileishmanial activity against Leishmania amazonensis promastigotes |
| [47] | |
Fruit | Solasonine and solamargine isolated from lobeira | In vitro antileishmanial activity against Leishmania mexicana promastigotes and intracellular (mouse BMDM and (BMDDC) amastigotes forms |
| [28] | |
Fruit | Hydroethanolic extract (96% ethanol; 4.6% of solasonine and 4.4% of solamargine), hydroethanolic fraction (15.3% of solasonine and 35.7% of solamargine), solasonine (71.5%), and solamargine (63.1%) | In vitro antigiardial activity against Giardia lamblia trophozoites |
| [23] | |
Fruit | Hydroethanolic extract (80% ethanol) | In vitro trypanocidal activity against Trypanosoma cruzi trypomastigotes |
| [48] | |
Fruit | Hydroethanolic extract (96% ethanol) and solamargine | In vitro trypanocidal activity against Trypanosoma cruzi epimastigotes |
| [49] | |
Fruit | Alkaloid extract | Swiss mice infected with Schistosoma mansoni cercariae treated intragastrically with alkaloid extract (10, 20, and 40 mg/kg bw) for 5 days (between 37th and 41st day or between 45th and 49th day after infection) |
| [47] | |
Fruit | Alkaloid extract, solasonine, solamargine, and solasodine | In vitro schistosomicidal activity against Schistosoma mansoni eggs and adult worms |
| [50] | |
Fruit | Solanine, solamargine, and solasodine isolated from lobeira fruit | In vitro antifungal activity against Trichophyton rubrum (ATTC MYA-3108) |
| [51] | |
Anti-inflammatory | Ripe fruit | Ethanolic extract | Swiss mice treated intraperitoneally with 30, 100, and 300 mg/kg bw |
| [18] |
Ripe fruit | Ethyl acetate and hydroethanolic fractions from ethanolic extract | Swiss mice treated intraperitoneally with 30, 100, and 300 mg/kg bw |
| [19] | |
Ripe fruit | Dichloromethane fraction from ethanolic extract | Swiss mice treated intraperitoneally with 30, 100, and 300 mg/kg bw |
| [20] | |
Fruit | Hydroethanolic extract (HE) (96% ethanol) and alkaloid fraction (AF) | Swiss mice treated intragastrically with 0.5, 1.0, and 2.0 g HE/kg bw or subcutaneously with 25, 50, and 100 mg AF/kg bw |
| [4] | |
Fruit | Alkaloid fraction | Swiss mice treated subcutaneously with 30, 100, and 300 mg/kg bw |
| [4] | |
Antinociceptive | Ripe fruit | Ethanolic extract | Swiss mice treated intraperitoneally with 30, 100, and 300 mg/kg bw |
| [18] |
Ripe fruit | Ethanolic extract | Swiss mice treated intraperitoneally with 30, 100, and 300 mg/kg bw |
| [20] | |
Fruit | Hydroethanolic extract (96% ethanol) | Swiss mice treated intragastrically with 0.5, 1.0, and 2.0 g/kg bw |
| [4] | |
Antidiabetic | Fruit | Methanolic extract (ME) and its aqueous (WF), methanolic (MF), and acetonic (AF) fractions | Oral sucrose-loaded Wistar rats treated orally with 250 mg ME/kg bw, 100 mg WF/kg bw, 50 and 100 mg MF/kg bw, and 100 mg AF/kg bw |
| [25] |
