The Genus Hyssopus: Traditional Use, Phytochemicals and Pharmacological Properties
Abstract
:1. Introduction
2. Botany
3. Methods for Isolating Extracts and Essential Oils from Plants of the Genus Hyssopus L.
4. Mono- and Sesquiterpenoids of Essential Oils from Plants of the Genus Hyssopus L.
5. Steroids and Triterpenoids of Plants of the Genus Hyssopus L.
6. Phenolic Acids and Their Derivatives
7. Compounds of a Flavonoid and Flavone Glycoside Nature
8. Other Connections
9. Biological Activities
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govaerts, R. World Checklist of Selected Plant Families. In Catalogue of Life Checklist; Bánki, O., Roskov, Y., Vandepitte, L., DeWalt, R.E., Remsen, D., Schalk, P., Orrell, T., Keping, M., Miller, J., et al., Eds.; Science: Almaty, Kazakhstan, 2017. [Google Scholar] [CrossRef]
- Harley, R.M.; Atkins, S.; Budantsev, A.L.; Cantino, P.D.; Conn, B.J.; Grayer, R.; Harley, M.M.; de Kok, R.P.J.; Krestovskaja, T.; Morales, R.; et al. Flowering Plants. Dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae). In The Families and Genera of Vascular Plants; Kubitzki, K., Kadereit, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 7, pp. 167–275. [Google Scholar]
- Kew. Plants of the World Online. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30022219-2#distributions (accessed on 15 March 2024).
- WFO. Hyssopus L. Available online: http://www.worldfloraonline.org/taxon/wfo-4000018903 (accessed on 16 May 2024).
- Pavlov, N.V. Flora of Kazakhstan; Science: Almaty, Kazakhstan, 1964; Volume 7, pp. 440–442. [Google Scholar]
- Baytenov, M.S. Generic complex of flora. In Flora of Kazakhstan; Gylym: Almaty, Kazakhstan, 2001; p. 183. [Google Scholar]
- Burtseva, Y.V.; Kuldyrkaeva, E.V.; Mekhonoshina, I.S.; Timasheva, L.A.; Pekhova, O.A.; Katsev, A.M. Study of the chemical composition and biological action of Hyssopus officinalis L. Hydrolate. Med. Pharm. J. Pulse 2023, 25, 25–34. [Google Scholar] [CrossRef]
- Jankovský, M.; Landa, T. Genus Hyssopus L.—Recent knowledge. Hort. Sci. 2002, 29, 119–123. [Google Scholar] [CrossRef]
- Tahir, M.; Khushtar, M.; Fahad, M.; Rahman, M.A. Phytochemistry and pharmacological profile of traditionally used medicinal plant Hyssop (Hyssopus officinalis L.). J. Appl. Pharm. Sci. 2018, 8, 132–140. [Google Scholar] [CrossRef]
- Fathiazad, F.; Hamedeyazdan, S. A review on Hyssopus officinalis L.: Composition and biological activities. Afr. J. Pharm. Pharmacol. 2011, 5, 959–1966. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Kumar, M.; Akram, M.; Amin, M.; Iqbal, M.; Koirala, N.; Sytar, O.; Kregiel, D.; Nicola, S.; et al. Hyssopus Essential Oil: An Update of Its Phytochemistry, Biological Activities, and Safety Profile. Oxidative Med. Cell. Longev. 2022, 2022, 8442734. [Google Scholar] [CrossRef] [PubMed]
- Wesołowska, A.; Jadczak, D.; Grzeszczuk, M. Essential oil composition of hyssop (Hyssopus officinalis L.) cultivated in north-western Poland. Herba Pol. 2010, 56, 57–65. [Google Scholar]
- Kerrola, K.; Galambosi, B.; Kallio, H. Volatile components and odor intensity of four phenotypes of hyssop (Hyssopus officinalis L.). J. Agric. Food Chem. 1994, 42, 776–781. [Google Scholar] [CrossRef]
- Kazazi, H. Supercriticial fluid extraction of flavors and fragrances from Hyssopus officinalis L. cultivated in Iran. Food Chem. 2007, 105, 805–811. [Google Scholar] [CrossRef]
- Mićić, V.; Begić, S.; Dugić, P.; Petrović, Z. Application of mathematical model of naik for determination of total extract yield of hyssop obtained by supercritical extraction with carbon dioxide. Contemp. Mater. 2017, 6, 68–72. [Google Scholar] [CrossRef]
- Rashidi, S.; Eikani, M.H.; Ardjmand, M. Extraction of Hyssopus officinalis L. essential oil using instant controlled pressure drop process. J. Chromatogr. A 2018, 1579, 9–19. [Google Scholar] [CrossRef]
- Kanevskaya, A.A.; Tarasov, V.E. Peculiarities of processing and study of the chemical composition of medicinal hyssop Hyssopus officinalis L. In Current State, Problems and Prospects for the Development of Agricultural Science; IT “ARIAL: Simferopol, Russia, 2023; pp. 67–68. [Google Scholar]
- Aziminezhad, H.; Esmaeilzadehkenari, R.; Raftani Amiri, Z. Investigating the effect of extraction of bath ultrasound in different conditions on antioxidant properties of Hyssop (Hyssopus officinalis) extract. FSCT 2020, 17, 159–168. [Google Scholar] [CrossRef]
- Nile, S.H.; Nile, A.S.; Keum, Y.S. Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods. Biotech 2017, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, S.; Kenari, R.E.; Amiri, Z.R.; Sohbatzadeh, F.; Khodaparast, M.H.H. Effect of ultrasound-assisted cold plasma pretreatment on cell wall polysaccharides distribution and extraction of phenolic compounds from hyssop (Hyssopus officinalis L.). Int. J. Biol. Macromol 2023, 233, 123557. [Google Scholar] [CrossRef] [PubMed]
- Benea, A.; Ciobanu, C.; Ciobanu, N.; Pompus, I.; Cojocaru-Toma, M. Polyphenolic content and antioxidant activity of Hyssopus officinalis L. from the Republic of Moldova. Mold. Med. J. 2022, 65, 41–46. [Google Scholar] [CrossRef]
- Malyushevskaya, A.; Koszelnik, P.; Yushchishina, A.; Mitryasova, O.; Gruca-Rokosz, R. Green Approach to Intensify the Extraction Processes of Substances from Plant Materials. J. Ecol. Eng. 2022, 23, 197–204. [Google Scholar] [CrossRef] [PubMed]
- LinkedIn. Available online: https://www.linkedin.com/pulse/hyssop-oil-market-size-analyzing-trends-forecasting?trk=pulse-article_more-articles_related-content-card (accessed on 10 August 2023).
