Fish Waste—A Novel Bio-Fertilizer for Stevia (Stevia rebaudiana Bertoni) under Salinity-Induced Stress
Abstract
:1. Introduction
2. Results
2.1. Morphological Traits
2.2. Photosynthetic Pigments and Fv/Fm
2.3. Relative Water Content (RWC)
2.4. Total Carbohydrate Content
2.5. Cellular Damage Indicators
2.6. Proline and Total Phenolic Content
2.7. Antioxidant Enzymatic Activities
2.8. Elemental Composition of Shoots and Roots
2.9. Principal Component Analysis (PCA)
2.10. Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Morphological Parameters
4.2. Photosynthetic Pigments and Chlorophyll Fluorescence Parameter
4.3. Relative Water Content (RWC)
4.4. Soluble Carbohydrates
4.5. Total Protein Content
4.6. Hydrogen Peroxide (H2O2)
4.7. Malondialdehyde (MDA)
4.8. Electrolyte Leakage (EL)
4.9. Proline Content
4.10. Total Phenolic Content
4.11. Activity of Antioxidant Enzymes
4.11.1. Peroxidase Enzyme (POD)
4.11.2. Catalase (CAT)
4.11.3. Ascorbate peroxidase (APX)
4.12. Sodium (Na), Potassium (K), and Calcium (Ca) Content of Shoots and Roots
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sheikhalipour, M.; Esmaielpour, B.; Gohari, G.; Haghighi, M.; Jafari, H.; Farhadi, H.; Kulak, M.; Kalisz, A. Salt Stress Mitigation via the Foliar Application of Chitosan Functionalized Selenium and Anatase Titanium Dioxide Nanoparticles in Stevia (Stevia rebaudiana Bertoni). Molecules 2021, 26, 4090. [Google Scholar] [CrossRef] [PubMed]
- Gerami, M.; Majidian, P.; Ghorbanpour, A.; Alipour, Z. Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor. Physiol. Mol. Biol. Plants 2020, 26, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Bahari Saravi, H.; Gholami, A.; Pirdashti, H.; Firouzabadi, M.B.; Asghari, H.; Yaghoubian, Y. Improvement of salt tolerance in Stevia rebaudiana by co-application of endophytic fungi and exogenous spermidine. Ind. Crops Prod. 2022, 177, 114443. [Google Scholar] [CrossRef]
- Evelin, H.; Devi, T.S.; Gupta, S.; Rupam Kapoor, R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. Front. Plant Sci. 2019, 10, 470. [Google Scholar] [CrossRef]
- Arif, Y.; Singha, P.; Siddiquia, H.; Bajguzb, A.; Hayata, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, F.; Graziani, G.; Fogliano, V.; Scuderi, D.; Romano, D.; Leonardi, C. Effect of nutrient and NaCl salinity on growth, yield, quality and compotion of pepper growth in soilless closed system. J. Plant Nutr. 2014, 37, 1455–1474. [Google Scholar] [CrossRef]
- Sapre, S.; Gontia-Mishra, I.; Tiwari, S.H. Plant Growth-Promoting Rhizobacteria Ameliorates Salinity Stress in Pea (Pisum sativum). J. Plant Growth Regul. 2021, 41, 647–656. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Ebtihal, M.; Elhamid, A.; Mervat, S.h. Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bull. Natl. Res. Center 2019, 43, 118. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Al Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant metabolism in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Raza, A.; Tabassum, J.; Fakhar, A.Z.; Sharif, R.; Chen, H.; Zhang, C.; Ju, L.; Fotopoulos, V.; Siddique, K.H.; Singh, R.K.; et al. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit. Rev. Biotechnol. 2023, 43, 1035–1062. [Google Scholar] [CrossRef]
