The Effects of Different Durations of Night-Time Supplementary Lighting on the Growth, Yield, Quality and Economic Returns of Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. Measurements and Methods
2.3.1. Plant Growth
2.3.2. Leaf Net Photosynthesis Rate
2.3.3. Fruit Yield
2.3.4. Fruit Quality
2.4. Statistical Analysis
3. Results
3.1. Effects of NSL Duration on Plant Height of Tomato
3.2. Effects of NSL Duration on Stem Diameter of Tomato
3.3. Effects of NSL Duration on Chlorophyll Content
3.4. Effects of NSL Duration on Net Photosynthetic Rate
3.5. Effects of NSL Duration on Tomato Yield and Input–Output Ratio
3.6. Effects of NSL Duration on Fruit Quality of Tomato
4. Discussion
4.1. NSL Affects Tomato Production in the Form of Light Signals
4.2. The Duration of Night-Time Supplemental LED Has No Effect on Tomato Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Chai, L.; Tong, N.; Yu, H.; Jiang, W. Potential Carbohydrate Regulation Mechanism Underlying Starvation-Induced Abscission of Tomato Flower. Int. J. Mol. Sci. 2022, 23, 1952. [Google Scholar] [CrossRef] [PubMed]
- Szechyńska-Hebda, M.; Karpiński, S. Light intensity-dependent retrograde signalling in higher plants. J. Plant Physiol. 2013, 170, 1501–1516. [Google Scholar] [CrossRef] [PubMed]
- Douma, J.C.; de Vries, J.; Poelman, E.H.; Dicke, M.; Anten, N.P.; Evers, J.B. Ecological significance of light quality in optimizing plant defence. Plant Cell Environ. 2019, 42, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Wei, J.; Zhang, J.; Tan, X.; Li, Y.; Gao, M.; Liu, H. Supplemental Blue Light Frequencies Improve Ripening and Nutritional Qualities of Tomato Fruits. Front. Plant Sci. 2022, 13, 888976. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jin, N.; Jin, L.; Xiao, X.; Hu, L.; Liu, Z.; Wu, Y.; Xie, Y.; Zhu, W.; Lyu, J.; et al. Response of Tomato Fruit Quality Depends on Period of LED Supplementary Light. Front. Nutr. 2022, 9, 833723. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Liu, S.; Tang, C.; Mao, G.; Gai, P.; Guo, X.; Zheng, H.; Tang, Q. Photomorphogenesis and Photosynthetic Traits Changes in Rice Seedlings Responding to Red and Blue Light. Int. J. Mol. Sci. 2023, 24, 11333. [Google Scholar] [CrossRef] [PubMed]
- de Wit, M.; Galvão, V.C.; Fankhauser, C. Light-Mediated Hormonal Regulation of Plant Growth and Development. Annu. Rev. Plant Biol. 2016, 67, 513–537. [Google Scholar] [CrossRef] [PubMed]
- Paponov, M.; Kechasov, D.; Lacek, J.; Verheul, M.J.; Paponov, I.A. Supplemental Light-Emitting Diode Inter-Lighting Increases Tomato Fruit Growth Through Enhanced Photosynthetic Light Use Efficiency and Modulated Root Activity. Front. Plant Sci. 2019, 10, 1656. [Google Scholar] [CrossRef] [PubMed]
- Kucharewicz, W.; Distelfeld, A.; Bilger, W.; Müller, M.; Munné-Bosch, S.; Hensel, G.; Krupinska, K. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1. J. Exp. Bot. 2017, 68, 983–996. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Zhai, W.; Liu, Y.; Gao, Q.; Liu, J.; Ren, L.; Chen, H.; Zhu, Y. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino). PLoS ONE 2017, 12, e179305. [Google Scholar] [CrossRef]
- Gad, A.G.; Habiba; Zheng, X.; Miao, Y. Low Light/Darkness as Stressors of Multifactor-Induced Senescence in Rice Plants. Int. J. Mol. Sci. 2021, 22, 3936. [Google Scholar] [CrossRef] [PubMed]