- Lakomkina, E.V.; Akhmetova, S.B.; Atazhanova, G.A.; Ishmuratova, M.Y. Component composition and antimicrobial activity of samples of Hyssopus ambiguus (Trautv.) Iljin essential oil collected in the territory of the Karaganda region. Pharm. Kazakhstan 2023, 5, 374–379. [Google Scholar] [CrossRef]
- Lakomkina, E.V.; Atazhanova, G.A.; Akhmetova, S.B.; Zilfikarov, I.N. Development of composition and technology for obtaining antimicrobial composition based on mono- and sesquiterpenoids. Pharm. Pharmacol. 2023, 11, 114–126. [Google Scholar] [CrossRef]
- Duzbayeva, N.; Ibrayeva, M.; Kabdysalym, K.; Mukazhanova, Z.; Adhikari, A. Component composition and biological activity of essential oil of Hyssopus cuspidatus plants. Rep. Natl. Acad. Sci. Repub. Kazakhstan 2023, 4, 169–178. [Google Scholar] [CrossRef]
- Zhou, X.; Hai-Yan, G.; Tun-Hai, X.; Tian, S. Physicochemical evaluation and essential oil composition analysis of Hyssopus cuspidatus Boriss from Xinjiang, China. Pharmacogn. Mag. 2010, 6, 278–281. [Google Scholar] [CrossRef]
- Ablizl, P.; Cong, Y.; Musa, M.; Zhu, Y.; Kasimu, R. Chemical composition of the essential oil of Hyssopus cuspidatus from Xinjiang, China. Chem. Nat. Compd. 2009, 45, 445. [Google Scholar] [CrossRef]
- Li, H.T.; Zhao, N.N.; Yang, K.; Liu, Z.L.; Wang, Q. Chemical composition and toxicities of the essential oil derived from Hyssopus cuspidatus flowering aerial parts against Sitophilus zeamais and Heterodera avenae. J. Med. Plants Res. 2013, 7, 343–348. [Google Scholar]
- Moulodi, F.; Khezerlou, A.; Zolfaghari, H.; Mohamadzadeh, A.; Alimoradi, F. Chemical Composition and Antioxidant and Antimicrobial Properties of the Essential Oil of Hyssopus officinalis L. J. Kermanshah Univ. Med. Sci. 2018, 22, e85256. [Google Scholar] [CrossRef]
- Mitić, V.; Đorđević, S. Essential oil composition of Hyssopus officinalis L. Cultivated in Serbia. Facta Univ. Ser. Phys. Chem. Technol. 2000, 2, 105–108. [Google Scholar]
- Eldeghedy, H.I.; El-Gendy, A.E.-N.G.; Nassrallah, A.A.; Aboul-Enein, A.M.; Omer, E.A. Essential oil composition and biological activities of Hyssopus officinalis and Perilla frutescens. Int. J. Health Sci. 2022, 6, 9963–9982. [Google Scholar] [CrossRef]
- Kizil, S.; Haşimi, N.; Tolan, V.; Kilinç, E.; Karataş, H. Chemical Composition, Antimicrobial and Antioxidant Activities of Hyssop (Hyssopus officinalis L.) Essential Oil. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 99–103. [Google Scholar] [CrossRef]
- Kürkçüoğlu, M.; Eser, S.A.; Başer, K.H.C. Composition of the essential oil of the Hyssopus officinalis L. subsp. angustifolius (Bieb.) Arcangeli. Nat. Volatiles Essent. Oils 2016, 3, 15–19. [Google Scholar]
- Aćimović, M.; Stanković, J.; Cvetković, J.M.; Kiprovski, B.; Marjanović-Jeromela, A.; Rat, M.; Malenčić, D. Analiza hemijskog sastava etarskihul jarazličitih genotipov aizopaiz IFVCNS kolekcijelekovitogbilja. Ann. Agron. 2019, 43, 38–45. [Google Scholar]
- Bernotienė, G.; Butkienė, R. Essential oils of Hyssopus officinalis L. cultivated in East Lithuania. Chemija 2010, 21, 135–138. [Google Scholar]
- Radjabov, G.K.; Musaev, A.M.; Islamova, F.I.; Aliev, A.M. Analysis of the accumulation of volatile organic compounds in Hyssopus officinalis L. plants introduced in mountain conditions. Sustain. Dev. Mt. Territ. 2023, 15, 174–181. [Google Scholar] [CrossRef]
- Zawiślak, G. Morphological characters of Hyssopus officinalis L. and chemical composition of its essential oil. Mod. Phytomorphol. 2013, 4, 93–95. [Google Scholar] [CrossRef]
- Saebi, A.; Minaei, S.; Mahdavian, A.R.; Ebadi, M.T. Quantity and Quality of Hyssop (Hyssopus officinalis L.) Affected by Precision Harvesting. Int. J. Hortic. Sci. Technol. 2021, 8, 291–304. [Google Scholar] [CrossRef]
- Velikorodov, A.V.; Kovalev, V.B.; Kurbanova, F.K.; Shchepetova, E.V. Chemical composition of Hyssopus officinalis L. essential oil cultivated in the Astrakhan region. Chem. Plant Raw Mater. 2015, 3, 71–76. [Google Scholar]
- Plugatar, Y.V.; Bulavin, I.V.; Ivanova, N.N.; Miroshnichenko, N.N.; Saplev, N.M.; Shevchuk, O.M.; Feskov, S.A.; Naumenko, T.S. Study of the Component Composition of Essential Oil, Morphology, Anatomy and Ploidy Level of Hyssopus officinalis f. cyaneus Alef. Horticulturae 2023, 9, 480. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Bajalan, I.; Malekpoor, F. Chemical compositions and antioxidant activity of essential oils from inflorescences of two landraces of hyssop [Hyssopus officinalis L. subsp. angustifolius (Bieb.)] cultivated in Southwestern, Iran. J. Essent. Oil Bear. Plants 2019, 22, 1074–1081. [Google Scholar] [CrossRef]
- Garg, S. Composition of essential oil from an annual crop of Hyssopus officinalis grown in Indian plains. Flavour Fragr. J. 1999, 14, 170–172. [Google Scholar] [CrossRef]
- Figueredo, G.; Özcan, M.M.; Chalchat, J.C.; Bagci, Y.; Chalard, P. Chemical Composition of Essential Oil of Hyssopus officinalis L. and Origanum acutiden. Jeobp 2012, 15, 300–306. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.H.; Abbas, Z.H.; Sabra, A.S.; Tkachenko, K.G. Essential Oil Composition of Hyssopus officinalis L. Cultivated in Egypt. Int. J. Plant Sci. Ecol. 2015, 1, 49–53. [Google Scholar]
- Khan, R.; Shawl, A.S.; Tantry, M.A. Determination and seasonal variation of chemical constituents of essential oil of Hyssopus officinalis growing in Kashmir valley as incorporated species of western Himalaya. Chem. Nat. Compd. 2012, 48, 502–505. [Google Scholar] [CrossRef]
- Aćimović, M.; Pezo, L.; Zeremski, T.; Lončar, B.; Marjanović Jeromela, A.; Stanković Jeremic, J.; Cvetković, M.; Sikora, V.; Ignjatov, M. Weather Conditions Influence on Hyssop Essential Oil Quality. Processes 2021, 9, 1152. [Google Scholar] [CrossRef]