Fruit | Solamargine and solasonine isolated from lobeira fruit | Oral sucrose-loaded Wistar rats treated orally with 25, 50, and 100 mg/kg bw and gastric emptying time in 1.5% CMC-Na-loaded mice treated orally with 25 and 50 mg/kg bw |
| [25] | |
Fruit | Calystegine-rich fraction | In vitro inhibitory activity against α-glucosidase |
| [32] |
5.3. Antiparasitic Activity
5.4. Anti-Inflammatory Activity
5.5. Antinociceptive Activity
5.6. Antidiabetic Activity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chidambaram, K.; Alqahtani, T.; Alghazwani, Y.; Aldahish, A.; Annadurai, S.; Venkatesan, K.; Dhandapani, K.; Thilagam, E.; Venkatesan, K.; Paulsamy, P.; et al. Medicinal Plants of Solanum Species: The Promising Sources of Phyto-Insecticidal Compounds. J. Trop. Med. 2022, 2022, 4952221. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.P.A.; Angolini, C.F.F.; Pastore, G.M. Solanum lycocarpum St. Hill. In Fruits of the Brazilian Cerrado; de Lima, F.F., Lescano, C.H., de Oliveira, I.P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 115–123. ISBN 9783030629496. [Google Scholar]
- Arruda, H.S.; Araújo, M.V.L.; Marostica Junior, M.R. Underexploited Brazilian Cerrado Fruits as Sources of Phenolic Compounds for Diseases Management: A Review. Food Chem. Mol. Sci. 2022, 5, 100148. [Google Scholar] [CrossRef] [PubMed]
- Vieira, G.; Ferreira, P.M.; Matos, L.G.; Ferreira, E.C.; Rodovalho, W.; Ferri, P.H.; Ferreira, H.D.; Costa, E.A. Anti-inflammatory Effect of Solanum lycocarpum Fruits. Phytother. Res. 2003, 17, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.G.F.; Galeane, M.C.; Castro, A.D.; Salgado, H.R.N.; Almeida, A.E.; Cunha, W.R.; Veneziani, R.C.S.; Moreira, R.R.D. Pharmacognostical Evaluation of Fruits of Solanum lycocarpum A. St.-Hill. (Solanaceae). Pharmacogn. J. 2010, 2, 248–253. [Google Scholar] [CrossRef]
- Nakamura, S.; Hongo, M.; Sugimoto, S.; Matsuda, H.; Yoshikawa, M. Steroidal Saponins and Pseudoalkaloid Oligoglycoside from Brazilian Natural Medicine, “Fruta do Lobo” (Fruit of Solanum lycocarpum). Phytochemistry 2008, 69, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Delbrouck, J.A.; Desgagné, M.; Comeau, C.; Bouarab, K.; Malouin, F.; Boudreault, P.-L. The Therapeutic Value of Solanum Steroidal (Glyco)Alkaloids: A 10-Year Comprehensive Review. Molecules 2023, 28, 4957. [Google Scholar] [CrossRef] [PubMed]
- Tiossi, R.F.J.; Miranda, M.A.; de Sousa, J.P.B.; Praça, F.S.G.; Bentley, M.V.L.B.; McChesney, J.D.; Bastos, J.K. A Validated Reverse Phase HPLC Analytical Method for Quantitation of Glycoalkaloids in Solanum lycocarpum and Its Extracts. J. Anal. Methods Chem. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [PubMed]
- SiBBr Solanum lycocarpum: Fruta-do-Lobo. Available online: https://ala-bie.sibbr.gov.br/ala-bie/species/281826#classification (accessed on 9 October 2023).
