Ethanolic Extract from Fruits of Pintoa chilensis, a Chilean Extremophile Plant. Assessment of Antioxidant Activity and In Vitro Cytotoxicity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Procedure
2.2. Total Phenolic (TPC) and Total Flavonoid (TFC) Content
2.3. Antioxidant Activity
2.4. Cytotoxic Activity
2.5. Cytotoxic Activity of Fractions to EF2
2.6. GC–MS Analysis
3. Materials and Methods
3.1. Plant Collection and Identification
3.2. Extraction Procedure and Liquid–Liquid Fractionation
3.3. Phytochemical Analysis of Extracts
3.3.1. Determination of Total Phenol Content
3.3.2. Estimation of the Total Flavonoid Content
3.4. Measurement of Antioxidant Capacity
3.4.1. DPPH-Radical-Scavenging Assay
3.4.2. ABTS
3.4.3. Ferric-Reducing Antioxidant Potential Assay (FRAP)
3.5. Cell Viability
3.5.1. Cell Culture
3.5.2. In Vitro Growth Inhibition Assay
3.5.3. Determination of Mitochondrial Membrane Permeability by Flow Cytometry
3.5.4. Determination of Lipid Peroxidation by Flow Cytometry
3.5.5. Determination of ROS by Flow Cytometry
3.5.6. Determination of Caspase Activation by Flow Cytometry
3.6. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Fesik, S.W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer 2005, 5, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Carballo, A.; Guadalupe Hernández-Linares, M.; Cárdenas-García, M.; Sandoval-Ramírez, J. Synthesis and biological in vitro evaluation of the effect of hydroxyimino steroidal derivatives on breast cancer cells. Steroids 2021, 166, 108787. [Google Scholar] [CrossRef] [PubMed]
- Glasauer, A.; Chandel, N.S. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 2014, 92, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Dai, C.; Cao, P.; Sun, D.; Ouyang, R.; Miao, Y. The role of reactive oxygen species in tumor treatment. RSC Adv. 2020, 10, 7740–7750. [Google Scholar] [CrossRef] [PubMed]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Somu, P.; Mohanty, S.; Paul, S. A Detailed Overview of ROS-Modulating Approaches in Cancer Treatment. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects; Chakraborti, S., Ed.; Springer: Singapore, 2022; pp. 3017–3038. [Google Scholar]
- Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Imran, M.; Shah, Z.A.; Emran, T.B.; Mitra, S.; Khan, Z.; Alhumaydhi, F.A.; Aljohani, A.S.M.; et al. Berberine as a Potential Anticancer Agent: A Comprehensive Review. Molecules 2021, 26, 7368. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Mitra, S.; Emran, T.B.; Khan, Z.; Nath, N.; Das, R.; Sharma, R.; Awadh, A.A.A.; Park, M.N.; Kim, B. Natural Small Molecules in Gastrointestinal Tract and Associated Cancers: Molecular Insights and Targeted Therapies. Molecules 2022, 27, 5686. [Google Scholar] [CrossRef] [PubMed]
- Dao, K.-L.; Hanson, R.N. Targeting the Estrogen Receptor using Steroid–Therapeutic Drug Conjugates (Hybrids). Bioconjugate Chem. 2012, 23, 2139–2158. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Natural Products as Sources of Anticancer Agents: Current Approaches and Perspectives. In Natural Products as Source of Molecules with Therapeutic Potential: Research & Development, Challenges and Perspectives; Cechinel Filho, V., Ed.; Springer: Cham, Switzerlands, 2018; pp. 309–331. [Google Scholar]
- Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS ONE 2017, 12, e0187925. [Google Scholar] [CrossRef] [PubMed]
- Khazir, J.; Mir, B.A.; Pilcher, L.; Riley, D.L. Role of plants in anticancer drug discovery. Phytochem. Lett. 2014, 7, 173–181. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant derived substances with anti-cancer activity: From folklore to practice. Front. Plant Sci. 2015, 6, 799. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Islam, F.; Nafady, M.H.; Akter, M.; Mitra, S.; Das, R.; Urmee, H.; Shohag, S.; Akter, A.; Chidambaram, K.; et al. Natural Small Molecules in Breast Cancer Treatment: Understandings from a Therapeutic Viewpoint. Molecules 2022, 27, 2165. [Google Scholar] [CrossRef]
- Mitra, S.; Das, R.; Emran, T.B.; Labib, R.K.; Noor, E.T.; Islam, F.; Sharma, R.; Ahmad, I.; Nainu, F.; Chidambaram, K.; et al. Diallyl Disulfide: A Bioactive Garlic Compound with Anticancer Potential. Front. Pharmacol. 2022, 13, 943967. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef]
- Paur, I.; Balstad, T.R.; Kolberg, M.; Pedersen, M.K.; Austenaa, L.M.; Jacobs, D.R.; Blomhoff, R. Extract of Oregano, Coffee, Thyme, Clove, and Walnuts Inhibits NF-kappa B in Monocytes and in Transgenic Reporter Mice. Cancer Prev. Res. 2010, 3, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef]
- Bork, P.M.; Schmitz, M.L.; Kuhnt, M.; Escher, C.; Heinrich, M. Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-kB. FEBS Lett. 1997, 402, 85–90. [Google Scholar] [CrossRef]
- Martinez, R.; Ayamante, B.; Nunez-Alarcon, J.A.; de Vivar, A.R. Leptocarpin and 17,18-dihydroleptocarpin, two new heliangolides from Leptocarpha rivularis. Phytochemistry 1979, 18, 1527–1528. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Modzelewska, A.; Sur, S.; Kumar, S.K.; Khan, S.R. Sesquiterpenes: Natural Products That Decrease Cancer Growth. Curr. Med. Chem. Anticancer Agents 2005, 5, 477–499. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, F.; Rushing, J.W.; Wang, X.; Kim, H.J.; Huang, G.; Haley-Zitlin, V.; He, G. Antiproliferative activities of parthenolide and golden feverfew extract against three human cancer cell lines. J. Med. Food 2006, 9, 55–61. [Google Scholar] [CrossRef]
- Bremner, P.; Rivera, D.; Calzado, M.A.; Obon, C.; Inocencio, C.; Beckwith, C.; Fiebich, B.L.; Munoz, E.; Heinrich, M. Assessing medicinal plants from South-Eastern Spain for potential anti-inflammatory effects targeting nuclear factor-Kappa B and other pro-inflammatory mediators. J. Ethnopharmacol. 2009, 124, 295–305. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Bosio, C.; Tomasoni, G.; Martinez, R.; Olea, A.F.; Carrasco, H.; Villena, J. Cytotoxic and apoptotic effects of leptocarpin, a plant-derived sesquiterpene lactone, on human cancer cell lines. Chem. Biol. Inter. 2015, 242, 415–421. [Google Scholar] [CrossRef]
- Jin, D.; Kaiping, D.; Xie, C.; Chen, J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci.Rep. 2020, 10, 3309. [Google Scholar] [CrossRef] [PubMed]