- Monostori, I.; Heilmann, M.; Kocsy, G.; Rakszegi, M.; Ahres, M.; Altenbach, S.B.; Szalai, G.; Pál, M.; Toldi, D.; Simon-Sarkadi, L.; et al. LED Lighting—Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity. Front. Plant Sci. 2018, 9, 605. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Huang, C.; Wu, P.; Ge, L.; Xu, Y. Optimization of Artificial Light for Spinach Growth in Plant Factory Based on Orthogonal Test. Plants 2020, 9, 490. [Google Scholar] [CrossRef]
- Samuolienė, G.; Sirtautas, R.; Brazaitytė, A.; Duchovskis, P. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 2012, 134, 1494–1499. [Google Scholar] [CrossRef]
- Wang, S.; Fang, H.; Xie, J.; Wu, Y.; Tang, Z.; Liu, Z.; Lv, J.; Yu, J. Physiological Responses of Cucumber Seedlings to Different Supplemental Light Duration of Red and Blue LED. Front. Plant Sci. 2021, 12, 709313. [Google Scholar] [CrossRef] [PubMed]
- Hamedalla, A.M.; Ali, M.M.; Ali, W.M.; Ahmed, M.A.A.; Kaseb, M.O.; Kalaji, H.M.; Gajc-Wolska, J.; Yousef, A.F. Increasing the performance of cucumber (Cucumis sativus L.) seedlings by LED illumination. Sci. Rep. 2022, 12, 852. [Google Scholar] [CrossRef] [PubMed]
- Trouwborst, G.; Oosterkamp, J.; Hogewoning, S.W.; Harbinson, J.; van Ieperen, W. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiol. Plant. 2010, 138, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Ntagkas, N.; de Vos, R.C.H.; Woltering, E.J.; Nicole, C.C.S.; Labrie, C.; Marcelis, L.F.M. Modulation of the Tomato Fruit Metabolome by LED Light. Metabolites 2020, 10, 266. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, W.; Peng, X.; Sun, B.; Wang, X.; Tang, H. Characterization of anthocyanin and proanthocyanidin biosynthesis in two strawberry genotypes during fruit development in response to different light qualities. J. Photochem. Photobiol. B Biol. 2018, 186, 225–231. [Google Scholar] [CrossRef]
- Hanssens, J.; DE Swaef, T.; Steppe, K. High light decreases xylem contribution to fruit growth in tomato. Plant Cell Environ. 2015, 38, 487–498. [Google Scholar] [CrossRef]
- Dannehl, D.; Schwend, T.; Veit, D.; Schmidt, U. Increase of Yield, Lycopene, and Lutein Content in Tomatoes Grown Under Continuous PAR Spectrum LED Lighting. Front. Plant Sci. 2021, 12, 611236. [Google Scholar] [CrossRef]
- Yousef, A.F.; Ali, M.M.; Rizwan, H.M.; Tadda, S.A.; Kalaji, H.M.; Yang, H.; Ahmed, M.A.A.; Wróbel, J.; Xu, Y.; Chen, F. Photosynthetic apparatus performance of tomato seedlings grown under various combinations of LED illumination. PLoS ONE 2021, 16, e249373. [Google Scholar] [CrossRef] [PubMed]
- Fanasca, S.; Colla, G.; Maiani, G.; Venneria, E.; Rouphael, Y.; Azzini, E.; Saccardo, F. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agric. Food Chem. 2006, 54, 4319–4325. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yu, H.; Liu, P.; Ma, C.; Li, Q.; Jiang, W. Ending composting during the thermophilic phase improves cultivation substrate properties and increasing winter cucumber yield. Waste Manag. 2018, 79, 260–272. [Google Scholar] [CrossRef]