- Magangana, T.P.; Stander, M.A.; Masondo, N.A.; Makunga, N.P. Steviol glycoside content and essential oil profles of Stevia rebaudiana Bertoni in response to NaCl and polyethylene glycol as inducers of salinity and drought stress in vitro. Plant Cell Tissue Organ Cult. 2021, 145, 1–18. [Google Scholar] [CrossRef]
- Mahajana, M.; Sharma, S.; Kumar, P.; Pala, P.K. Foliar application of KNO3 modulates the biomass yield, nutrient uptake and accumulation of secondary metabolites of Stevia rebaudiana under saline conditions. Ind. Crops Prod. 2020, 145, 112102. [Google Scholar] [CrossRef]
- Yidirim, E.; Kul, R.; Turan, M.; Ekinci, M.; Alak, G.; Atamanalp, M. Effect of Nitrogen and Fish Manure Fertilization on Growth and Chemical Composition of Lettuce. In Proceedings of the International Conference on Advances in Natural and Applied Sciences 2016, Antalya, Turkey, 21–23 April 2016. [Google Scholar]
- Choe, U.; Mustafa, A.M.; Lin, H.; Choe, U.; Sheng, K. Anaerobic co-digestion of fish processing waste with a liquid fraction of hydrothermal carbonization of bamboo residue. Bioresour. Technol. 2020, 297, 122542. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, I.; Dauksas, E.; Remmec, J.F.; Richardsen, R.; Loes, A.K. Fish and fish waste-based fertilizers in organic farming—With status in Norway: A review. Waste Manag. 2020, 115, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Balraj, H.T.; Palani, S.; Arumugam, G. Influence of Gunapaselam, a liquid fermented fish waste on the growth characteristics of Solanum melongena. J. Chem. Pharm. Res. 2014, 6, 58–66. [Google Scholar]
- Radziemska, M.; Vaverková, M.D.; Adamcová, D.; Brtnický, M.; Mazur, Z. Valorization of Fish Waste Compost as a Fertilizer for Agricultural Use. Waste Biomass Valorization 2019, 10, 2537–2545. [Google Scholar] [CrossRef]
- Sadak, M.T.; Abdelhamid, M.S.H. Influence of Amino Acids Mixture Application on Some Biochemical Aspects, Antioxidant Enzymes and Endogenous Polyamines of Vicia faba Plant Grown under Seawater Salinity Stress. Gesunde Pflanz. 2015, 67, 119–129. [Google Scholar] [CrossRef]
- Ekinci, M.; Atamanalp, M.; Turan, M.; Alak, G.; Kul, R.; Kitir, N.; Yildirim, E. Integrated Use of Nitrogen Fertilizer and Fish Manure: Effects on the Growth and Chemical Composition of Spinach. Commun. Soil Sci. Plant Anal. 2019, 50, 1580–1590. [Google Scholar] [CrossRef]
- Adhikari, B.; Dhungana, S.K.; Kim, I.D.; Shin, D.H. Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. J. Saudi Soc. Agric. Sci. 2019, 19, 261–269. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Qin, C.; Begum, N.; Maodong, Q.; Dong, X.X.; El-Esawi, M.; El-Sheikh, M.A.; Alatar, A.A.; Zhang, L. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biol. 2019, 19, 479. [Google Scholar] [CrossRef]
- Gohari, G.; Farhadi, H.; Panahirad, S.; Zareei, E.; Labib, p.; Jafari, H.; Mahdavinia, G.; Hassanpouraghdam, M.B.; Ioannou, A.; Kulak, M.; et al. Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. Int. J. Biol. Macromol. 2023, 224, 893–907. [Google Scholar] [CrossRef] [PubMed]