- Fathiazad, F.; Mazandarani, M.; Hamedeyazdan, S. Phytochemical analysis and antioxidant activity of Hyssopus officinalis L. from Iran. Adv. Pharm. Bull. 2011, 1, 63–67. [Google Scholar] [CrossRef]
- Zawislak, G. Essential oil composition of Hyssopus officinalis L. grown in Poland. J. Essent. Oil-Bear. Plant 2016, 19, 699–705. [Google Scholar] [CrossRef]
- Ortiz de Elguea-Culebras, G.; Sánchez-Vioque, R.; Berruga, M.I.; Herraiz-Peñalver, D.; González-Coloma, A.; Andrés, M.F.; Santana-Méridas, O. Biocidal potential and chemical composition of industrial essential oils from Hyssopus officinalis, Lavandula × intermedia var. super, and Santolina chamaecyparissus. Chem. Biodivers. 2018, 15, e1700313. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, M.; Todosijević, M.; Varga, A.; Kiprovski, B.; Tešević, V.; Čabarkapa, I.; Sikora, V. Bioactivity of essential oils from cultivated winter savory, sage and hyssop. Lekovitesirovine 2019, 39, 11–17. [Google Scholar] [CrossRef]
- Baj, T.; Korona-Głowniak, I.; Kowalski, R.; Malm, A. Chemical composition and microbiological evaluation of essential oil from Hyssopus officinalis L. with white and pink flowers. Open Chem. 2018, 16, 317–323. [Google Scholar] [CrossRef]
- Hristova, Y.; Wanner, J.; Jirovetz, L.; Stappen, I.; Iliev, I.; Gochev, V. Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolates of Candida species. Biotechnol. Biotechnol. Equip. 2015, 29, 592–601. [Google Scholar] [CrossRef]
- Moghtader, M. Comparative evaluation of the essential oil composition from the leaves and flowers of Hyssopus officinalis L. J. Hortic. For. 2014, 6, 1–5. [Google Scholar] [CrossRef]
- Tsankova, E.T.; Konaktchiev, A.N.; Genova, E.M. Chemical composition of the essential oils of two Hyssopus officinalis taxa. J. Essent. Oil Res. 1993, 5, 609–611. [Google Scholar] [CrossRef]
- Salma, A.S.; El Sawi, A.A. Chemical and physiological studies on Anise hyssop [Agastache foeniculumpursh] and hyssop [Hyssopus officinalis L.] plants grown in Egypt as new spices. Bull. Natl. Res. Cent. 2002, 27, 25–35. [Google Scholar]
- Shah, N.C. Chemical constituents of Hyssopus officinalis L.: ‘ZufahYabis’ A Unani drug from UP Himalaya, India. Indian Perfum. 1991, 35, 49–52. [Google Scholar]
- Salvatore, G.; D’Andrea, A.; Nicoletti, M. A pinocamphone poor oil of Hyssopus officinalis L. var. decumbens from France (Barton). J. Essent. Oil Res. 1998, 10, 563–567. [Google Scholar] [CrossRef]
- Gorunovic, M.S.; Bogavac, P.M.; Chalchat, J.C.; Chabard, J.L. Essential oil of Hyssopus officinalis L., Lamiaceae of Montenegro origin. J. Essent. Oil Res. 1995, 7, 39–43. [Google Scholar] [CrossRef]
- Cvijovic, M.; Djukic, D.; Mandic, L.; Acamovic-Djokovic, G.; Pesakovic, M. Composition and antimicrobial activity of essential oils of some medicinal and spice plants. Chem. Nat. Compd. 2010, 46, 481–483. [Google Scholar] [CrossRef]
- Vallejo, M.C.G.; Herraiz, J.G.; Pérez-Alonso, M.J.; Velasco-Negueruela, A. Volatile oil of Hyssopus officinalis L. from Spain. J. Essent. Oil Res. 1995, 7, 567–568. [Google Scholar] [CrossRef]
- Özer, H.; Şahin, F.; Kılıç, H.; Güllüce, M. Essential oil composition of Hyssopus officinalis L. subsp. angustifolius (Bieb.) Arcangeli from Turkey. Flavour Fragr. J. 2005, 20, 42–44. [Google Scholar] [CrossRef]
- Kovtun-Vodyanytska, S.M.; Levchuk, I.V.; Golubets, O.V.; Rakhmetov, D.B. Biochemical composition of essential oil of Hyssopus seravschanicus (Dubj.) Pazij. (Lamiaceae) introduced into the conditions of Ukraine (Forest-Steppe Zone). Stud. Biol. 2023, 17, 61–68. [Google Scholar] [CrossRef]
- Sharopov, F.S.; Kukaniev, M.A.; Thompson, R.M.; Satyal, P.; Setzer, W.N. Composition and antimicrobial activity of the essential oil of Hyssopus seravschanicus growing wild in Tajikistan. Der Pharma Chem. 2012, 4, 961–966. [Google Scholar]
- Shevchuk, O.M.; Korotkov, O.I.; Malaeva, E.V.; Feskov, S.A. Component composition of Hyssopus cretaceous Dubj essential oil. and Hyssopus officinalis L. Ind. Bot. 2019, 19, 49–54. [Google Scholar]
- Pekhova, O.A.; Timasheva, L.A.; Danilova, I.L.; Belova, I.V. Dynamics of accumulation of biologically active substances in Hyssopus officinalis L. plants grown in the pediguntary zone of the Crimea. Tauride Bull. Agrar. Sci. 2021, 4, 138–148. [Google Scholar]
- Grebennikova, O.; Paliy, A.; Khlypenko, L.; Rabotyagov, V. Biologically active substances of Hyssopus officinalis L. Orbital Mag. 2017, 1, 21–28. [Google Scholar]
- Rabotyagov, V.D.; Shibko, A.N. Research of the Component Composition of Hyssopus officinalis L. Essential Oil. Collect. Sci. Work. GNBS 2014, 139, 94–106. [Google Scholar]
- Džamić, A.M.; Soković, M.D.; Novaković, M.; Jadranin, M.; Ristić, M.S.; Tešević, V.; Marin, P.D. Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and deodorized extracts. Ind. Crops Prod. 2013, 51, 401–407. [Google Scholar] [CrossRef]
- Dehghanzadeh, N.; Ketabchi, S.; Alizadeh, A. Essential oil composition and antibacterial activity of Hyssopus officinalis L. grown in Iran. Asian J. Exp. Biol. Sci 2012, 3, 767–771. [Google Scholar]
- Benelli, G.; Pavela, R.; Canale, A.; Cianfaglione, K.; Ciaschetti, G.; Conti, F.; Maggi, F. Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: Synergistic and antagonistic effects. Parasitol. Int. 2017, 66, 166–171. [Google Scholar] [CrossRef]
- Aihaiti, K.; Li, J.; Xu, N.N.; Tang, D.; Aisa, H.A. Monoterpenoid derivatives from Hyssopus cuspidatus Boriss. and their bioactivities. Fitoterapia 2023, 165, 105432. [Google Scholar] [CrossRef]