- Rubio, J.; Arias, G.; Robles-Kelly, C.; Silva-Moreno, E.; Espinoza, L.; Carrasco, H.; Olea, A.F. Phytochemical Profiling and Assessment of Anticancer Activity of Leptocarpha rivularis Extracts Obtained from In Vitro Cultures. Plants 2022, 11, 546. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Zhao, J.; Davis, L.C.; Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005, 23, 283–333. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Thoppil, R.J.; Harlev, E.; Mandal, A.; Nevo, E.; Bishayee, A. Antitumor activities of extracts from selected desert plants against HepG2 human hepatocellular carcinoma cells. Pharm. Biol. 2013, 51, 668–674. [Google Scholar] [CrossRef]
- Chawla, P.; Chawla, A.; Vasudeva, N.; Sharma, S.K. A review of chemistry and biological activities of the genus Aerva--a desert plant. Acta Pol. Pharm. 2012, 69, 171–177. [Google Scholar]
- Harlev, E.; Nevo, E.; Lansky, E.P.; Lansky, S.; Bishayee, A. Anticancer attributes of desert plants: A review. Anticancer Drugs 2012, 23, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, D.; Mandal, A.; Nevo, E.; Bishayee, A. Apoptosis-inducing effects of extracts from desert plants in HepG2 human hepatocarcinoma cells. Asian Pac. J. Trop. Biomed. 2015, 5, 87–92. [Google Scholar] [CrossRef]
- Christenhusz, M.J.M.; Byng, J.W. The Number of Known Plants Species in the World and Its Annual Increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Chhatre, S.; Nesari, T.; Somani, G.; Kanchan, D.; Sathaye, S. Phytopharmacological overview of Tribulus terrestris. Pharmacogn. Rev. 2014, 8, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.W.; Hussain, M.; Akhtar, S.; Ismail, T.; Qamar, M.; Shafiq, Z.; Esatbeyoglu, T. Bioactive Compounds, Antioxidant, Anti-Inflammatory, Anti-Cancer, and Toxicity Assessment of Tribulus terrestris-In Vitro and In Vivo Studies. Antioxidants 2022, 11, 1160. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.M.; Esmat, A. Antioxidant and anti-inflammatory activities of the major phenolics from Zygophyllum simplex L. J. Ethnopharmacol. 2017, 205, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, H.; Asif, S.; Ahmed, H.; Al-Kahtani, H.A.; Hayat, K. Chemical composition and medicinal significance of Fagonia cretica: A review. Nat. Prod. Res. 2016, 30, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Rashid, U.; Khan, M.R.; Jan, S.; Bokhari, J.; Shah, N.A. Assessment of phytochemicals, antimicrobial and cytotoxic activities of extract and fractions from Fagonia olivieri (Zygophyllaceae). BMC Complement. Altern. Med. 2013, 13, 167. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.Y.; Du, Y.J.; Meng, H.; Dong, Y.M.; Li, L. A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris. Chem. Cent. J. 2017, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ntie-Kang, F.; Njume, L.E.; Malange, Y.I.; Günther, S.; Sippl, W.; Yong, J.N. The Chemistry and Biological Activities of Natural Products from Northern African Plant Families: From Taccaceae to Zygophyllaceae. Nat. Prod. Bioprospect 2016, 6, 63–96. [Google Scholar] [CrossRef] [PubMed]
- Dadé, M.M.; Fioravanti, D.E.; Schinella, G.R.; Tournier, H.A. Total antioxidant capacity and polyphenol content of 21 aqueous extracts obtained from native plants of Traslasierra valley (Argentina). Bol. Latinoam. Caribe Plantas Med. Aromat. 2009, 8, 529–539. [Google Scholar]