- Rostami, G.; Moghaddam, M.; Narimani, R.; Mehdizadeh, L. The effect of different priming treatments on germination, morphophysiological, and biochemical indices and salt tolerance of basil (Ocimum basilicum L. cv. Keshkeni Levelou). Environ. Stresses Crop Sci. 2018, 11, 1107–1123. [Google Scholar]
- Gohari, G.; Mohammadi, A.; Akbari, A.; Panahirad, S.; Dadpour, M.R.; Fotopoulos, V.; Kimura, S. Titanium dioxide nanoparticles (tio2 nps) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 2020, 10, 912. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Sukalpa, K.; Anupam, D.; Pradip, K.S.; Joydeep, M. Application of rural slaughterhouse waste as an organic fertilizer for pot cultivation of solanaceous vegetables in India. Int. J. Recycl. Org. Waste Agric. 2013, 2, 6–16. [Google Scholar] [CrossRef]
- Metwally, R.; Solimana, S.A.; Hamed, A.A.; Latef, A.; Abdelhamee, R. The individual and interactive role of arbuscular mycorrhizal fungi and Trichoderma viride on growth, protein content, amino acids fractionation, and phosphatases enzyme activities of onion plants amended with fish waste. Ecotoxicol. Environ. Saf. 2021, 214, 112072. [Google Scholar] [CrossRef]
- Baldi, E.; Tosel li, M. Root growth and survivorship in cow manure and compost amended soils. Plant Soil Environ. 2013, 59, 221–226. [Google Scholar] [CrossRef]
- Azami, M.A.; Maleki, M.; Rasouli, F.; Gohari, G. Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv. ‘Sultana’) under salinity stress. Sci. Rep. 2023, 13, 883. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.H.; DeLong, J.M.; Lada, R.R.; Prange, R.K. The relationship between water status and chlorophyll a fluorescence in grapes (Vitis spp.). Postharvest Biol. Technol. 2009, 51, 193–199. [Google Scholar] [CrossRef]
- Salim Akhter, M.; Noreen, S.; Mahmood, S.; Athar, H.U.R.; Ashraf, M.; Alsahli, A.A.; Ahmad, P. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. J. King Saud Univ.-Sci. 2021, 33, 101239. [Google Scholar] [CrossRef]
- Hameed, A.; Ahmed, M.Z.; Hussain, T.; Aziz, I.; Ahmad, N.; Gul, B.; Nielsen, B. Effects of Salinity Stress on Chloroplast Structure and Function. Cells 2021, 7, 2023. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Arshad, M.; Meraj, T.A.; Hefft, D.I.; Jan, B.L.; Ahmad, P. The Impact of Calcium, Potassium, and Boron Application on the Growth and Yield Characteristics of Durum Wheat under Drought Conditions. Agronomy 2022, 12, 1917. [Google Scholar] [CrossRef]
- Kamanga, M.; Echigo, K.; Yodoya, K.; Mohammad, A.; Mekawy, M.; Ueda, A. Salinity acclimation ameliorates salt stress in tomato (Solanum lycopersicum L.) seedlings by triggering a cascade of physiological processes in the leaves. Sci. Hortic. 2020, 270, 109434. [Google Scholar] [CrossRef]
- Rana, V.; Ram Sewa, R.; Kiran Nehra, S.; Sharma, I. Physiological, biochemical and morphological study in wheat (Triticum aestivum L.) RILs population for salinity tolerance. J. Agric. Sci. 2015, 7, 119–128. [Google Scholar] [CrossRef]