- Zotov, E.P. Triterpenoids and steroids of Hissopus seravshnicus and Hissopus ferganensis. Chem. Pharmac. Mag. 1975, 2, 259–260. [Google Scholar] [CrossRef]
- Nikitina, A.S.; Popova, O.I. Research of triterpene compounds of medicinal Hyssop cultivated in the conditions of the Stavropol region. Fundam. Res. 2011, 11, 430–432. [Google Scholar]
- Shomirzoeva, O.; Li, J.; Numonov, S.; Mamat, N.; Shataer, D.; Lu, X.; Aisa, H.A. Chemical components of Hyssopus seravshanicus: Antioxidant activity, activations of melanogenesis and tyrosinase, and quantitative determination by UPLC-DAD. Nat. Prod. Res. 2017, 33, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, Z.; Wysokińska, H. Sterols and Triterpenes in Cell Culture of Hyssopus officinalis L. C J. Biosci. 2003, 58, 308–312. [Google Scholar] [CrossRef]
- Shomirzoeva, O.; Li, J.; Numonov, S.; Atolikshoeva, S.; Aisa, H.A. Chemical components of Hyssopus cuspidatus Boriss.: Isolation and identification, characterization by HPLC-DAD-ESI-HRMS/MS, antioxidant activity and antimicrobial activity. Nat. Prod. Res. 2020, 34, 534–540. [Google Scholar] [CrossRef]
- Murakami, Y.; Omoto, T.; Asai, I.; Shimomura, K.; Yoshihira, K.; Ishimaru, K. Rosmarinic acid and related phenolics in transformed root cultures of Hyssopus officinalis. Plant Cell Tissue Organ Cult. 1998, 53, 75–78. [Google Scholar] [CrossRef]
- Varga, E.; Hajdu, Z.; Veres, K.; Mathe, I.; Nemeth, E.; Pluhar, Z.; Bernath, J. Investigation of variation of the production of biological and chemical compounds of Hyssopus officinalis L. Acta. Pharm. Hung 1998, 68, 183–188. [Google Scholar] [PubMed]
- Kochan, E.; Wysokinska, H.; Chmiel, A.; Grabias, B. Rosmarinic acid and other phenolic acids in hairy roots of Hyssopus officinalis. Biosciences 1999, 54, 11–16. [Google Scholar] [CrossRef]
- Zgorka, G.; Głowniak, K. Variation of free phenolic acids in medicinal plants belonging to the Lamiaceae family. J. Pharm. Biomed. Anal. 2001, 26, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Benedec, D.; Oniga, I.; Tipercius, B.; Popescu, H. Preliminary research of some polyphenolic compounds from Hyssopus officinalis L. (Lamiaceae). Farmacia 2002, 50, 54–57. [Google Scholar]
- Srivastava, A.; Awasthi, K.; Kumar, B.; Misra, A.; Srivastava, S. Pharmacognostic and Pharmacological Evaluation of Hyssopus officinalis L. (Lamiaceae) Collected from Kashmir Himalayas, India. Pharmacogn. J. 2018, 10, 690–693. [Google Scholar] [CrossRef]
- Zhao, L.; Ji, Z.; Li, K.; Wang, B.; Zeng, Y.; Tian, S. HPLC-DAD analysis of Hyssopus Cuspidatus Boriss extract and mensuration of its antioxygenation property. BMC Complement. Med. Ther. 2020, 20, 228. [Google Scholar] [CrossRef] [PubMed]
- Alinezhad, H.; Azimi, R.; Zare, M.; Ebrahimzadeh, M.A.; Eslami, S.; Nabavi, S.F.; Nabavi, S.M. Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hyssopus officinalis L. Var. angustifolius. Int. J. Food Prop. 2013, 16, 1169–1178. [Google Scholar] [CrossRef]
- Liu, X.; Wang, G.; Lv, C.; Song, Z.; Bao, Y.; Wang, S.; Huang, Y. Two newphenolic acids and one newphenolic glycoside from Hyssopus cuspidatus Boriss and their anti-inflammatory activities. Phytochem. Lett. 2021, 46, 15–20. [Google Scholar] [CrossRef]
- Aihaiti, K.; Li, J.; Yaermaimaiti, S.; Liu, L.; Xin, X.; Aisa, H.A. Non-volatile compounds of Hyssopus cuspidatus Boriss and their antioxidant and antimicrobial activities. Food Chem. 2022, 374, 131638. [Google Scholar] [CrossRef]
- Abduwaki, M.; Eshbakova, K.A.; Dong, J.-C.; Aisa, H.A. Flavonoids from flowers of Hyssopus cuspidatus. Chem. Nat. Compd. 2014, 50. [Google Scholar] [CrossRef]
- Sen, T.V. Pharmacognostic Study of Medicinal Hyssop. Author’s Abstract. Ph.D. Thesis, Kursk State Medical University of the Federal Agency for Health and Social Development, Kursk, Russia, 2006. [Google Scholar]
- Vlase, L.; Benedec, D.; Hanganu, D.; Damian, G.; Csillag, I.; Sevastre, B.; Mot, A.C.; Silaghi-Dumitrescu, R.; Tilea, I. Evaluation of Antioxidant and Antimicrobial Activities and Phenolic Profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014, 19, 5490–5507. [Google Scholar] [CrossRef]
- Aihaiti, K.; Li, J.; Yaermaimaiti, S.; Yin, K.; Aisa, H.A. A new macrocyclic spermidine alkaloid from the aerial part of Hyssopus cuspidatus Boriss. Nat. Prod. Res. 2022, 37, 2113–2119. [Google Scholar] [CrossRef]
- Mićović, T. Antioxidant, antigenotoxic and cytotoxic activity of essential oils and methanol extracts of Hyssopus officinalis L. subsp. aristatus (Godr.) Nyman (Lamiaceae) subsp. Aristatus (godr.) nyman (Lamiaceae). Plants 2021, 10, 711. [Google Scholar] [CrossRef]
- Rastkari, N.; Samadi, N.; Ahmadkhaniha, R.; Rozita, A.; Leila, A. Chemical Composition And Biological Activities of Hyssopus Officinalis Cultivatedin Iran. NPAIJ 2007, 3, 87–91. [Google Scholar]
- Salamon, I.; Kryvtsova, M.; Bucko, D.; Tarawneh, A.H. Chemical characterization and antimicrobial activity of some essential oils after their industrial large-scale distillation. J. Microbiol. Biotechnol. Food Sci. 2019, 8, 965–969. [Google Scholar] [CrossRef]
- Micovi, T.; Ušjak, D.; Milenkovic, M.; Samardžić, S.; Maksimovic, Z. Antimicrobial activity of Hyssopus officinalis L. subsp. aristatus (Godr.) Nyman (Lamiaceae) essential oils from Montenegro and Serbia. Lekovitesirovine 2023, 43, e173. [Google Scholar] [CrossRef]
- Hassanshahian, M.; Saadatfar, A.; Masoumi, F. Antimicrobial Properties of Hyssopus officinalis Extract Against Antibiotic-Resistant Bacteria in Planktonic and Biofilm Form. Biol. J. Microorg. 2019, 7, 91–101. [Google Scholar]
