Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Peanut (Arachis hypogea L.) Revealed Its Crucial Role in Growth and Multiple Stress Tolerance
Abstract
:1. Introduction
2. Results
2.1. Identification of AhCASPs Genes in Peanut
2.2. Chromosome Distribution, Collinearity, and Ka/Ks Analysis
2.3. Conserved Motifs, Conserved Domains, and Gene Structure Analysis
2.4. Phylogenetic Relationship of Peanut AhCASPs
2.5. Prediction of Cis-Acting Elements of AhCASPs Promoter
2.6. miRNA Target Gene Prediction and GO Enrichment Analysis
2.7. Differential Expression Analysis of AhCASPs Genes
3. Discussion
4. Material and Methods
4.1. Identification of AhCASPs Genes
4.2. Chromosome Distribution, Collinearity, and Ka/Ks Analysis
4.3. Conserved Motifs, Domains, and Gene Structure Analysis
4.4. Phylogenetic Relationship of Peanut AhCASPs
4.5. Prediction of Cis-Acting Elements of AhCASPs Promoter
4.6. miRNA Target Gene Prediction and GO Enrichment Analysis
4.7. Differential Expression Analysis of AhCASPs Genes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khoury, C.K.; Achicanoy, H.A.; Bjorkman, A.D.; Navarro-Racines, C.; Guarino, L.; Flores-Palacios, X.; Engels, J.M.M.; Wiersema, J.H.; Dempewolf, H.; Sotelo, S.; et al. Origins of food crops connect countries worldwide. Proc. Biol. Sci. 2016, 283, 1832. [Google Scholar] [CrossRef]
- He, S.; Chen, Y.; Xiang, W.; Chen, X.; Wang, X.; Chen, Y. Carbon and nitrogen footprints accounting of peanut and peanut oil production in China. J. Clean. Prod. 2021, 291, 125964. [Google Scholar] [CrossRef]
- Bonku, R.; Yu, J. Health aspects of peanuts as an outcome of its chemical composition. Food Sci. Hum. Well. 2020, 9, 21–30. [Google Scholar] [CrossRef]
- Liang, S.; Jiang, Y.; Zhang, M. Integrative analysis of the effects of organic and conventional farming methods on peanut based on transcriptome and metabolomics. Food Res. Int. 2023, 171, 113065. [Google Scholar] [CrossRef]
- Liu, G.; Guasch-Ferré, M.; Hu, Y.; Li, Y.; Hu, F.B.; Rimm, E.B.; Manson, J.E.; Rexrode, K.M.; Sun, Q. Nut consumption in relation to cardiovascular disease incidence and mortality among patients with diabetes mellitus. Circ. Res. 2019, 124, 920–929. [Google Scholar] [CrossRef]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Peanut (Arachis hypogaea L.): A prospective legume crop to offer multiple health benefits under changing climate. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Huang, L.; Liu, H.; Garg, V.; Gangurde, S.S.; Li, H.F.; Chitikineni, A.; Guo, D.D.; Pandey, M.K.; Li, S.X.; et al. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat. Genet. 2024, 56, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Meneely, J.P.; Kolawole, O.; Haughey, S.A.; Miller, S.J.; Krska, R.; Elliott, C.T. The challenge of global aflatoxins legislation with a focus on peanuts and peanut products: A systematic review. Expo. Health 2023, 15, 467–487. [Google Scholar] [CrossRef]
- Meena, H.N.; Meena, M.; Yadav, R.S. Comparative performance of seed types on yield potential of peanut (Arachis hypogaea L.) under saline irrigation. Field Crop. Res. 2016, 196, 305–310. [Google Scholar] [CrossRef]
- Kumar, S. Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. Int. J. Food Sci. Agric. 2020, 4, 367–378. [Google Scholar] [CrossRef]