- Ishak, N.H.; Sarbon, N.M.A. Review of Protein Hydrolysates and Bioactive Peptides Deriving from Wastes Generated by Fish Processing. Food Bioprocess Technol. 2017, 11, 2–16. [Google Scholar] [CrossRef]
- Teixeira, W.F.; Soares, L.H.; Fagan, E.B.; Costa Mello, S.D.; Reichardt, K.; Dourado Neto, D. Amino Acids as Stress Reducers in Soybean Plant Growth Under Diferent Water Defcit Conditions. J. Plant Growth Regul. 2019, 39, 905–919. [Google Scholar] [CrossRef]
- Alfosea-Simon, M.; Simon-Grao, S.; Zavala-Gonzalez, E.A.; Camara-Zapata, J.M.; Inmaculada Simon, I.; Martinez-Nicolas, J.J.; Lidon, V.; Garcia-Sanchez, F. Physiological, Nutritional and Metabolomic Responses of Tomato Plants After the Foliar Application of Amino Acids Aspartic Acid, Glutamic Acid and Alanine. Orig. Res. 2021, 11, 5811234. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Jianga, J.; Lia, S.H.; Lia, M.; Yuanyuan Tana, Y.; Songa, S.H.; Shua, Q.A.; Huanga, J. Glutamate Alleviates Cadmium Toxicity in Rice via Suppressing Cadmium Uptake and Translocation. J. Hazard. Mater. 2019, 384, 121319. [Google Scholar] [CrossRef] [PubMed]
- Shahsavani, S.; Abaspour, A.; Parsaeeyan, M.; Yonesi, Z. Effect of fish waste, chemical fertilizer and bio-fertilizer on yield and yield components of bean (Vigna sinensis) and some soil properties. J. Pulses Res. 2017, 8, 45–59. [Google Scholar]
- Saifuddin, M.; Sharif Hossain, A.B.M.; Normaniza, O.; Moneruzzaman, K.M. Bract size enlargement and longevity of Bougainvillea spectabilisas affected by GA3 and phloemic stress. Asian J. Plant Sci. 2009, 8, 212–217. [Google Scholar] [CrossRef]
- Sheikhalipour, M.; Mohammadi, S.A.; Esmaielpour, B.; Zareei, E.; Kulak, M.; Ali, S.; Nouraein, M.; Bahrami, M.K.; Gohari, G.; Fotopoulos, V. Exogenous melatonin increases salt tolerance in bitter melon by regulating ionic balance, antioxidant system and secondary metabolism-related genes. BMC Plant Biol. 2022, 22, 380. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; El-Yazied, A.A.; Hany, G.; El-Gawad, A.; Kandeel, M.; Shalaby, T.A.; Abdallah Tageldein Mansour, A.T.; Al-Harbi, N.A.; Al-Qahtani, S.M.; Alkhateeb, A.A.; et al. Synergistic Impact of Melatonin and Putrescine Interaction in Mitigating Salinity Stress in Snap Bean Seedlings: Reduction of Oxidative Damage and Inhibition of Polyamine Catabolism. Horticulturae 2023, 9, 285. [Google Scholar] [CrossRef]
- Shams, H.; Yildirim, E.; Arslan, E.; Agar, G. Salinity induced alteration in DNA methylation pattern, enzyme activity, nutrient uptake and H2O2 content in pepper (Capsicum annuum L.) cultivars. Acta Physiol. Plant 2020, 42, 59. [Google Scholar] [CrossRef]
- Alfosea-Simon, M.; Zavala-Gonzalez, E.A.; Camara-Zapata, J.M.; Martinez Nicolas, J.J.; Simon, I.; Simon-Grao, S. Effect of foliar application of amino acids on the salinity tolerance of tomato plants cultivated under hydroponic system. Sci. Hortic. 2020, 272, 109509. [Google Scholar] [CrossRef]
- Hnilickova, H.; Kraus, K.; Vachova, P.; Hnilicka, F. Salinity Stress Affects Photosynthesis, Malondialdehyde Formation, and Proline Content in Portulaca oleracea L. Plants 2021, 10, 845. [Google Scholar] [CrossRef] [PubMed]