- Sayyahi, J.; Mobaiyen, H.; Jafari, B.; Jafari-Sales, A. Antibacterial effects of methanolic extracts of Reum ribes L. and Hyssopus officinalis on some standard pathogenic bacteria. Jorjani Biomed. J. 2019, 7, 34–44. [Google Scholar] [CrossRef]
- Mazzanti, G.; Battinelli, L.; Salvatore, G. Antimicrobial properties of the linalol-rich essential oil of Hyssopus officinalis L. var decumbens (Lamiaceae). Flavour. Fragr. J. 1998, 13, 289–294. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, Y.; Ehbal, T.; Jiang, M.; Li, F. A comparative analysis of the anti-inflammatory effects of Hyssopus cuspidatus Boriss. essential oil and aspirin on chronic inflammation models in mice. Int. J. Clin. Exp. Med. 2019, 12, 8261–8270. [Google Scholar]
- Salehi, A.; Setorki, M. Analgesic and anti-inflammatory effects of ethanolic extract of Hyssopus officinalis in mice. J. Gorgan Univ. Med. Sci. 2018, 20, 42–47. [Google Scholar]
- Ling-Fei, K.; Xiao-Juan, R.; Pan, Y.; Tuo, Q.; Xiao-Hui, Z.; Yu-Tong, K.; Bo, C.; Wen-Ling, S.; Tian-Le, G.; Cai, T. The influence of Hyssopus cuspidatus Boriss extract on lipid mediators metabolism network in asthmatic mice. Front. Pharmacol. 2023, 14, 1066643. [Google Scholar] [CrossRef]
- Qin, T.; Rong, X.; Zhang, X.; Kong, L.; Kang, Y.; Liu, X.; Hu, M.; Liang, H.; Tie, C. Lipid Mediators Metabolic Chaos of Asthmatic Mice Reversed by Rosmarinic Acid. Molecules 2023, 28, 3827. [Google Scholar] [CrossRef]
- Ma, X.; Ma, X.; Ma, Z.; Wang, Z.; Sun, Z.; Yu, W.; Li, F.; Ding, J. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model. Exp. Ther. Med. 2014, 8, 1371–1374. [Google Scholar] [CrossRef]
- Rahimi Kalateh Shah Mohammad, G.; Karimi, E.; Oskoueian, E.; Homayouni-Tabrizi, M. Anticancer properties of green-synthesised zinc oxide nanoparticles using Hyssopus officinalis extract on prostate carcinoma cells and its effects on testicular damage and spermatogenesis in Balb/C mice. Andrologia 2020, 52, e13450. [Google Scholar] [CrossRef]
- Liu, X.; Su, J.; Wang, G.; Zheng, L.; Wang, G.; Sun, Y.; Bao, Y.; Wang, S.; Huang, Y. Discovery of Phenolic Glycoside from Hyssopus cuspidatus Attenuates LPS-Induced Inflammatory Responses by Inhibition of iNOS and COX-2 Expression through Suppression of NF-B Activation. Int. J. Mol. Sci. 2021, 22, 12128. [Google Scholar] [CrossRef]
- Behbahani, M. Anti-viral activity of the methanolic leaf extract of an Iranian medicinal plant “Hyssopus officinalis” against herpes simplex virus. JMPR 2009, 3, 1118–1125. [Google Scholar]
- Kreis, W.; Kaplan, M.H.; Freeman, J.; Sun, D.K.; Sarin, P.S. Inhibition of HIV replication by Hyssop officinalis extracts. Antivir. Res. 1990, 14, 323–337. [Google Scholar] [CrossRef]
- Gollapudi, S.; Sharma, H.A.; Aggarwal, S.; Byers, L.D.; Ensley, H.E.; Gupta, S. Isolation of a previously unidentified polysaccharide (MAR-10) from Hyssop officinalis that exhibits strong activity against human immunodeficiency virus type 1. Biochem. Biophys. Res. Commun. 1995, 210, 145–151. [Google Scholar] [CrossRef]
- Mazzanti, G.; Lu, M.; Salvatore, G. Spasmolytic action of the essential oil from Hyssopus officinalis L. var. decumbens and its major components. Phytother. Res. 1998, 12, S92–S94. [Google Scholar] [CrossRef]
- Kermanjani, A.; Jalalizadegan, B.; Tabatabaie, F. Comparison of Hyssopus officinalis, Tussilago farfara, Carum copticum Extracts versus Systemic Glucantime in the Treatment of Cutaneous leishmaniasis in Balb/c Mice. Adv. Stud. Biol. 2015, 7, 49–54. [Google Scholar] [CrossRef]
- Gholami, M.; Jafari, F.; Baradaran, Z.; Amri, J.; Azhdari-Zarmehri, H.; Sadegh, M. Effects of aqueous extract of Hyssopus officinalis on seizures induced by pentylenetetrazole and hippocampus mRNA level of iNOS in rats. Avicenna J. Phytomed. 2020, 10, 213. [Google Scholar] [PubMed]
- Lim, W.C. Stimulative and sedative effects of essential oils upon inhalation in mice. Arch. Pharmacal. Res. 2005, 28, 770–774. [Google Scholar] [CrossRef] [PubMed]
Indicators | H. cuspidatus | H. ambiguus | H. macranthus | H. seravschanicus | H. latilabiatus | H. officinalis | H. subulifolius |
---|---|---|---|---|---|---|---|
Life form | Subshrub | Subshrub | Subshrub | Subshrub | Subshrub | Subshrub | Subshrub |
Leaves | Narrowly linear, with non-folding edges, with an awl-shaped tip at the apex | Glabrous, entire, narrowly linear, with edges turning downwards, with a vein protruding from the underside | Sessile, lily, pointed, narrowed at the base, twisting | Leaves linear, almost glabrous, with sparse short hairs, sharp, with curled edges | Leaves sessile, linear, glandular, base wedge-shaped, edges curving inward | Leaves are lanceolate, short-petiolate, short-hairy | Leaves are small, needle-shaped, short-petiolate, glabrous |
Inflorescence | Multi-flowered, thin, tapering towards the apex | Multi-flowered, unbranched, dense | Thin, multi-flowered, tapering towards the apex | Long, narrow, consists of loose whorls | Short, apical, spicate, few flowers | Long, spicate, flowers sit in the axils of the upper leaves | Long, spicate, covered with small white hairs |
Calyx | Regular, with 5 awl-shaped pointed teeth | 4–6 mm long, with five almost identical teeth, equal to one-third of the total length of the calyx | 4–6 mm long, covered with short hairs along the veins and along the edge of triangular, sharp teeth | 5–6 mm long, with triangular sharp teeth, two times shorter than the tube, painted blue | Tubular-bell-shaped, 5–6 mm long, purple, with five teeth, pubescent, glandular at the apex | 5–6 mm long, with five teeth, increased to one-third of the total length of calyx, with short hairs along veins, purple color | 6–8 mm long, purple, with five triangular teeth, pubescent with hairs along the veins |