- Carvalho, P.E.R. Lobeira: Solanum lycocarpum. In Espécies Arbóreas Brasileiras; Embrapa Informação Tecnológica: Brasília, Brazil, 2010; Volume 4, pp. 339–347. ISBN 978-85-7383-487-1. [Google Scholar]
- Gallon, M.E.; Barros, B.S.P.; Silva, M.A.; Dias, S.H.M.; Alves-da-Silva, G. Determinação dos Parâmetros Anatômicos, Físico-Químico e Fitoquímicos das Folhas de Solanum lycocarpum A. St.-Hill. Rev. Bras. Plantas Med. 2015, 17, 937–944. [Google Scholar] [CrossRef]
- Araújo, N.D.; Coelho, V.P.D.M.; Agra, M.D.F. Estudo Farmacobotânico Comparativo de Folhas de Solanum crinitum Lam., Solanum gomphodes Dunal e Solanum lycocarpum A. St.-Hil., Solanaceae. Rev. Bras. Farmacogn. 2010, 20, 666–674. [Google Scholar] [CrossRef]
- Marcelo, V.G.; de Brito, V.L.G.; Vallejo-Marín, M.; Consolaro, H. Andromonoecy in Solanum lycocarpum A. St. -Hil. (Solanaceae): Floral Attributes, Visitors and Variation in Sexual Expression over Time. Plant Species Biol. 2021, 36, 308–321. [Google Scholar] [CrossRef]
- Castellani, E.D.; Damião Filho, C.F.; de Aguiar, I.B.; Paula, R.C. de Morfologia de Frutos e Sementes de Espécies Arbóreas do Gênero Solanum L. Rev. Bras. Sementes 2008, 30, 102–113. [Google Scholar] [CrossRef]
- Rocha, D.A.; de Abreu, C.M.P.; de Sousa, R.V.; Corrêa, A.D. Método de Obtenção e Análise da Composição Centesimal do Polvilho da Fruta-de-Lobo (Solanum lycocarpum St. Hil). Rev. Bras. Frutic. 2012, 34, 248–254. [Google Scholar] [CrossRef]
- Gonçalves, A.V.L.L.; de Oliveira, V.C.; Mendes, F.Q.; Monteiro, P.S. Análise de Componentes da Fruta-de-Lobo (Solanum lycocarpum St. Hil.) Visando sua Utilização na Alimentação Humana ou Pela Indústria de Alimentos. Braz. J. Dev. 2021, 7, 88308–88323. [Google Scholar] [CrossRef]
- Pereira, A.P.A.; Angolini, C.F.F.; Adani, H.B.; Usberti, F.C.S.; Paulino, B.N.; Clerici, M.T.P.S.; Neri-Numa, I.A.; Moro, T.D.M.A.; Eberlin, M.N.; Pastore, G.M. Impact of Ripening on the Health-Promoting Components from Fruta-do-Lobo (Solanum lycocarpum St. Hill). Food Res. Int. 2021, 139, 109910. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.G.; Saldanha, A.A.; Rodrigues, J.P.C.; Mendes, I.C.; Ferreira, L.M.; Amado, P.A.; de Farias, K.S.; Zanuncio, V.S.S.; da Silva, D.B.; Pinto, F.C.H.; et al. Chemical Composition, Antioxidant, Anti-Inflammatory and Antinociceptive Activities of the Ethanol Extract of Ripe Fruits of Solanum lycocarpum St. Hil. (Solanaceae). J. Ethnopharmacol. 2020, 262, 113125. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.G.; Saldanha, A.A.; Azevedo, L.S.; Mendes, I.C.; Rodrigues, J.P.C.; Amado, P.A.; de Souza Farias, K.; Zanuncio, V.S.S.; Cassemiro, N.S.; da Silva, D.B.; et al. Antioxidant and Anti-Inflammatory Effects of Fractions from Ripe Fruits of Solanum lycocarpum St. Hil. (Solanaceae) and Putative Identification of Bioactive Compounds by GC–MS and LC-DAD-MS. Food Res. Int. 2022, 156, 111145. [Google Scholar] [CrossRef]