- Alikhani, S.; Mahmudi Zarandi, M. Effect of coinoculation with endomycorrhiza, Pseudomonas aeroginosa and Rhizobium meliloti on Medicago sativa under water stress. Plant Res. 2019, 32, 155–166. [Google Scholar]
- Shafi, A.; Zahoor, I.; Mushtaq, U. Proline Accumulation and Oxidative Stress: Diverse Roles and Mechanism of Tolerance and Adaptation under Salinity Stress. In Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches; Akhtar, M., Ed.; Springer: Singapore, 2019; pp. 269–300. [Google Scholar]
- Yang, Q.; Zhao, D.; Liu, Q. Connections between amino acid metabolisms in plants: Lysine as an example. Front. Plant Sci. 2020, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.K. The Use of Nutrients in Crop Plants; CRC Press: Boca Raton, FL, USA, 2009; pp. 230–240. [Google Scholar]
- Minh, D.T.K.; Ha, P.T.T.; Tuyen, P.T.; Minh, T.N.; Quan, N.V.; Xuan, T. Effects of Salinity Stress on Growth and Phenolics of Rice (Oryza sativa L.). Luong. Int. Lett. Nat. Sci. 2016, 57, 1–10. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H.; Grignon, C.; Abdelly, C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 2007, 45, 244–249. [Google Scholar] [CrossRef]
- Bistgani, Z.E.; Hashemi, M.; DaCosta, M.; Craker, L.; Maggi, F.; Morshedloo, M.R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops. Prod. 2019, 135, 311–320. [Google Scholar] [CrossRef]
- Muscolo, A.; Mauriello, F.; Marra, F.; Calabrò, P.S.; Russo, M.; Ciriminna, R.; Pagliaro, M. AnchoisFert: A New Organic Fertilizer from Fish Processing Waste for Sustainable Agriculture. Glob. Chall. 2022, 6, 2100141. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, X.; Zhang, A.; Wang, P.; Chen, Q.; Ma, T.; Li, W.; Liang, Y.; Sun, X.; Fang, Y. Foliar. Phenylalanine Application Promoted Antioxidant Activities in Cabernet Sauvignon by Regulating Phenolic Biosynthesis. J. Agric. Food Chem. 2020, 68, 15390–15402. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Richard, P.; Jacoby, A.; Millar, H.; Nicolas, L.; Taylor, T. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol. 2020, 225, 1047–1048. [Google Scholar]
- Gohari, G.; Alavi, Z.; Esfandiari, E.; Panahirad, S.; Hajihoseinlou, S.; Fotopoulos, V. Interaction between hydrogen peroxide and sodium nitroprusside following chemical priming of Ocimum basilicum L. against salt stress. Physiol. Plant. 2019, 168, 361–373. [Google Scholar] [CrossRef]
- Ali, Q.; Daud, M.K.; Haider, M.Z.; Ali, S.; Aslam, N.; Noman, A.; Iqbal, N.; Shahzad, F.; Rizwan, M.; Deeba, F.; et al. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol. Biochem. 2017, 119, 50–58. [Google Scholar] [CrossRef]
- Safikhan, S.; Chaichi, M.R.; Khoshbakht, K.; Amini, A.; Motesharezadeh, B. Application of nanomaterial graphene oxide on biochemical traits of milk thistle (Silybum marianum L.) under salinity stress. Aust. J. Crop Sci. 2018, 12, 931. [Google Scholar] [CrossRef]
- Ahmad, P.; Ahanger, M.A.; Alam, P.; Alyemeni, M.N.; Wijaya, L.; Ali, S.; Ashraf, M. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean Vigna radiata L. through the modifications of physio-biochemical attributes and key antioxidant enzymes. J. Plant Growth Regul. 2019, 38, 70–82. [Google Scholar] [CrossRef]