- Lazzarin, M.; Meisenburg, M.; Meijer, D.; van Ieperen, W.; Marcelis, L.; Kappers, I.; van der Krol, A.; van Loon, J.; Dicke, M. LEDs Make It Resilient: Effects on Plant Growth and Defense. Trends Plant Sci. 2021, 26, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, Q.; Gao, Y.; Wang, H.; Chai, L.; Yu, H.; Jiang, W. A New Perspective on the Effect of UV-B on l-Ascorbic Acid Metabolism in Cucumber Seedlings. J. Agric. Food Chem. 2019, 67, 4444–4452. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Wang, Y.; Wang, L.; Ding, J.; Cao, Y.; Qin, G.; Yan, L.; Xi, L.; Zhang, J.; Zou, Z. Increased CO2 and light intensity regulate growth and leaf gas exchange in tomato. Physiol. Plant. 2020, 168, 694–708. [Google Scholar] [CrossRef] [PubMed]
- Steed, G.; Ramirez, D.C.; Hannah, M.A.; Webb, A.A.R. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science 2021, 372, 479. [Google Scholar] [CrossRef] [PubMed]
- Borchert, R.; Renner, S.S.; Calle, Z.; Navarrete, D.; Tye, A.; Gautier, L.; Spichiger, R.; von Hildebrand, P. Photoperiodic induction of synchronous flowering near the Equator. Nature 2005, 433, 627–629. [Google Scholar] [CrossRef]
- Velez-Ramirez, A.I.; van Ieperen, W.; Vreugdenhil, D.; van Poppel, P.M.J.A.; Heuvelink, E.; Millenaar, F.F. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat. Commun. 2014, 5, 4549. [Google Scholar] [CrossRef]
- Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer. Front. Plant Sci. 2016, 7, 448. [Google Scholar] [CrossRef]
- Zeng, Z.; Lyu, T.; Jia, X.; Chen, Y.; Lyu, Y. Expression Patterns of Sugar Transporter Genes in the Allocation of Assimilates and Abiotic Stress in Lily. Int. J. Mol. Sci. 2022, 23, 4319. [Google Scholar] [CrossRef] [PubMed]
- Kasperbauer, M.J. Far-Red Light Reflection from Green Leaves and Effects on Phytochrome-Mediated Assimilate Partitioning under Field Conditions. Plant Physiol. 1987, 85, 350–354. [Google Scholar] [CrossRef]
- Wallace, D.H.; Yourstone, K.S.; Masaya, P.N.; Zobel, R.W. Photoperiod gene control over partitioning between reproductive and vegetative growth. Theor. Appl. Genet. 1993, 86, 6–16. [Google Scholar] [CrossRef]
- Lanoue, J.; Zheng, J.; Little, C.; Grodzinski, B.; Hao, X. Continuous Light Does Not Compromise Growth and Yield in Mini-Cucumber Greenhouse Production with Supplemental LED Light. Plants 2021, 10, 378. [Google Scholar] [CrossRef]
- Nitschke, S.; Cortleven, A.; Iven, T.; Feussner, I.; Havaux, M.; Riefler, M.; Schmülling, T. Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants. Plant Cell 2016, 28, 1616–1639. [Google Scholar] [CrossRef]
- Velez-Ramirez, A.I.; Vreugdenhil, D.; Millenaar, F.F.; van Ieperen, W. Phytochrome A Protects Tomato Plants from Injuries Induced by Continuous Light. Front. Plant Sci. 2019, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Velez-Ramirez, A.I.; van Ieperen, W.; Vreugdenhil, D.; Millenaar, F.F. Plants under continuous light. Trends Plant Sci. 2011, 16, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Li, X.; Guo, Y.; Chu, J.; Fang, S.; Yan, C.; Noel, J.P.; Liu, H. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc. Natl. Acad. Sci. USA 2016, 113, 224–229. [Google Scholar] [CrossRef]
- Mao, T.; Li, J.; Wen, Z.; Wu, T.; Wu, C.; Sun, S.; Jiang, B.; Hou, W.; Li, W.; Song, Q.; et al. Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genom. 2017, 18, 415. [Google Scholar] [CrossRef]
Macronutrients | Final Concentration (mg/L) | Micronutrients | Final Concentration (mg/L) |
---|---|---|---|
Ca(NO3)2·4H2O | 614 | EDTA-FeNa·3H2O | 6.4 |
KNO3 | 430 | MnSO4·H2O | 1.7 |