- Morais, M.G.; Saldanha, A.A.; Mendes, I.C.; Rodrigues, J.P.C.; Azevedo, L.S.; Ferreira, L.M.; Amado, P.A.; Zanuncio, V.S.S.; Farias, K.S.; Silva, D.B.; et al. Antinociceptive and Anti-Inflammatory Potential, and Chemical Characterization of the Dichloromethane Fraction of Solanum lycocarpum (Solanaceae) Ripe Fruits by LC-DAD-MS. J. Ethnopharmacol. 2024, 322, 117640. [Google Scholar] [CrossRef]
- Andrade, A.F.; Alves, J.M.; Corrêa, M.B.; Cunha, W.R.; Veneziani, R.C.S.; Tavares, D.C. In vitro Cytotoxicity, Genotoxicity and Antigenotoxicity Assessment of Solanum lycocarpum Hydroalcoholic Extract. Pharm. Biol. 2016, 54, 2786–2790. [Google Scholar] [CrossRef]
- Tavares, D.; Munari, C.; de Araújo, M.F.; Beltrame, M.; Furtado, M.; Gonçalves, C.; Tiossi, R.J.; Bastos, J.; Cunha, W.; Veneziani, R.S. Antimutagenic Potential of Solanum lycocarpum against Induction of Chromosomal Aberrations in V79 Cells and Micronuclei in Mice by Doxorubicin. Planta Med. 2011, 77, 1489–1494. [Google Scholar] [CrossRef]
- Martins, G.Z.; Moreira, R.R.D.; Planeta, C.S.; Almeida, A.E.; Bastos, J.K.; Salgueiro, L.; Cavaleiro, C.; do Céu Sousa, M. Effects of the Extract and Glycoalkaloids of Solanum lycocarpum St. Hill on Giardia lamblia Trophozoites. Pharmacogn. Mag. 2015, 11, 161–165. [Google Scholar] [CrossRef]
- Pereira, A.P.A.; Angolini, C.F.F.; de Souza-Sporkens, J.C.; da Silva, T.A.; de Oliveira, H.C.F.; Pastore, G.M. Brazilian Sunberry (Solanum oocarpum Sendtn): Alkaloid Composition and Improvement of Mitochondrial Functionality and Insulin Secretion of INS-1E Cells. Food Res. Int. 2021, 148, 110589. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Nakamura, S.; Ozaki, K.; Kumahara, A.; Morikawa, T.; Matsuda, H. Structures of Steroidal Alkaloid Oligoglycosides, Robeneosides A and B, and Antidiabetogenic Constituents from the Brazilian Medicinal Plant Solanum lycocarpum. J. Nat. Prod. 2007, 70, 210–214. [Google Scholar] [CrossRef]
- Munari, C.C.; de Oliveira, P.F.; de Souza Lima, I.M.; Martins, S.D.P.L.; da Costa, J.D.C.; Bastos, J.K.; Tavares, D.C. Evaluation of Cytotoxic, Genotoxic and Antigenotoxic Potential of Solanum lycocarpum Fruits Glicoalkaloid Extract in V79 Cells. Food Chem. Toxicol. 2012, 50, 3696–3701. [Google Scholar] [CrossRef]
- Munari, C.C.; de Oliveira, P.F.; Leandro, L.F.; Pimenta, L.M.; Ferreira, N.H.; de Carvalho da Costa, J.; Bastos, J.K.; Tavares, D.C. In vivo Assessment of Genotoxic, Antigenotoxic and Anticarcinogenic Activities of Solanum lycocarpum Fruits Glycoalkaloidic Extract. PLoS ONE 2014, 9, e111999. [Google Scholar] [CrossRef] [PubMed]
- Lezama-Dávila, C.M.; McChesney, J.D.; Bastos, J.K.; Miranda, M.A.; Tiossi, R.F.; Da Costa, J.D.C.; Bentley, M.V.; Gaitan-Puch, S.E.; Isaac-Márquez, A.P. A New Antileishmanial Preparation of Combined Solamargine and Solasonine Heals Cutaneous Leishmaniasis through Different Immunochemical Pathways. Antimicrob. Agents Chemother. 2016, 60, 2732–2738. [Google Scholar] [CrossRef]