- Gohari, G.; Panahirad, S.; Sadeghi, M.; Akbari, A.; Zareei, E.; Zahedi, S.M.; Fotopoulos, V. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticles effectively prime grapevine (Vitis vinifera cv. ‘Sultana’) against salt stress. BMC Plant Biol. 2021, 21, 1–15. [Google Scholar]
- Alasvandyari, F.; Mahdavi, B.; Hosseini, S.M. Glycine betaine affects the antioxidant system and ion accumulation and reduces salinity-induced damage in safflower seedlings. Arch. Biol. Sci. 2017, 69, 139–147. [Google Scholar] [CrossRef]
- Ali, M.; Kamran, M.; Abbasi, G.H.; Saleem, M.H.; Ahmad, S.; Parveen, A.; Malik, A.; Afza, S.; Ahmar, S.; Dawar, K.M.; et al. Melatonin-Induced Salinity Tolerance by Ameliorating Osmotic and Oxidative Stress in the Seedlings of Two Tomato (Solanum lycopersicum L.) Cultivars. J. Plant Growth Regul. 2020, 40, 2236–2248. [Google Scholar] [CrossRef]
- Ramesh Kannan, P.; Deepa, S.; Kanth, S.V.; Rengasamy, R. Growth, osmolyte concentration and antioxidant enzymes in the leaves of Sesuvium portulacastrum L. under salinity stress. Appl. Biochem. Biotech. 2013, 171, 1925–1932. [Google Scholar] [CrossRef]
- Moghaddam, M.; Nasrin, F.; Panjtandoust, M.; Ghanati, F. Seed germination, antioxidant enzymes activity and proline content in medicinal plant Tagetes minuta under salinity stress. Plant Biosyst. 2020, 154, 835–842. [Google Scholar] [CrossRef]
- Batista-Silva, W.; Heinemann, B.; Rugen, N.; Nunes-Nesi, A.; Araújo, W.L.; Braun, H.P.; Hildebrandt, T.M. The role of amino acid metabolism during abiotic stress release. Plant Cell Environ. 2019, 42, 1630–1644. [Google Scholar] [CrossRef] [PubMed]
- Sahu, B.; Barik, N.K.; Paikaray, A.; Agnibesh, A.; Mohapatra, S.; Jayasankar, P. Fish Waste Bio-Refinery Products: Its application in Organic Farming B. Int. J. Environ. Agric. Biotechnol. 2016, 1, 4. [Google Scholar] [CrossRef]
- Alnusairi, G.; Mazrou, Y.; Qari, S.; Elkelish, A.; Soliman, M.; Eweis, M.; Abdelaal, K.; El-Samad, G.A.; Ibrahim, M.; ElNahhas, N. Exogenous Nitric Oxide Reinforces Photosynthetic Efficiency, Osmolyte, Mineral Uptake, Antioxidant, Expression of Stress-Responsive Genes and Ameliorates the Effects of Salinity Stress in Wheat. Plants 2022, 11, 576. [Google Scholar] [CrossRef] [PubMed]
- Ketehouli, T.; Idrice Carther, K.F.; Noman, M.; Wang, F.W.; Li, X.W.; Hai-Yan Li, H.Y. Adaptation of Plants to Salt Stress: Characterization of Na+ and K+ Transporters and Role of CBL Gene Family in Regulating Salt Stress Response. Agronomy 2019, 9, 687. [Google Scholar] [CrossRef]
- Lindberg, S.; Abdul Kader, M.D.; Yemelyanov, V. Calcium Signalling in Plant Cells under Environmental Stress. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Springer: New York, NY, USA, 2012. [Google Scholar]
- Adem, G.D.; Roy, S.J.; Zhou, M.; Bowman, J.P.; Shabala, S. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biol. 2014, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Reyes, J.A.O.; Carpentero, A.S.; Santos, P.J.A.; Delfin, E.F. Santos and Evelyn F. Effects of Water Regime, Genotype, and Formative Stages on the Agro-Physiological Response of Sugarcane (Saccharum officinarum L.) to Drought. Plants 2020, 9, 661. [Google Scholar] [CrossRef] [PubMed]