NH4H2PO4 | 267 | ZnSO4·7H2O | 1.5 |
(NH4)2SO4 | 33 | Na2B4O7·8H2O | 4.8 |
MgSO4·7H2O | 430 | CuSO4·5H2O | 0.2 |
K2SO4 | 397 | Na2MoO4·2H2O | 0.2 |
NSL Duration (Hours) | The Autumn–Winter Season | |||||||
---|---|---|---|---|---|---|---|---|
Single-Fruit Weight (g) | Yield per Plant (kg) | Yield per Trough (kg) | Increased Yield per Trough (kg) | Power Consumption per Trough (kWh) | Power Input per Trough (CNY) | Increased Output (CNY) | Input- Output Ratio | |
0 | 120 ± 2.0 b | 2.68 ± 0.06 c | 104.60 ± 2.50 c | - | - | - | - | - |
3 | 133 ± 0.6 a | 3.46 ± 0.09 a | 134.94 ± 3.42 a | 30.34 | 63.55 | 19.07 | 121.36 | 1:6.37 |
4 | 130 ± 1.0 a | 3.21 ± 0.05 ab | 125.24 ± 1.91 ab | 20.65 | 85.50 | 25.65 | 82.60 | 1:3.22 |
5 | 128 ± 0.9 a | 3.13 ± 0.13 b | 122.04 ± 5.14 b | 17.44 | 106.35 | 31.91 | 69.76 | 1:2.19 |
The early spring season | ||||||||
0 | 106 ± 4.0 b | 2.45 ± 0.23 b | 95.49 ± 5.27 b | - | - | - | - | - |
1 | 114 ± 1.0 ab | 2.91 ± 0.04 a | 113.68 ± 0.84 a | 18.20 | 24.00 | 7.20 | 72.80 | 1:10.11 |
2 | 108 ± 2.0 ab | 2.86 ± 0.07 a | 111.41 ± 1.52 a | 15.93 | 48.50 | 14.55 | 63.72 | 1:4.38 |
3 | 117 ± 2.0 a | 2.98 ± 0.03 a | 116.05 ± 0.69 a | 20.56 | 70.00 | 21.00 | 82.24 | 1:3.92 |
NSL Duration (Hours) | The Autumn–Winter Season | |||||
---|---|---|---|---|---|---|
Titratable Acidity (%) | Soluble Sugar (%) | Vitamin C (mg/100 g) | Total Soluble Solids (%) | Acid-Sugar Ratio | Total Soluble Solids-Acid Ratio | |
0 | 0.25 ± 0.002 b | 1.57 ± 0.08 b | 16.14 ± 0.84 c | 2.93 ± 0.07 c | 6.24 | 11.67 |
3 | 0.22 ± 0.002 c | 1.64 ± 0.07 ab | 19.54 ± 0.34 ab | 3.37 ± 0.07 b | 7.33 | 15.00 |
4 | 0.27 ± 0.00 a | 1.58 ± 0.09 b | 21.24 ± 0.87 a | 3.03 ± 0.03 c | 5.75 | 11.04 |
5 | 0.28 ± 0.006 a | 1.87 ± 0.02 a | 17.22 ± 0.77 bc | 3.97 ± 0.03 a | 6.55 | 13.93 |
The early spring season | ||||||
0 | 0.62 ± 0.007 a | 1.92 ± 0.04 b | 21.54 ± 0.50 b | 5.00 ± 0.00 c | 3.10 | 8.12 |
1 | 0.54 ± 0.02 b | 2.03 ± 0.08 b | 21.90 ± 0.49 b | 5.17 ± 0.03 b | 3.77 | 9.59 |
2 | 0.63 ± 0.006 a | 2.49 ± 0.04 a | 26.27 ± 0.08 a | 6.17 ± 0.03 a | 3.94 | 9.74 |
3 | 0.49 ± 0.005 b | 1.95 ± 0.009 b | 21.56 ± 0.20 b | 5.03 ± 0.03 c | 3.98 | 10.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Liu, P.; Xu, J.; Wang, T.; Lu, T.; Gao, J.; Li, Q.; Jiang, W. The Effects of Different Durations of Night-Time Supplementary Lighting on the Growth, Yield, Quality and Economic Returns of Tomato. Plants 2024, 13, 1516. https://doi.org/10.3390/plants13111516
Yu H, Liu P, Xu J, Wang T, Lu T, Gao J, Li Q, Jiang W. The Effects of Different Durations of Night-Time Supplementary Lighting on the Growth, Yield, Quality and Economic Returns of Tomato. Plants. 2024; 13(11):1516. https://doi.org/10.3390/plants13111516
Chicago/Turabian StyleYu, Hongjun, Peng Liu, Jingcheng Xu, Tanyu Wang, Tao Lu, Jie Gao, Qiang Li, and Weijie Jiang. 2024. "The Effects of Different Durations of Night-Time Supplementary Lighting on the Growth, Yield, Quality and Economic Returns of Tomato" Plants 13, no. 11: 1516. https://doi.org/10.3390/plants13111516
APA StyleYu, H., Liu, P., Xu, J., Wang, T., Lu, T., Gao, J., Li, Q., & Jiang, W. (2024). The Effects of Different Durations of Night-Time Supplementary Lighting on the Growth, Yield, Quality and Economic Returns of Tomato. Plants, 13(11), 1516. https://doi.org/10.3390/plants13111516