- Jiang, C.; Li, X.; Zou, J.; Ren, J.; Jin, C.; Zhang, H.; Yu, H.; Jin, H. comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties. BMC Plant Biol. 2021, 21, 64. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, N.A. DREB duo defines distinct drought and cold response pathways. Plant Cell 2019, 31, 1196–1197. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Nolan, T.M.; Ye, H.; Zhang, M.; Tong, H.; Xin, P.; Chu, J.; Chu, C.; Li, Z.; Yin, Y. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 2017, 29, 1425–1439. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Li, C.; Lu, X.; Zhao, X.; Yan, C.; Wang, J.; Sun, Q.; Shan, S. Comprehensive genomic characterization of NAC transcription factor family and their response to salt and drought stress in peanut. BMC Plant Biol. 2020, 20, 454. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tai, H.; Li, S.; Gao, W.; Zhao, M.; Xie, C.; Li, W.X. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol. 2014, 201, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.X.; Wu, Y.M.; Zhang, J.X.; Zhang, J.X.; Zhou, H.; Zeng, R.F.; Zheng, W.X.; Qiu, M.Q.; Zhou, J.J.; Xie, Z.Z.; et al. A bZIP transcription factor (CiFD) regulates drought- and low-temperature-induced flowering by alternative splicing in citrus. J. Integr. Plant Biol. 2023, 65, 674–691. [Google Scholar] [CrossRef] [PubMed]
- Shivaraj, S.M.; Sharma, Y.; Chaudhary, J.; Rajora, N.; Sharma, S.; Thakral, V.; Ram, H.; Sonah, H.; Singla-Pareek, S.L.; Sharma, T.R.; et al. Dynamic role of aquaporin transport system under drought stress in plants. Environ. Exp. Bot. 2021, 184, 104367. [Google Scholar] [CrossRef]
- Mukarram, M.; Choudhary, S.; Kurjak, D.; Petek, A.; Khan, M.M.A. Drought: Sensing, signalling, effects and tolerance in higher plants. Physiol. Plant. 2021, 172, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; He, G.; Li, J.; Perez-Hormaeche, J.; Becker, T.; Luo, M.; Wallrad, L.; Gao, J.; Li, J.; Pardo, J.M.; et al. A salt stress-activated GSO1-SOS2-SOS1 module protects the Arabidopsis root stem cell niche by enhancing sodium ion extrusion. EMBO J. 2023, 42, e113004. [Google Scholar] [CrossRef]
- Zheng, L.; Hu, Y.; Yang, T.; Wang, Z.; Wang, D.; Jia, L.; Xie, Y.; Luo, L.; Qi, W.; Lv, Y.; et al. A root cap-localized NAC transcription factor controls root halotropic response to salt stress in Arabidopsis. Nat. Commun. 2024, 15, 2061. [Google Scholar] [CrossRef]
- Schmidt, R.; Mieulet, D.; Hubberten, H.M.; Obata, T.; Hoefgen, R.; Fernie, A.R.; Fisahn, J.; San Segundo, B.; Guiderdoni, E.; Schippers, J.H.M.; et al. SALT-RESPONSIVE ERF1 regulates reactive oxygen species–dependent signaling during the initial response to salt stress in rice. Plant Cell 2013, 25, 2115–2131. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, J.; Li, X.; Li, Y. E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis. New Phytol. 2020, 227, 455–472. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.; Liu, X.; Chen, G.; Li, G.; Hu, S.; Zheng, H.; Ge, L.; Long, Y.; Wang, Q.; Hu, X. SlWRKY81 regulates spd synthesis and Na+/K+ homeostasis through interaction with SlJAZ1 mediated JA pathway to improve tomato saline-alkali resistance. Plant J. 2024, 118, 1774–1792. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Li, M.Z.; Wang, S.M.; Yin, H.J. Revisiting the role of plant transcription factors in the battle against abiotic stress. Int. J. Mol. Sci. 2018, 19, 1634. [Google Scholar] [CrossRef] [PubMed]