- Lorenzo, M.E.; Gómez, P.E.; Sabatino, E.; Segovia, A.F.; Figueroa, L.C.; Baroni, M.V. Phenolic Profile and Antioxidant Activity of Ethanolic Extract of Larrea cuneifolia Cav. Leaves. Proceedings 2021, 70, 37. [Google Scholar] [CrossRef]
- Torres, R.; Urzua, A.; Modak, B. Isopregomisin, a 1, 4-Bis(phenyl)-2, 3-dimethylbutane Lignan from Porlieria chilensis. J. Nat. Prod. 1989, 52, 402–403. [Google Scholar] [CrossRef]
- Obrenovich, M.E.; Li, Y.; Parvathaneni, K.; Yendluri, B.B.; Palacios, H.H.; Leszek, J.; Aliev, G. Antioxidants in health, disease and aging. CNS Neurol. Disord. Drug Targets 2011, 10, 192–207. [Google Scholar] [CrossRef] [PubMed]
- Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in Cancer and Apoptosis. Cancers 2018, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Amawi, H.; Ashby, C.R., Jr.; Tiwari, A.K. Cancer chemoprevention through dietary flavonoids: What’s limiting? Chin. J. Cancer 2017, 36, 50. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-Y.; Ahn, H.-N.; Bae, G.-U.; Chang, M.; Liu, X.; Rhee, H.-K.; Lee, J.; Chin, Y.-W.; Oh, S.-R.; Song, Y. Isoguaiacins, Arylnaphthalene Types Identified as Novel Potent Estrogenic Signaling Molecules from Larrea nitida. Bull. Korean Chem. Soc. 2015, 36, 2254–2259. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Kim, S.; Lee, J.; Park, J.Y.; Zhou, W.; Liu, X.; Kim, S.D.; Song, Y.S.; Jang, C.-Y.; Oh, S.-R.; et al. Characterization of Phase I and Phase II Hepatic Metabolism and Reactive Intermediates of Larrea nitida Cav. and Its Lignan Compounds. Phytother. Res. 2017, 31, 140–151. [Google Scholar] [CrossRef] [PubMed]
- El-Amier, Y.A.; Aisha, I.A.A. Phytochemical constituents of common growing Fagonia species (Zygophyllaceae) in egyptian deserts and its biological activities. Plant Arch. 2019, 19, 2213–2219. [Google Scholar]
- Abdelhameed, R.F.A.; Nafie, M.S.; Hal, D.M.; Nasr, A.M.; Swidan, S.A.; Abdel-Kader, M.S.; Ibrahim, A.K.; Ahmed, S.A.; Badr, J.M.; Eltamany, E.E. Comparative Cytotoxic Evaluation of Zygophyllum album Root and Aerial Parts of Different Extracts and Their Biosynthesized Silver Nanoparticles on Lung A549 and Prostate PC-3 Cancer Cell Lines. Pharmaceuticals 2022, 15, 1334. [Google Scholar] [CrossRef] [PubMed]
- Schmeda-Hirschmann, G.; Quispe, C.; Soriano, M.D.P.C.; Theoduloz, C.; Jiménez-Aspée, F.; Pérez, M.J.; Cuello, A.S.; Isla, M.I. Chilean Prosopis Mesocarp Flour: Phenolic Profiling and Antioxidant Activity. Molecules 2015, 20, 7017–7033. [Google Scholar] [CrossRef]
- Stanković, M.S. Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac J. Sci. 2011, 33, 63–72. [Google Scholar]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Rad. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Valgimigli, L. Methods To Measure the Antioxidant Activity of Phytochemicals and Plant Extracts. J. Agric. Food Chem. 2018, 66, 3324–3329. [Google Scholar] [CrossRef] [PubMed]
- Roginsky, V.; Lissi, E.A. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 2005, 92, 235–254. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant activity of medicinal and aromatic plants. A review. Flavour. Frag. J. 2010, 25, 291–312. [Google Scholar] [CrossRef]