- Miranda, M.A.; Marcato, P.D.; Mondal, A.; Chowdhury, N.; Gebeyehu, A.; Surapaneni, S.K.; Bentley, M.V.L.B.; Amaral, R.; Pan, C.X.; Singh, M. Cytotoxic and Chemosensitizing Effects of Glycoalkaloidic Extract on 2D and 3D Models Using RT4 and Patient Derived Xenografts Bladder Cancer Cells. Mater. Sci. Eng. C 2021, 119, 111460. [Google Scholar] [CrossRef]
- Carvalho, I.P.S.; Miranda, M.A.; Silva, L.B.; Chrysostomo-Massaro, T.N.; Paschoal, J.A.R.; Bastos, J.K.; Marcato, P.D. In vitro Anticancer Activity and Physicochemical Properties of Solanum lycocarpum Alkaloidic Extract Loaded in Natural Lipid-Based Nanoparticles. Colloid. Interface Sci. Commun. 2019, 28, 5–14. [Google Scholar] [CrossRef]
- Furtado, R.A.; Ozelin, S.D.; Ferreira, N.H.; Miura, B.A.; Almeida Junior, S.; Magalhães, G.M.; Nassar, E.J.; Miranda, M.A.; Bastos, J.K.; Tavares, D.C. Antitumor Activity of Solamargine in Mouse Melanoma Model: Relevance to Clinical Safety. J. Toxicol. Environ. Health A 2022, 85, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Souto, L.F.L.; de Oliveira, G.A.; da Silva, A.J.R. Calystegines in Solanum lycocarpum and Other Wild Solanum Fruits and Their α-Glucosidase Inhibitory Activity. Rev. Bras. Farmacogn. 2022, 32, 286–290. [Google Scholar] [CrossRef]
- Zhao, D.K.; Zhao, Y.; Chen, S.Y.; Kennelly, E.J. Solanum Steroidal Glycoalkaloids: Structural Diversity, Biological Activities, and Biosynthesis. Nat. Prod. Rep. 2021, 38, 1423–1444. [Google Scholar] [CrossRef]
- Akiyama, R.; Umemoto, N.; Mizutani, M. Recent Advances in Steroidal Glycoalkaloid Biosynthesis in the Genus Solanum. Plant Biotechnol. 2023, 40, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, W.; Yan, Y.; Deng, H.; Cai, Y. Tropinone Reductase: A Comprehensive Review on Its Role as the Key Enzyme in Tropane Alkaloids Biosynthesis. Int. J. Biol. Macromol. 2023, 253, 127377. [Google Scholar] [CrossRef] [PubMed]
- Binaglia, M.; Baert, K.; Schutte, M.; Serafimova, R. Overview of Available Toxicity Data for Calystegines. EFSA J. 2019, 17, e05574. [Google Scholar] [CrossRef] [PubMed]
- Macáková, K.; Afonso, R.; Saso, L.; Mladěnka, P. The Influence of Alkaloids on Oxidative Stress and Related Signaling Pathways. Free Radic. Biol. Med. 2019, 134, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Munari, C.C.; de Oliveira, P.F.; Campos, J.C.L.; Martins, S.D.P.L.; da Costa, J.C.; Bastos, J.K.; Tavares, D.C. Antiproliferative Activity of Solanum lycocarpum Alkaloidic Extract and Their Constituents, Solamargine and Solasonine, in Tumor Cell Lines. J. Nat. Med. 2014, 68, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.; Miranda, M.; Rizo, W.; Bertoni, B.; Bastos, J.; Marins, M.; Fachin, A. Cytotoxic Activity of Glycoalkaloids Extract from Fruits of Solanum lycocarpum A. St.-Hil. BMC Proc. 2014, 8, P7. [Google Scholar] [CrossRef]