Corolla | Blue, up to 12 mm long, with a short tube, two-lipped, upper lip two-lobed, shorter than the lower, lower three-lobed, with a large middle lobe | Bluish–blue, 0.8–1 cm long, two-lipped, the upper lip is flat, bilobed, the lower lip is three-lobed with a large middle lobe | 10–15 mm long, blue–violet, short-pubescent on the outside, two-lipped, upper lip slightly notched, smaller than the lower, three-lobed. On the lower lip, the middle lobe is two times wider than the lateral ones | Blue–violet, about 1 cm long, with a narrow tube, about 5 mm, the upper lip is ovoid, equal to the lower, the middle large lobe is strongly prominent on the lower lip | Purple, 12–13 mm long, pubescent, glandular; the upper lip is straight, oblong; lower lip is broadened; middle lobe up to 1 mm, considerably wider than lateral lobes; lateral lobes are ovate | Purple, 10–15 mm long, two-lipped, upper lip with notch, shorter than lower lip. The lower lip with well-defined, downwardly bent middle lobe | White, two-lipped, 12–16 mm long, the upper lip with notch, short; the lower lip is three-lobed, large; middle lobe is round |
Habitat | Grows in feather-fescue sepia, on rocky mountain slopes and on pebbles | Grows on crushed and rocky mountain slopes, on pebbles | Grows on saline flood meadows, rocky and gravelly slopes of hills and hills, on pebbles and coarse sandy soils | Grows on rocky and gravelly slopes and trails of mountains, on steppe areas | Grows on dry and rocky slopes, on stony screes | Grows in steppes, on dry hills, rocky slopes of hillsides | Grows on dry and stony soils, in dry forests and shrub thickets |
Distribution in the Republic of Kazakhstan | Altai, Tarbagatai, Dzungarian Alatau | Irtysh, Eastern Small Hills, Karkaralinsky, Altai, Tarbagatai, Dzhungar Alatau | Irtysh, Western and Eastern small hills, Karkaraly, Zaisan, Bal-khash-Alakol, Altai, Tarbagatai | Kyrgyz Alatau, Western Tien Shan | Absent | Absent | Absent |
General distribution * | Altai, Kazakhstan, Mongolia, China (Xinjiang) | Altai, Kazakhstan, Mongolia, West Siberia | Endemic of Kazakhstan | Afghanistan, Kirgizstan, Pakistan, Tadzhikistan, Uzbekistan | Endemic of China (Xinjiang) | South and central Europe, South Siberia, Mediterranean region, North Caucasus, Turkey, North Africa (Morocco) | Endemic of Afghanistan |
Species | Location | Number of Identified Compounds | Main Compounds | Reference |
---|---|---|---|---|
H. officinalis, culture | Poland | From 27 to 36 | Cis-pinocamphone (40.07–45.45%) | [12] |
H. ambiguus | Kazakhstan | 9 | 1,8-cineole (36.0–43.5%) | [24,25] |
H. cuspidatus | Kazakhstan | 83 | Pinocarvone (27.06%), 1,8-cineole (10.76%), cis-pinocarveol (9.57%) | [26] |
H. cuspidatus | China | 38 | Verbenone (23.84%), β-pinene (19.76%), pinocamphone (17.95%), 1,8-cineole (7.16%), myrtenol (7.06%) | [27] |
H. cuspidatus | China | 36 | Germacrene D (18.67%), hexadecanoic acid (17.53%), germacrene B (15.61%), trans-caryophyllene (8.04%) | [28] |
H. cuspidatus | China | 39 | Thymol (19.65%), pinocamphone (15.30%), γ-terpinene (14.63%), p-cymene (7.49%), β-pinene (6.57%) | [29] |
H. officinalis | Iran | 14 | Camphor (23.61%), β-pinene (21.91%) | [30] |
H. officinalis | Cultivated in Serbia | 18 | cis-pinocamphone (42.9%), pinocamphone (14.1%), germacrene-D-11-ol (5.7%), elemol (5.6%) | [31] |
H. officinalis | Egypt | 26 | Cis-pinocamphone (34.00%), pinocamphone (21.27%), β-pinene (13.19%), β-phellandrene (13.10) | [32] |
H. officinalis | Turkey | 34 | Cis-pinocamphone (57.27%), β-pinene (7.23%), terpinen-4-ol (7.13%), pinocarvone (6.49%) | [33] |
H. officinalis subsp. angustifolius | Turkey | 51 | Pinocarvone (27.1%), β-pinene (19.0%), cis-pinocamphone (13.6%) | [34] |
H. officinalis subsp. officinalis L. | Serbia | 59 | Cis-pinocamphone in f. albus (16.4%), in f. cyaneus (22.3%), in f. ruber (58.3%) | [35] |
H. officinalis | East Lithuania | 63 | Pinocarvone (21.1–28.1%), cis-pinocamphone (11.5–15.9%), β-pinene (7.0–11.4%), germacrene D (3.7–5.5%), hedycaryol (4.1–4.8%) in four oils, cis-pinocamphone (16.8–33.6%) in two oils | [36] |
H. officinalis | Russia | From 31 to 37 | White-flowered pinocamphone up to 44.99%, blue-flowered pinocamphone up to 20.85%, pink-flowered pinocamphone up to 45.23% | [37] |
H. officinalis | Poland | 5 | Cis-pinocamphone (33.52%), pinocamphone (28.67%), β-pinene (8.12%), elemol (5.86%) | [38] |
H. officinalis | Iran | 17 | pinocamphone (53.93%) | [39] |
H. officinalis | Russia | 27 | Pinocamphone (63.55%) | [40] |
H. officinalis f. cyaneus | Russia, cultivated | 68 | Pinocamphone (70%) | [41] |
H. officinalis L. subsp. angustifolius | Iran | 25 and 22 | Purple landrace was cis-pinocamphone (55.14%), β-pinene (17.06%), pinocamphone (3.50%); White landrace of hyssop camphor (31.85%), cis-pinocamphone (30.11%), β-pinene (12.26%), pinocamphone (6.09%) | [42] |
H. officinalis ssp. officinalis | India | 21 | Pinocamphone (49.1%), β-pinene (18.4%), cis-pinocamphone (9.7%) | [43] |
H. officinalis | Turkey | 24 | Pinocarvone (29.2%), trans-pinocamphone (27.2%), β-pinene (17.6%), cis-camphone (4.7%) | [44] |
H. officinalis | Egypt | 33 | Cis-pinocamphone (26.85%), β-pinene (20.43%), pinocamphone (15.97%), α-elemol (7.96%) | [45] |
H. officinalis | India | 33 | cis-pinocamphone (53.34%), β-pinene (9.91%), limonene (7.19%) | [46] |
H. officinalis | Serbia | 74 | Pinocamphone (41.2%) | [47] |
H. officinalis | Iran | 19 | Myrtenyl acetate (74.08%), camphor (6.76%), germacrene (3.39%) | [48] |
H. officinalis | Poland | 52 | Cis-pinocamphone (22.53–28.74%), pinocamphone (11.41–17.99%), β-pinene (6.69–12.01%), elemol (5.02–7.57%), germacrene D (3.14–6.98%) | [49] |