- Rothe, G.; Valet, G. Flow Cytometric Analysis of Respiratory Burst Activity in Phagocytes With Hydroethidine and 2′,7′-Dichlorofluorescin. J. Leukoc. Biol. 1990, 47, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, D.P.; Militão, G.C.G.; de Morais, M.C.; de Sousa, D.P. The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment. Nutrients 2017, 9, 1367. [Google Scholar] [CrossRef]
- Fujisawa, S.; Atsumi, T.; Kadoma, Y.; Sakagami, H. Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology 2002, 177, 39–54. [Google Scholar] [CrossRef]
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, H.; Nair, J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: Role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch. Surg. 2006, 391, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Gentile, F.; Arcaro, A.; Pizzimenti, S.; Daga, M.; Cetrangolo, G.P.; Dianzani, C.; Lepore, A.; Graf, M.; Ames, P.R.J.; Barrera, G. DNA damage by lipid peroxidation products: Implications in cancer, inflammation and autoimmunity. AIMS Genet. 2017, 4, 103–137. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Wang, Y.; Cen, X.M.; Yang, M.; Liang, Y.; Xie, Q.B. Lipid peroxidation-mediated inflammation promotes cell apoptosis through activation of NF-κB pathway in rheumatoid arthritis synovial cells. Mediat. Inflamm. 2015, 2015, 460310. [Google Scholar] [CrossRef] [PubMed]
- Minoguchi, K.; Yokoe, T.; Tanaka, A.; Ohta, S.; Hirano, T.; Yoshino, G.; O’Donnell, C.P.; Adachi, M. Association between lipid peroxidation and inflammation in obstructive sleep apnoea. Eur. Respir. J. 2006, 28, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Borst, J.W.; Visser, N.V.; Kouptsova, O.; Visser, A.J. Oxidation of unsaturated phospholipids in membrane bilayer mixtures is accompanied by membrane fluidity changes. Biochim. Biophys. Acta 2000, 1487, 61–73. [Google Scholar] [CrossRef]
- Catalá, A.; Díaz, M. Editorial: Impact of Lipid Peroxidation on the Physiology and Pathophysiology of Cell Membranes. Front. Physiol. 2016, 7, 423. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Lima, J.L. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar] [CrossRef]
- Davies, K.J. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 2000, 50, 279–289. [Google Scholar] [CrossRef]
- Scandalios, J.G. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 2005, 38, 995–1014. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Itoh, K.; Yamamoto, M. Roles of Nrf2 in activation of antioxidant enzyme genes via antioxidant responsive elements. Methods Enzymol. 2002, 348, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C.; Fan, W.; Procaccio, V. Mitochondrial energetics and therapeutics. Annu. Rev. Pathol. 2010, 5, 297–348. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Kim, S.; Kim, K.; Lee, H. Clinical Approaches for Mitochondrial Diseases. Cells 2023, 12, 2494. [Google Scholar] [CrossRef] [PubMed]
- Desler, C.; Rasmussen, L.J. Mitochondria in Biology and Medicine. Mitochondrion 2012, 12, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Villena, J.; Madrid, A.; Montenegro, I.; Werner, E.; Cuellar, M.; Espinoza, L. Diterpenylhydroquinones from Natural ent-Labdanes Induce Apoptosis through Decreased Mitochondrial Membrane Potential. Molecules 2013, 18, 5348–5359. [Google Scholar] [CrossRef] [PubMed]