- Miranda, M.A.; Marcato, P.D.; Carvalho, I.P.S.; Silva, L.B.; Ribeiro, D.L.; Amaral, R.; Swiech, K.; Bastos, J.K.; Paschoal, J.A.R.; dos Reis, R.B.; et al. Assessing the Cytotoxic Potential of Glycoalkaloidic Extract in Nanoparticles against Bladder Cancer Cells. J. Pharm. Pharmacol. 2019, 71, 1520–1531. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.A.; Silva, L.B.; Carvalho, I.P.S.; Amaral, R.; de Paula, M.H.; Swiech, K.; Bastos, J.K.; Paschoal, J.A.R.; Emery, F.S.; dos Reis, R.B.; et al. Targeted Uptake of Folic Acid-Functionalized Polymeric Nanoparticles Loading Glycoalkaloidic Extract in vitro and in vivo Assays. Colloids Surf. B Biointerfaces 2020, 192, 111106. [Google Scholar] [CrossRef]
- Huang, J.; Chang, Z.; Lu, Q.; Chen, X.; Najafi, M. Nobiletin as an Inducer of Programmed Cell Death in Cancer: A Review. Apoptosis 2022, 27, 297–310. [Google Scholar] [CrossRef]
- Munari, C.C.; Ferreira, N.H.; Nicolella, H.D.; de Oliveira, P.F.; Miranda, M.A.; Bastos, J.K.; Tavares, D.C. Effects of Glycoalkaloids from Solanum lycocarpum on Genomic Instability. Rev. Bras. Farmacogn. 2022, 32, 273–279. [Google Scholar] [CrossRef]
- Vieira, P.M.; Costa, P.M.D.; Silva, C.R.E.; Chen-Chen, L. Assessment of the Genotoxic, Antigenotoxic, and Cytotoxic Activities of the Ethanolic Fruit Extract of Solanum lycocarpum A. St. Hill. (Solanaceae) by Micronucleus Test in Mice. J. Med. Food 2010, 13, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
- Mans, D.R.A.; Beerens, T.; Magali, I.; Soekhoe, R.C.; Schoone, G.J.; Oedairadjsingh, K.; Hasrat, J.A.; van den Bogaart, E.; Schallig, H.D.F.H. In vitro Evaluation of Traditionally Used Surinamese Medicinal Plants for Their Potential Anti-Leishmanial Efficacy. J. Ethnopharmacol. 2016, 180, 70–77. [Google Scholar] [CrossRef]
- Clementino, L.D.C.; Velásquez, A.M.A.; Passalacqua, T.G.; Almeida, L.D.; Graminha, M.A.; Martins, G.Z.; Salgueiro, L.; Cavaleiro, C.; Sousa, M.D.C.; Moreira, R.R. In vitro Activities of Glycoalkaloids from the Solanum lycocarpum against Leishmania infantum. Rev. Bras. Farmacogn. 2018, 28, 673–677. [Google Scholar] [CrossRef]
- Miranda, M.A.; Tiossi, R.F.J.; da Silva, M.R.; Rodrigues, K.C.; Kuehn, C.C.; Oliveira, L.G.R.; Albuquerque, S.; McChesney, J.D.; Lezama-Davila, C.M.; Isaac-Marquez, A.P.; et al. In vitro Leishmanicidal and Cytotoxic Activities of the Glycoalkaloids from Solanum lycocarpum (Solanaceae) Fruits. Chem. Biodivers. 2013, 10, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Cunha, W.R.; dos Santos, F.M.; Peixoto, J.D.A.; Veneziani, R.C.; Crotti, A.E.; Silva, M.L.; Filho, A.A.D.S.; Albuquerque, S.; Turatti, I.C.; Bastos, J.K. Screening of Plant Extracts from the Brazilian Cerrado for Their in vitro Trypanocidal Activity. Pharm. Biol. 2009, 47, 744–749. [Google Scholar] [CrossRef]
- Moreira, R.R.D.; Martins, G.Z.; Magalhães, N.O.; Almeida, A.E.; Pietro, R.C.L.R.; Silva, F.A.J.; Cicarelli, R.M.B. In vitro Trypanocidal Activity of Solamargine and Extracts from Solanum palinacanthum and Solanum lycocarpum of Brazilian Cerrado. An. Acad. Bras. Cienc. 2013, 85, 903–907. [Google Scholar] [CrossRef]