H. officinalis | Spain | 44 | 1,8-cineole (53%), β-pinene (16%) | [50] |
H. officinalis | Poland | 74 | Cis-pinocamphone (20.05–43.02%), pinocamphone (1.68–19.62%) | [51] |
H. officinalis | Poland | 50 | White-flowered pinocamphone (51%), pink-flowered pinocamphone (28.8%), cis-pinocamphone (21.9%) | [52] |
H. officinalis | Bulgaria | 46 | Cis-pinocamphone (48.98–50.77%), β-pinene (13.38–13.54%), pinocamphone (5.78–5.94%) | [53] |
H. officinalis | Iran | 36 | Cis-pinocamphone (38.47%), pinocamphone (13.32%), pinocarvone (5.34%) | [54] |
H. officinalis | Cultivated in Bulgaria | 55 | Cis-pinocamphone (40.2%), pinocamphone (10.3%), β-pinene (14.2%) | [55] |
H. officinalis | Egypt | - | White-flowered β-pinene (19.60%), pinocamphone (19.20%), camphor (16.3%) | [56] |
H. officinalis | India | 47 | Cis-pinocamphone (38.1%), pinocarvone (20.3%), 1,8-cineole (12.2%) | [57] |
H. officinalis var. decumbens | France | 16 | Linalool (49.6%), 1,8-cineole (13.3%), limonene (5.4%) | [58] |
H. officinalis | Montenegro | 45 | Methyl eugenol (38.3%), limonene (37.4%), β-pinene (9.6%) | [59] |
H. officinalis | Yugoslavia | Cis-pinocamphone (46.1%) | [60] | |
H. officinalis | Spain | 21 | 1,8-cineole (52.89%), β-pinene (16.82%) | [61] |
H. officinalis L. subsp. angustifolius (Bieb.) | Turkey | 34 | Pinocarvone (36.3%), pinocamphone (19.6%), β-pinene (10.6%), 1,8-cineole (7.2%), cis-pinocamphone (5.3%) | [62] |
H. seravschanicus | Ukraine, in culture | 27 | Cis-pinocamphone (61.58%) | [63] |
H. seravschanicus | Tajikistan | 87 | Cis-pinocamphone (57.0–88.9%), β-pinene (0.4–6.0%), 1,8-cineole (1.8–3.6%), camphor (0.5–4.0%), spathulenol (0.1–5.0%) | [64] |
H. cretaceus | Russia | 45 | Cis-pinocamphone (60%), pinene (12.78%), myrtenyl acetate (7.17%) | [65] |
H. officinalis | Russia, Crym | 58 | Cis-pinocamphone (29.7–58.4%), pinocamphone (15.2–23.3%) | [66] |
Pharmacological Activity | Test Sample | Place of Growth | References |
---|---|---|---|
Antioxidant activity | H. officinalis essential oil; IC50 = 24.0 ± 0.2 µg/mL | Serbia | [47] |
H. officinalis methanolic extract; IC50 = 0.50 µg/mL | India | [83] | |
H. cuspidatus 70% ethanol extract AOA; IC50 of 0.0245 mg/mL | China | [84] | |
H. cuspidatus compounds 109–111 ABTS; IC50 27.2–45.5 μM | China | [91] | |
H. cuspidatus compounds 48, 52, 69 showed high AOA | China | [87] | |
H. officinalis methanolic extracts DPPH; IC50 = 56.04–199.89 µg/mL, FRAP = 0.667–0.959 mmol Fe2+/g | Serbia | [92] | |
N-butanol extract; IC50 = 25 mg/mL | Iran | [90] | |
H. officinalis extract had a moderate lipid peroxidation and antioxidant activity | Iran | [93] | |
Antimicrobial activity | H. officinalis essential oil MIC: B. cereus, 14.20 µL/mL; E. coli, 227.25 µL/mL; E. faecalis, 454.50 µL/mL; P. aeruginosa, 454.50 µL/mL; S. enteritidis, 227.25 µL/mL; S. aureus, 227.25 µL/mL; S. epidermidis, 227.25 µL/mL; P. hauseri, 227.25 µL/mL H. officinalis essential oil MBC: B. cereus, 28.40 µL/mL, 227.25 µL/mL; E. faecalis, 454.50 µL/mL; P. aeruginosa, 454.50 µL/mL; S. enteritidis, 227.25 µL/mL; S. aureus, 227.25 µL/mL; S. epidermidis, 227.25 µL/mL; P. hauseri, 454.50 µL/mL | Serbia | [51] |
H. officinalis essential oil growth of inhibition zones in the case of typical strains: S. aureus, 17.00 ± 0.20 mm; E. coli, 14.00 ± 0.56 mm; E. faecalis, 8.33 ± 0.33 mm; S. pyogenes, 11.00 ± 0.57 mm; C. albicans, 11.50 ± 0.20 mm H. officinalis essential oil growth of inhibition zones in the case of clinical strains: S. aureus, 20.00 ± 0.10 mm; E. coli, 10.66 ± 0.88 mm; S. pyogenes, 11.33 ± 0.33 mm; C. albicans, 12.00 ± 0.80 mm | Czech Republic | [94] | |
H. officinalis L. subsp. aristatus (Godr.) Nyman essential oil MIC against S. aureus and E. coli, 400 µg/mL | Montenegro and Serbia | [95] | |
H. officinalis ethanolic extract biofilm formation against E. coli (95%). K. pneumoniae biofilm had a resistant biofilm structure between all tested bacteria (16.41%) | Iran | [96] | |
H. officinalis ethanolic extract MIC: B. cereus, 1.562 µg/µL; S. marcescens, 6.25 µg/µL; P. aeruginosa, 3.125 µg/µL | Iran | [93] | |
H. officinalis hydrolate had activity against natural test objects and recombinant bacteria E. coli (p Xen-lux) | Russia | [7] | |
H. seravschanicus essential oil MIC: B. cereus and S. aureus, 312 µg/mL; P. aeruginosa, E. coli, C. albicans and A. niger, 625 µg/mL | Tajikistan | [64] | |
H. officinalis methanolic extract MIC: B. cereus and S. aureus, 25 mg/mL; P. aeruginosa and E. coli, 50 mg/mL H. officinalis methanolic extract MBC: B. cereus and S. aureus, 50 mg/mL; P. aeruginosa and E. coli, 100 mg/mL | Iran | [97] | |
H. officinalis L. white-flowered essential oil MIC and MBC: S. aureus (10 mg/mL, 20 mg/mL), S. epidermidis (5 mg/mL, 10 mg/mL), B. subtilis (5 mg/mL, 5 mg/mL), M. luteus (2.5 mg/mL, 5 mg/mL), E. coli (5 mg/mL, 10 mg/mL), K. pneumoniae (5 mg/mL, 10 mg/mL), P. aeruginosa (5 mg/mL, 10 mg/mL) H. officinalis L. pink-flowered essential oil MIC and MBC: S. aureus (5 mg/mL, 10 mg/mL), S. epidermidis (2.5 mg/mL, 5 mg/mL), B. subtilis (0.625 mg/mL, 2.5 mg/mL), M. luteus (2.5 mg/mL, 5 mg/mL), E. coli (5 mg/mL, 5 mg/mL), K. pneumoniae (5 mg/mL, 10 mg/mL), P. aeruginosa (5 mg/mL, 10 mg/mL) | Poland | [52] | |
Antifungal activity | Compounds 105, 109–110 from H. cuspidatus exhibited inhibitory effects against the proliferation of C. albicans with inhibitory zone diameters from 7.5 to 12.0 mm | China | [91] |
H. officinalis essential oil showed activity against S. pyogenes, S. aureus, C. albicans and E. coli with inhibition zone diameters of 19.0 ± 0.1 mm, 18.0 ± 1.7 mm, 20.3 ± 1.8 mm and 15.0 ± 1.0 mm | Turkey | [33] | |