- Baracca, A.; Sgarbi, G.; Solaini, G.; Lenaz, G. Rhodamine 123 as a probe of mitochondrial membrane potential: Evaluation of proton flux through F0 during ATP synthesis. BBA-Bioenerg. 2003, 1606, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Cohen, G.M. Caspases: The executioners of apoptosis. Biochem. J. 1997, 326 Pt 1, 1–16. [Google Scholar] [CrossRef]
- Li, J.; Yuan, J. Caspases in apoptosis and beyond. Oncogene 2008, 27, 6194–6206. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef]
- Tülay Aşkin, Ç. Introductory Chapter: Cytotoxicity. In Cytotoxicity; Tülay Aşkin, Ç., Ed.; IntechOpen: Rijeka, Croatia, 2018; p. Ch. 1. [Google Scholar]
- Erdemoglu, N.; Kusmenoglu, S. Fatty Acid Composition of Zygophyllum fabago Seeds. Chem. Nat. Compd. 2003, 39, 595–596. [Google Scholar] [CrossRef]
- Hashim, S.; Bakht, T.; Marwat, K.; Jan, A. Medicinal properties, phytochemistry and pharmacology of Tribulus terrestris L. (Zygophyllaceae). Pak. J. Bot. 2014, 46, 399–404. [Google Scholar]
- Moustafa, A.; Khodair, A.; Hammouda, F.; Husseiny, H. Phytochemical and Toxicological Studies of Zygophyllum album L.f. J. Pharmacol. Toxicol. 2007, 2, 220–237. [Google Scholar] [CrossRef]
- Asilbekova, D.T.; Glushenkova, A.I.; Khushbaktova, Z.A.; Syrov, V.N.; Abdullaev, N.D. Composition of lipids from Peganum harmala and Thermopsis alterniflora processing wastes. Chem. Nat. Compd. 2010, 46, 285–286. [Google Scholar] [CrossRef]
- Shah, R.; Alabri, S.J.A.; Ashehi, A.S.M.A.; Asiyabi, N.S.S.A.; AlMamari, W.K.A.A.; AlSabahi, J.N.A.; Al-Ruqaishi, H. Antibacterial Activity and Chemical Composition of Crude Extract and Oil of Zygophyllum (Fagonia) luntii (Baker) 1894 (Family Zygophyllaceae). J. Agric. Mar. Sci. 2020, 25, 58–66. [Google Scholar] [CrossRef]
- Zhu, S.; Jiao, W.; Xu, Y.; Hou, L.; Li, H.; Shao, J.; Zhang, X.; Wang, R.; Kong, D. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci. 2021, 286, 120046. [Google Scholar] [CrossRef]
- Evans, L.M.; Cowey, S.L.; Siegal, G.P.; Hardy, R.W. Stearate preferentially induces apoptosis in human breast cancer cells. Nutr. Cancer 2009, 61, 746–753. [Google Scholar] [CrossRef]
- Huang, F.; Chen, J.; Wang, J.; Zhu, P.; Lin, W. Palmitic Acid. Induces MicroRNA-221 Expression to Decrease Glucose Uptake in HepG2 Cells via the PI3K/AKT/GLUT4 Pathway. Biomed. Res. Int. 2019, 2019, 8171989. [Google Scholar] [CrossRef]
- Calvo-Ochoa, E.; Sánchez-Alegría, K.; Gómez-Inclán, C.; Ferrera, P.; Arias, C. Palmitic acid stimulates energy metabolism and inhibits insulin/PI3K/AKT signaling in differentiated human neuroblastoma cells: The role of mTOR activation and mitochondrial ROS production. Neurochem. Int. 2017, 110, 75–83. [Google Scholar] [CrossRef]
- Numata, M.; Yamamoto, A.; Moribayashi, A.; Yamada, H. Antitumor components isolated from the Chinese herbal medicine Coix lachryma-jobi. Planta Med. 1994, 60, 356–359. [Google Scholar] [CrossRef]