- Miranda, M.A.; Magalhães, L.G.; Tiossi, R.F.J.; Kuehn, C.C.; Oliveira, L.G.R.; Rodrigues, V.; McChesney, J.D.; Bastos, J.K. Evaluation of the Schistosomicidal Activity of the Steroidal Alkaloids from Solanum lycocarpum Fruits. Parasitol. Res. 2012, 111, 257–262. [Google Scholar] [CrossRef]
- Cantelli, B.A.; Barbosa, F.R.; Bitencourt, T.A.; Miranda, M.A.; Bastos, J.K.; Marins, M.; Fachin, A.L.; de Abreu, M.H.; Crivelenti, Y.D.; Mesquita, T.B. Evaluation of Antifungal Activity of Glycoalkaloids from the Solanum lycocarpum St. Hil (Lobeira) in the Cell Membrane of Dermatophyte of Trichophyton rubrum. BMC Proc. 2014, 8, P11. [Google Scholar] [CrossRef]
Plant Part | Extract Type | Major Findings | Ref. |
---|---|---|---|
Unripe and ripe fruits | Hydroethanolic extract (80% ethanol) and alkaloid extract (acid–base selective extraction) |
| [8] |
Unripe fruits and ripe fruits (peel, seeds, and pulp) | Hydroethanolic extract (70% ethanol) |
| [17] |
Ripe fruits | Ethanolic extract |
| [18] |
Ripe fruits | Ethanolic extract and its ethyl acetate and hydroethanolic fractions (70% ethanol) |
| [19] |
Ripe fruits | Dichloromethane fraction from ethanolic extract |
| [20] |
Ripe fruits | Hydroethanolic extract (80% ethanol) |
| [21,22] |
Ripe fruits | Hydroethanolic extract (96% ethanol), its hydroethanolic fraction (40% ethanol), and isolated steroidal glycoalkaloids |
| [23] |
Ripe fruit | Hydroethanolic extract (70% ethanol) and alkaloid extract obtained by acid–base selective extraction |
| [24] |
Ripe fruits | Methanolic extract and its methanol-eluted fraction |
| [6] |
Ripe fruits | Methanolic extract and its methanol-eluted fraction |
| [25] |
Ripe fruits | Alkaloid extract obtained by acid–base selective extraction |
| [26,27,28,29,30] |
Ripe fruits | Alkaloid extract obtained by acid–base selective extraction |
| [31] |
Ripe fruits | Calystegines alkaloids rich fraction separated using an ion exchanger |
| [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borsoi, F.T.; Pastore, G.M.; Arruda, H.S. Health Benefits of the Alkaloids from Lobeira (Solanum lycocarpum St. Hill): A Comprehensive Review. Plants 2024, 13, 1396. https://doi.org/10.3390/plants13101396
Borsoi FT, Pastore GM, Arruda HS. Health Benefits of the Alkaloids from Lobeira (Solanum lycocarpum St. Hill): A Comprehensive Review. Plants. 2024; 13(10):1396. https://doi.org/10.3390/plants13101396
Chicago/Turabian StyleBorsoi, Felipe Tecchio, Glaucia Maria Pastore, and Henrique Silvano Arruda. 2024. "Health Benefits of the Alkaloids from Lobeira (Solanum lycocarpum St. Hill): A Comprehensive Review" Plants 13, no. 10: 1396. https://doi.org/10.3390/plants13101396
APA StyleBorsoi, F. T., Pastore, G. M., & Arruda, H. S. (2024). Health Benefits of the Alkaloids from Lobeira (Solanum lycocarpum St. Hill): A Comprehensive Review. Plants, 13(10), 1396. https://doi.org/10.3390/plants13101396