- Whiting, D.; Wilson, C.; Card, A. Organic Fertilizers. In Colorado Master Gardener; Colorado State University: Denver, CO, USA, 2005; pp. 1–5. [Google Scholar]
- Arnon, D. Copper enzymes in isolation chloroplast phenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Smart, R.; Bingham, G.E. Rapid estimates of relative water content. Plant Physiol. 1974, 53, 258–260. [Google Scholar] [CrossRef] [PubMed]
- Omokolo, N.D.; Tsala, N.G.; Kanmegne, G.; Balange, A.P. In vitro induction of multiple shoots, plant regeneration and tuberization from tips of cocoyam. C. R. Acad. Sci. 1992, 318, 773–778. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Sergiev, I.; Alexieva, V.; Karanov, E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. C. R. Acad. Sci. 1997, 51, 121–124. [Google Scholar]
- Heath, R.L.; Packer, I. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Redman, R.; Haraldson, J.; Gusta, L. Leakage of UV- absorbing substances as a measure of salt injury in leaf tissue of woody spicies. Physiol. Plant. 1986, 67, 87–91. [Google Scholar] [CrossRef]
- Bates, L.; Waldren, R.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Cao, L.; Lu, J. Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food. Chem. 2010, 119, 1557–1565. [Google Scholar] [CrossRef]
- Hemeda, H.M.; Klein, B.P. Effects of naturally occurring antioxidants onperoxidase activity of vegetable extracts. J. Food Sci. 1990, 55, 184–185. [Google Scholar] [CrossRef]
- Kar, M.; Mishra, D. Polyphenol oxidase activities during rice leaf senescence. Plant Physiol. 1976, 57, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–888. [Google Scholar]
- Chapman, H.D.; Pratt, D.F. Methods of Analysis for Soil, Plant and Water; University of California Agricultural Science: Davis, CA, USA, 1961; pp. 60–62. [Google Scholar]
Traits | First Principal Components | Second Principal Components |
---|---|---|
Total phenol content (TPCs) | −0.967 | - |
Catalase (CAT) | −0.953 | - |
Carbohydrate (Carbo) | −0.948 | - |
Peroxidase (POD) | −0.943 | - |
Proline (PRO) | −0.941 | - |
Ascorbate peroxidase (APX) | −0.908 | −0.314 |
Leaf number (LN) | 0.903 | 0.420 |
Shoot dry weight (SDW) | 0.860 | 0.479 |
Root fresh weight (RFW) | 0.848 | 0.513 |
Shoot K (KS) | 0.845 | 0.525 |
Branches (B) | 0.845 | 0.493 |
Leaf area (LA) | 0.824 | 0.485 |
Root dry weight (RDW) | 0.814 | 0.550 |
Hydrogen peroxide (H2O2) | −0.801 | −0.587 |
Malondialdehyde (MDA) | −0.799 | −0.574 |
Shoot fresh weight (SFW) | 0.788 | 0.522 |
Root length (RL) | 0.786 | 0.532 |
Chlorophyll b (ChLb) | 0.785 | 0.584 |
Relative water content (RWC) | 0.777 | 0.572 |
Root Na (NaR) | −0.757 | −0.629 |
Root Ca (CaR) | 0.755 | 0.623 |
Electrolyte leakage (EL) | −0.747 | −0.628 |
Shoot Ca (CaS) | - | 0.859 |
Root K (KR) | - | 0.816 |
Shoot Na (NaS) | −0.516 | −0.808 |
Chlorophyll a (ChLa) | 0.582 | 0.776 |
Total chlorophyll (ChLT) | 0.646 | 0.741 |
Plant height (PH) | 0.652 | 0.734 |
Fv/Fm | 0.604 | 0.729 |
Carotenoids (Caros) | 0.576 | 0.707 |
Percentage of variance | 840.78% | 80.05% |