- Barrero-Gil, J.; Salinas, J. CBFs at the crossroads of plant hormone signaling in cold stress response. Mol. Plant 2017, 10, 542–544. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Jiang, S.; Pan, J.; Cai, G.; Li, D. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast. Plant Physiol. Biochem. 2014, 84, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yamaji, N.; Huang, S.; Zhang, X.; Shi, M.; Fu, S.; Yang, G.; Ma, J.F.; Xia, J. OsCASP1 is required for Casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements. Plant Cell 2019, 31, 2636–2648. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, B.; Chen, Z.; Wu, M.; Chao, D.; Wei, Q.; Xin, Y.; Li, L.; Ming, Z.; Xia, J. Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis. Plant Cell 2022, 34, 2948–2968. [Google Scholar] [CrossRef] [PubMed]
- Geldner, N. Casparian strips. Curr. Biol. 2013, 23, R1025–R1026. [Google Scholar] [CrossRef]
- Li, P.; Yu, Q.; Gu, X.; Xu, C.; Qi, S.; Wang, H.; Zhong, F.; Baskin, T.I.; Rahman, A.; Wu, S. Construction of a functional Casparian strip in non-endodermal lineages is orchestrated by two parallel signaling systems in Arabidopsis thaliana. Curr. Biol. 2018, 28, 2777–2786.e2. [Google Scholar] [CrossRef]
- De Bang, T.C.; Lay, K.S.; Scheible, W.R.; Takahashi, H. Small peptide signaling pathways modulating macronutrient utilization in plants. Curr. Opin. Plant Biol. 2017, 39, 31–39. [Google Scholar] [CrossRef]
- Rojas-Murcia, N.; Hématy, K.; Lee, Y.; Emonet, A.; Ursache, R.; Fujita, S.; De Bellis, D.; Geldner, N. High-order mutants reveal an essential requirement for peroxidases but not laccases in Casparian strip lignification. Proc. Natl. Acad. Sci. USA 2020, 117, 29166–29177. [Google Scholar] [CrossRef] [PubMed]
- Roppolo, D.; Boeckmann, B.; Pfister, A.; Boutet, E.; Rubio, M.C.; Dénervaud-Tendon, V.; Vermeer, J.E.M.; Gheyselinck, J.; Xenarios, I.; Geldner, N. Functional and evolutionary analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN family. Plant Physiol. 2014, 165, 1709–1722. [Google Scholar] [CrossRef] [PubMed]
- Pfister, A.; Barberon, M.; Alassimone, J.; Kalmbach, L.; Lee, Y.; Vermeer, J.E.; Yamazaki, M.; Li, G.; Maurel, C.; Takano, J.; et al. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. eLife 2014, 3, e03115. [Google Scholar] [CrossRef] [PubMed]
- Hosmani, P.S.; Kamiya, T.; Danku, J.; Naseer, S.; Geldner, N.; Guerinot, M.L.; Salt, D.E. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc. Natl. Acad. Sci. USA 2013, 110, 14498–14503. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Borghi, M.; Wang, P.; Danku, J.M.C.; Kalmbach, L.; Hosmani, P.S.; Naseer, S.; Fujiwara, T.; Geldner, N.; Salt, D.E. The MYB36 transcription factor orchestrates Casparian strip formation. Proc. Natl. Acad. Sci. USA 2015, 112, 10533–10538. [Google Scholar] [CrossRef]
- Nakayama, T.; Shinohara, H.; Tanaka, M.; Baba, K.; Ogawa-Ohnishi, M.; Matsubayashi, Y. A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science 2017, 355, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, I.C.R.; De Bellis, D.; Flückiger, I.; Bellani, E.; Grangé-Guerment, M.; Hématy, K.; Geldner, N. Directed growth and fusion of membrane-wall microdomains requires CASP-mediated inhibition and displacement of secretory foci. Nat. Commun. 2023, 14, 1626. [Google Scholar] [CrossRef] [PubMed]
- Roppolo, D.; De Rybel, B.; Tendon, V.D.; Pfister, A.; Alassimone, J.; Vermeer, J.E.M.; Yamazaki, M.; Stierhof, Y.-D.; Beeckman, T.; Geldner, N. A novel protein family mediates Casparian strip formation in the endodermis. Nature 2011, 473, 380–383. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Wang, L.; Pan, Z.; He, S.; Gao, Q.; Chen, B.; Gong, W.; Du, X. Casparian strip membrane domain proteins in Gossypium arboreum: Genome-wide identification and negative regulation of lateral root growth. BMC Genom. 2020, 21, 340. [Google Scholar] [CrossRef]