- Latha, P.G.; Panikkar, K.R. Inhibition of chemical carcinogenesis by Psoralea corylifolia seeds. J. Ethnopharmacol. 1999, 68, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Sui, L.; Dong, Y.; Watanabe, Y.; Yamaguchi, F.; Hatano, N.; Tsukamoto, I.; Izumori, K.; Tokuda, M. The inhibitory effect and possible mechanisms of D-allose on cancer cell proliferation. Int. J. Oncol. 2005, 27, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.H.; Tan, T.W.; Tsai, T.H.; Chen, C.C.; Hsieh, T.F.; Lee, S.S.; Liu, H.H.; Chen, W.C.; Tang, C.H. D-pinitol inhibits prostate cancer metastasis through inhibition of αVβ3 integrin by modulating FAK, c-Src and NF-κB pathways. Int. J. Mol. Sci. 2013, 14, 9790–9802. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, M.; Dinicola, S.; Bevilacqua, A.; Cucina, A. Broad Spectrum Anticancer Activity of Myo-Inositol and Inositol Hexakisphosphate. Int. J. Endocrinol. 2016, 2016, 5616807. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Dechsupa, N.; Yu, Z.; Zhang, X.; Liang, S.; Lei, X.; Xu, T.; Gao, X.; Hu, Q.; Innuan, P.; et al. Pentagalloyl Glucose: A Review of Anticancer Properties, Molecular Targets, Mechanisms of Action, Pharmacokinetics, and Safety Profile. Molecules 2023, 28, 4856. [Google Scholar] [CrossRef] [PubMed]
- Emran, T.B.; Islam, F.; Mitra, S.; Paul, S.; Nath, N.; Khan, Z.; Das, R.; Chandran, D.; Sharma, R.; Lima, C.M.G.; et al. Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules 2022, 27, 7405. [Google Scholar] [CrossRef] [PubMed]
- Rengarajan, T.; Nandakumar, N.; Rajendran, P.; Haribabu, L.; Nishigaki, I.; Balasubramanian, M.P. D-pinitol promotes apoptosis in MCF-7 cells via induction of p53 and Bax and inhibition of Bcl-2 and NF-κB. Asian Pac. J. Cancer Prev. 2014, 15, 1757–1762. [Google Scholar] [CrossRef] [PubMed]
- Rengarajan, T.; Nandakumar, N.; Rajendran, P.; Ganesh, M.K.; Balasubramanian, M.P.; Nishigaki, I. D-pinitol mitigates tumor growth by modulating interleukins and hormones and induces apoptosis in rat breast carcinogenesis through inhibition of NF-κB. J. Physiol. Biochem. 2015, 71, 191–204. [Google Scholar] [CrossRef]
- Chhetri, D.R. Myo-Inositol and Its Derivatives: Their Emerging Role in the Treatment of Human Diseases. Front. Pharmacol. 2019, 10, 477554. [Google Scholar] [CrossRef]
- Hecht, S.S.; Upadhyaya, P.; Wang, M.; Bliss, R.L.; McIntee, E.J.; Kenney, P.M. Inhibition of lung tumorigenesis in A/J mice by N-acetyl-S-(N-2-phenethylthiocarbamoyl)-L-cysteine and myo-inositol, individually and in combination. Carcinogenesis 2002, 23, 1455–1461. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Z.; Li, S.; Ye, X.; Li, X.; He, K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014, 92, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Romay, C.; Pascual, C.; Lissi, E.A. The reaction between ABTS radical cation and antioxidants and its use to evaluate the antioxidant status of serum samples. Braz. J. Med. Biol. Res. 1996, 29, 175–183. [Google Scholar] [PubMed]
- van Overveld, F.W.P.C.; Haenen, G.R.M.M.; Rhemrev, J.; Vermeiden, J.P.W.; Bast, A. Tyrosine as important contributor to the antioxidant capacity of seminal plasma. Chem. Biol. Inter. 2000, 127, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Gamboa-Carvajal, L.; Jara-Gutiérrez, C.; Villena, J.; Taborga, L.; Martínez, J.R.; Espinoza, L.; Stashenko, E.E. Evaluation of Antioxidant and Cytotoxic Activity of Hydro-Ethanolic Extracts Obtained from Steiractinia aspera Cuatrec. Molecules 2022, 27, 4186. [Google Scholar] [CrossRef] [PubMed]