Fv/Fm | Chl a | Chl b | Total Chl | Carotenoids | RWC | Shoot Na | Shoot K | Shoot Ca | Root Na | Root K | Root Ca | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fv/Fm | 1 | |||||||||||
Chla | 0.927 ** | 1 | ||||||||||
Chlb | 0.916 ** | 0.898 ** | 1 | |||||||||
Total Chl | 0.942 ** | 0.993 ** | 0.942 ** | 1 | ||||||||
Carotenoids | 0.858 ** | 0.856 ** | 0.865 ** | 0.857 ** | 1 | |||||||
RWC | 0.847 ** | 0.929 ** | 0.49 ** | 0.95 ** | 0.883 ** | 1 | ||||||
Shoot Na | −0.883 ** | −0.948 ** | −0.849 ** | −0.942 ** | −.846 ** | −0.859 ** | 1 | |||||
Shoot K | 0.901 ** | 0.905 ** | 0.964 ** | 0.938 * | 0.843 ** | 0.951 ** | −0.864 ** | 1 | ||||
Shoot Ca | 0.706 ** | 0.769 ** | 0.587 * | 0.737 ** | 0.518 * | 0.556 * | −.839 ** | 0.577 ** | 1 | |||
Root Na | −0.931 ** | −0.939 ** | −0.960 ** | −0.963 ** | −0.861 ** | −0.949 ** | 0.904 ** | −0.971 ** | −0.673 ** | 1 | ||
Root K | 0.457 | 0.48 | 0.398 | 0.468 | 0.562 * | 0.371 | −0.464 | 0.27 | 0.488 | −0.363 | 1 | |
Root Ca | 0.897 ** | 0.933 ** | 0.957 ** | 0.957 ** | 0.864 ** | 0.957 ** | −0.837 ** | 0.967 ** | 0.616 ** | −0.97 ** | 0.408 | 1 |
Amino Acid | Free Amino Acid | Total Amino Acid | Unit (mg Amino Acid(AA)/g Sample) |
---|---|---|---|
Asp | 0.7 | 1.36 | mg AA/g sample |
Glu | 1.49 | 3.57 | mg AA/g sample |
Ser | 0.17 | 0.87 | mg AA/g sample |
Gly | 1.08 | 3.42 | mg AA/g sample |
His | 0.15 | 0.48 | mg AA/g sample |
Arg | 0.23 | 1.02 | mg AA/g sample |
Thr | 0.14 | 0.84 | mg AA/g sample |
Ala | 1.39 | 2.77 | mg AA/g sample |
Pro | 0.61 | 1.86 | mg AA/g sample |
Tyr | 0.48 | 0.48 | mg AA/g sample |
Val | 0.72 | 1.63 | mg AA/g sample |
Met | 0.26 | 0.51 | mg AA/g sample |
(cys)2 | 0.00 | 0.00 | mg AA/g sample |
Ile | 0.47 | 0.94 | mg AA/g sample |
Leu | 0.98 | 1.7 | mg AA/g sample |
Phe | 0.41 | 0.83 | mg AA/g sample |
Lys | 0.28 | 0.92 | mg AA/g sample |
Ca% | P% | K% | Ntotal% | OC (Organic Carbon)% |
---|---|---|---|---|
1.4 | 4.1 | 6.23 | 5.92 | 12.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahdavi, Z.; Esmailpour, B.; Azarmi, R.; Panahirad, S.; Ntatsi, G.; Gohari, G.; Fotopoulos, V. Fish Waste—A Novel Bio-Fertilizer for Stevia (Stevia rebaudiana Bertoni) under Salinity-Induced Stress. Plants 2024, 13, 1909. https://doi.org/10.3390/plants13141909
Mahdavi Z, Esmailpour B, Azarmi R, Panahirad S, Ntatsi G, Gohari G, Fotopoulos V. Fish Waste—A Novel Bio-Fertilizer for Stevia (Stevia rebaudiana Bertoni) under Salinity-Induced Stress. Plants. 2024; 13(14):1909. https://doi.org/10.3390/plants13141909
Chicago/Turabian StyleMahdavi, Zahra, Behrouz Esmailpour, Rasul Azarmi, Sima Panahirad, Georgia Ntatsi, Gholamreza Gohari, and Vasileios Fotopoulos. 2024. "Fish Waste—A Novel Bio-Fertilizer for Stevia (Stevia rebaudiana Bertoni) under Salinity-Induced Stress" Plants 13, no. 14: 1909. https://doi.org/10.3390/plants13141909
APA StyleMahdavi, Z., Esmailpour, B., Azarmi, R., Panahirad, S., Ntatsi, G., Gohari, G., & Fotopoulos, V. (2024). Fish Waste—A Novel Bio-Fertilizer for Stevia (Stevia rebaudiana Bertoni) under Salinity-Induced Stress. Plants, 13(14), 1909. https://doi.org/10.3390/plants13141909