H. officinalis L. var decumbens (Jordan & Fourr.) Briq. from France (Banon) and H. officinalis L. from Italy (Piedmont) essential oils were active against C. albicans, C. krusei and C. tropicis | France and Italy | [98] | |
H. officinalis L. white-flowered essential oil MIC and MBC: C. albicans (0.625 mg/mL, 2.5 mg/mL), C. parapsilosis (1.25 mg/mL, 5 mg/mL) H. officinalis L. pink-flowered essential oil MIC and MBC: C. albicans (0.625 mg/mL, 2.5 mg/mL), C. parapsilosis (0.625 mg/mL, 1.25 mg/mL) | Poland | [52] | |
H. officinalis essential oil demonstrated inhibition of ATPase enzyme and increased the membrane permeability in Candida species. This effect was caused due to synergistic effects of chemical constituents from essential oils like β-pinene, α-pinene, trans-pinocamphone and cis-pinocamphone | Bulgaria | [53] | |
Anti-inflammatory activity | Phenolic glycoside 116 isolated from H. cuspidatus could reduce NO production and inhibit TNF-α, IL-6 and IL-1β | China | [92] |
H. cuspidatus essential oil had an anti-inflammatory effect of 0.4 mL/kg, which exceeds aspirin. H. cuspidatus essential oil was noted in inhibiting the production of TNF-α, IL-1β, IL-6 and PGE2 and significantly reduced the MDA and NO levels | China | [99] | |
H. officinalis extract at doses of 25, 50 and 75 mg/kg/bw (13.33 ± 3.1, 20 ± 3.1, 19.83 ± 2.8) demonstrated high anti-inflammatory effects against Xylene-induced ear edema | Iran | [100] | |
Anti-asthmatic activity | Treatment with H. cuspidatus extract reduced the amount of sputum and decreased the infiltration of inflammatory cells around the bronchi in mice. The extract had a significant ameliorative effect on ovalbumin-induced asthma | China | [101] |
H. cuspidatus ethanolic extract and the rosmarinic acid isolated from it had anti-asthmatic activity | China | [102] | |
H. officinalis L. extract affected interleukin-4, -6 and -17 and interferon-γ levels in asthmatic mice and inhibited the invasion of EOS | China | [103] | |
Antitumor activity | H. officinalis L. essential oil using the MTT test showed antitumor activity against the tumor cell lines SW480, MDA-MB 231, HeLa and MRC-5 | Serbia | [92] |
ZnO nanoparticles using H. officinalis extract disrupted spermatogenesis, the sperm maturation process and sperm motility. The IC50 for the PC3 cell line treated with ZnO nanoparticles for 24 and 48 h was recorded at 8.07 and 5 μg/mL, and induced apoptosis was 26.6% ± 0.05, 44% ± 0.12 and 80% ± 0.07 for the PC3 cells | Iran | [104] | |
H. officinalis ethanolic extract concentration of 500 mg/mL showed 82% cytotoxic effect for breast cancer cells | India | [19] | |
Antidiabetic activity | Aerial parts of H. officinalis L. were screened for determination of antidiabetic activity using an alpha-amylase inhibition assay, namely, a starch iodine assay model, and found an IC50 = 0.8366 mg/mL | India | [105] |
Antiviral activity | H. officinalis L. methanolic extract demonstrated antiviral effects against HSV at an oral dose of 125 mg/kg in mice | Iran | [106] |
H. officinalis methanolic extract demonstrated significant anti-HIV activity due to the high content of caffeic acid | USA | [107] | |
The polysaccharide MAR-10 isolated from the methanol extract of H. officinalis leaves inhibited human immunodeficiency virus type 1 replication in HUT78 T cells and peripheral blood mononuclear cells in a concentration-dependent manner | China | [108] | |
Antispasmodic activity | H. officinalis L. essential oil inhibited the acetylcholine- and BaCl2-induced contractions, with an IC50 of 37 μg/mL and 60 μg/mL, respectively | China | [109] |
Anti-leishmaniasis activity | H. officinalis extract ointment showed significant effectiveness against cutaneous leishmaniasis due to the release of nitric acid and tumor necrosis factor from the macrophages | Iran | [110] |
Anticonvulsant activity | The water hyssop extracts, having a concentration of 100 mg/kg, showed anticonvulsant action and caused a significant increase in iNOS gene expression in the hippocampus | Iran | [111] |
Insecticidal activity | H. cuspidatus essential oil possessed fumigant toxicity against S. zeamais adults, with an LD50 = 24.44 μg/adult and LC50 = 16.72 mg/L | China | [29] |
Mosquito larvicidal activity | H. officinalis essential oil in an acute toxicity study against Culex mosquitos revealed an LC50 of more than 90 μL/L | France | [71] |
Myorelaxation activity | The inhalation of hyssop essential oil increased the immobile position and may have caused a sedative effect in mice | Iran | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atazhanova, G.; Ishmuratova, M.; Levaya, Y.; Smagulov, M.; Lakomkina, Y. The Genus Hyssopus: Traditional Use, Phytochemicals and Pharmacological Properties. Plants 2024, 13, 1683. https://doi.org/10.3390/plants13121683
Atazhanova G, Ishmuratova M, Levaya Y, Smagulov M, Lakomkina Y. The Genus Hyssopus: Traditional Use, Phytochemicals and Pharmacological Properties. Plants. 2024; 13(12):1683. https://doi.org/10.3390/plants13121683
Chicago/Turabian StyleAtazhanova, Gayane, Margarita Ishmuratova, Yana Levaya, Marlen Smagulov, and Yekaterina Lakomkina. 2024. "The Genus Hyssopus: Traditional Use, Phytochemicals and Pharmacological Properties" Plants 13, no. 12: 1683. https://doi.org/10.3390/plants13121683
APA StyleAtazhanova, G., Ishmuratova, M., Levaya, Y., Smagulov, M., & Lakomkina, Y. (2024). The Genus Hyssopus: Traditional Use, Phytochemicals and Pharmacological Properties. Plants, 13(12), 1683. https://doi.org/10.3390/plants13121683