- Emaus, R.K.; Grunwald, R.; Lemasters, J.J. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: Spectral and metabolic properties. BBA-Bioenerg. 1986, 850, 436–448. [Google Scholar] [CrossRef]
- Montenegro, I.; Moreira, J.; Ramirez, I.; Dorta, F.; Sanchez, E.; Alfaro, J.F.; Valenzuela, M.; Jara-Gutierrez, C.; Munoz, O.; Alvear, M.; et al. Chemical Composition, Antioxidant and Anticancer Activities of Leptocarpha rivularis DC Flower Extracts. Molecules 2021, 26, 67. [Google Scholar] [CrossRef]
Ethanolic Extracts | Total Phenols (mg GAE/g DW) | Total Flavonoids (mg QE/g DW) |
---|---|---|
EF1 | 63.17 a ± 3.55 | 12.12 a ± 0.48 |
EF2 | 39.77 b ± 0.24 | 19.43 b ± 0.25 |
Ethanolic Extracts/Samples | DPPH (IC50 mg L−1) | ABTS (TEAC mM) | FRAP (TEAC mM) |
---|---|---|---|
EF1 | 1.90 ± 0.12 a | 0.11 ± 0.01 a | 0.0012 ± 0.0018 a |
EF2 | 1.71 ± 0.06 a | 0.16 ± 0.01 a | 0.0014 ± 0.0001 a |
Trolox | 0.11 ± 6.09 | n.a. | n.a. |
Gallic acid | 2.06 ± 0.03 b | 1.13 ± 0.01 | 1.72 ± 0.02 |
BHT | 0.06 ± 2.31 | 1.06 ± 0.02 | 1.52 ± 0.07 |
Ethanolic Extracts | MCF-10A | MCF-7 | SI | HT-29 | SI |
---|---|---|---|---|---|
EF1 | >200 | >200 | <1 | >200 | <1 |
EF2 | >200 | 111.25 ± 23.57 | >1.8 | >200 | <1 |
Fractions | MCF-7 | SI | MCF-10A |
---|---|---|---|
HF | 35.3 ± 1.5 | 1.3 | 45.0 ± 3.5 |
DF | 107.1 ± 3.4 | >2.2 | 232.5 ± 36.6 |
AF | 105 ± 4.4 | 1.3 | 133.7 ± 4.4 |
MF | >350 | <1 | >350 |
QF | >350 | <1 | >350 |
No | RT (min) | Main Components | RI a | RI b | Match | Molecular Formula | % Area |
---|---|---|---|---|---|---|---|
1 | 9.467 | 1,3-propanediol | 1053 | 1073 | 928 | C3H8O2 | 0.48 |
2 | 14.125 | Urea | 1169 | 1243 | 899 | CH4N2O | 0.19 |
3 | 27.920 | D-pinitol | 1762 | 1815 | 894 | C7H14O6 | 7.11 |
4 | 29.002 | Myoinositol | 1819 | 1930 | 913 | C6H12O6 | 1.17 |
5 | 30.701 | β-D-allopyranose | 1912 | 1829 | 902 | C6H12O6 | 1.32 |
6 | 31.176 | Palmitic acid | 1939 | 2039 | 940 | C16H32O2 | 0.88 |
7 | 34.512 | Stearic acid | 2235 | 2236 | 926 | C18H36O2 | 0.87 |
8 | 37.104 | Myristic acid | 2399 | 2424 | 899 | C14H28O2 | 0.31 |
9 | 41.430 | Sucrose | 2696 | 2610 | 950 | C12H22O11 | 0.89 |
10 | 42.168 | 2-monostearin | 2751 | 2775 | 895 | C21H42O4 | 1.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrieche, D.; Olea, A.F.; Jara-Gutiérrez, C.; Villena, J.; Pardo-Baeza, J.; García-Davis, S.; Viteri, R.; Taborga, L.; Carrasco, H. Ethanolic Extract from Fruits of Pintoa chilensis, a Chilean Extremophile Plant. Assessment of Antioxidant Activity and In Vitro Cytotoxicity. Plants 2024, 13, 1409. https://doi.org/10.3390/plants13101409
Arrieche D, Olea AF, Jara-Gutiérrez C, Villena J, Pardo-Baeza J, García-Davis S, Viteri R, Taborga L, Carrasco H. Ethanolic Extract from Fruits of Pintoa chilensis, a Chilean Extremophile Plant. Assessment of Antioxidant Activity and In Vitro Cytotoxicity. Plants. 2024; 13(10):1409. https://doi.org/10.3390/plants13101409
Chicago/Turabian StyleArrieche, Dioni, Andrés F. Olea, Carlos Jara-Gutiérrez, Joan Villena, Javier Pardo-Baeza, Sara García-Davis, Rafael Viteri, Lautaro Taborga, and Héctor Carrasco. 2024. "Ethanolic Extract from Fruits of Pintoa chilensis, a Chilean Extremophile Plant. Assessment of Antioxidant Activity and In Vitro Cytotoxicity" Plants 13, no. 10: 1409. https://doi.org/10.3390/plants13101409