- Ji, Y.H.; Zhang, C.Y.; Li, D.; Lai, Z.X. Genome-wide identification and analysis of CASP gene family in banana. Subtrop. Agric. Res. 2021, 17, 192–199. [Google Scholar]
- Su, Y.; Zeeshan Ul Haq, M.; Liu, X.; Li, Y.; Yu, J.; Yang, D.; Wu, Y.; Liu, Y. A genome-wide identification and expression analysis of the Casparian strip membrane domain protein-like gene family in Pogostemon cablin in response to p-HBA-induced continuous cropping obstacles. Plants 2023, 12, 3901. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wei, X.; Yang, Z.; Yuan, F.; Han, G.; Guo, J.; Wang, B. SbCASP-LP1C1 improves salt exclusion by enhancing the root apoplastic barrier. Plant. Mol. Biol. 2023, 111, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Jeon, H.S.; Kim, S.H.; Chung, J.H.; Roppolo, D.; Lee, H.; Cho, H.J.; Tobimatsu, Y.; Ralph, J.; Park, O.K. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J. 2019, 38, e101948. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiong, J.; Jiang, Y.; Wang, L.; Cheng, Z. (Max) Evolution of the R2R3-MYB gene family in six Rosaceae species and expression in woodland strawberry. J. Integr. Agric. 2019, 18, 2753–2770. [Google Scholar] [CrossRef]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, L.L.; Xiao, Y.; Wang, X.; He, Z.H.; Lv, Y.W.; Hu, X.S. The Ka/Ks and Πa/Πs ratios under different models of gametophytic and sporophytic selection. Genome Biol. Evol. 2023, 15, evad151. [Google Scholar] [CrossRef]
- Zhang, D.; Han, Z.; Li, J.; Qin, H.; Zhou, L.; Wang, Y.; Zhu, X.; Ma, Y.; Fang, W. Genome-wide analysis of the SBP-Box gene family transcription factors and their responses to abiotic stresses in Tea (Camellia sinensis). Genomics 2020, 112, 2194–2202. [Google Scholar] [CrossRef] [PubMed]
- Mandlik, R.; Varanavasiappan, S.; Kumar, K.K.; Kokiladevi, E.; Sudhakar, D.; Arul, L. Cloning and in silico analysis of Casparian strip membrane domain protein (CASP) from rice. Madras. Agric. J. 2019, 106, 1. [Google Scholar]
- Yang, J.; Ding, C.; Xu, B.; Chen, C.; Narsai, R.; Whelan, J.; Hu, Z.; Zhang, M. A Casparian strip domain-like gene, CASPL, negatively alters growth and cold tolerance. Sci. Rep. 2015, 5, 14299. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, O.; Qin, J.; Liu, S.; Sun, S.; Liu, H.; Kuang, J.; Jiang, G.; Zhang, W. Cis-Acting elements and trans-acting factors in the transcriptional regulation of raf kinase inhibitory protein expression. PLoS ONE 2013, 8, e83097. [Google Scholar] [CrossRef] [PubMed]
- Biłas, R.; Szafran, K.; Hnatuszko-Konka, K.; Kononowicz, A.K. Cis-regulatory elements used to control gene expression in plants. Plant Cell Tissue Organ Cult. 2016, 127, 269–287. [Google Scholar] [CrossRef]
- Waadt, R.; Seller, C.A.; Hsu, P.K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef]
- Yin, D.; Ji, C.; Song, Q.; Zhang, W.; Zhang, X.; Zhao, K.; Chen, C.Y.; Wang, C.; He, G.; Liang, Z.; et al. Comparison of Arachis Monticola with diploid and cultivated tetraploid genomes reveals asymmetric subgenome evolution and improvement of peanut. Adv. Sci. 2020, 7, 1901672. [Google Scholar] [CrossRef]
- Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.S.; Liu, X.; Gao, D.; Clevenger, J.; Dash, S.; et al. The genome sequences of Arachis Duranensis and Arachis Ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016, 48, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Chen, H.; Yang, M.; Wang, J.; Pandey, M.K.; Zhang, C.; Chang, W.C.; Zhang, L.; Zhang, X.; Tang, R.; et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 2019, 51, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Yang, Y.; Chen, M. Genome-wide survey of the amino acid transporter gene family in wheat (Triticum aestivum L.): Identification, expression analysis and response to abiotic stress. Int. J. Biol. Macromol. 2020, 162, 1372–1387. [Google Scholar] [CrossRef] [PubMed]
- Innan, H.; Kondrashov, F. The evolution of gene duplications: Classifying and distinguishing between models. Nat. Rev. Genet. 2010, 11, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Hao, P.; Wei, H.; Sun, H.; Cheng, S.; Chen, P.; Ma, Q.; Gu, L.; Zhang, M.; Wang, H.; et al. Genome-wide identification and characterization of glycosyltransferase family 47 in Cotton. Front. Genet. 2019, 10, 824. [Google Scholar] [CrossRef]
- Ulmasov, T.; Murfett, J.; Hagen, G.; Guilfoyle, T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 1997, 9, 1963–1971. [Google Scholar]
- Gilmartin, P.M.; Memelink, J.; Hiratsuka, K.; Kay, S.A.; Chua, N.H. Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element. Plant Cell 1992, 4, 839–849. [Google Scholar] [PubMed]
- Tran, L.S.P.; Nakashima, K.; Sakuma, Y.; Simpson, S.D.; Fujita, Y.; Maruyama, K.; Fujita, M.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 Promoter. Plant Cell 2004, 16, 2481–2498. [Google Scholar] [CrossRef] [PubMed]
- Shu, W.; Zhou, H.; Jiang, C.; Zhao, S.; Wang, L.; Li, Q.; Yang, Z.; Groover, A.; Lu, M.Z. The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus. Plant Biotechnol. J. 2019, 17, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, Y.; Lan, Z.; Xu, K.; Chang, J.; Ahammed, G.J.; Ma, J.; Wei, C.; Zhang, X. Methyl jasmonate mediates melatonin-induced cold tolerance of grafted watermelon plants. Hortic. Res. 2021, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Maurel, C.; Tournaire-Roux, C.; Verdoucq, L.; Santoni, V. Hormonal and environmental signaling pathways target membrane water transport. Plant Physiol. 2021, 187, 2056–2070. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.V.; Govindasamy, V.; Rajesh, M.K.; Sabana, A.A.; Praveen, S. Stress-responsive miRNAome of Glycine max (L.) Merrill: Molecular insights and way forward. Planta 2019, 249, 1267–1284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, X. Secrets of the MIR172 Family in plant development and Flowering Unveiled. PLoS Biol. 2021, 19, e3001099. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ma, D.; Wang, Z.; Chen, N.; Ma, X.; He, X.Q. MiR395c regulates secondary xylem development through sulfate metabolism in Poplar. Front. Plant Sci. 2022, 13, 897376. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.; Habermann, K.; Arif, M.A.; Top, O.; Frank, W. Identification of small RNAs during high light acclimation in Arabidopsis thaliana. Front. Plant Sci. 2021, 12, 656657. [Google Scholar] [CrossRef]
- Arjmand, M.P.; Lahiji, H.S.; Golfazani, M.M.; Biglouei, M.H. New insights on the regulatory network of drought-responsive key genes in Arabidopsis thaliana. Genetica 2023, 151, 29–45. [Google Scholar] [CrossRef]
- Hang, N.; Shi, T.; Liu, Y.; Ye, W.; Taier, G.; Sun, Y.; Wang, K.; Zhang, W. Overexpression of Os-microRNA408 enhances drought tolerance in Perennial Ryegrass. Physiol. Plant. 2021, 172, 733–747. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Li, J.; Kong, L.; Hu, H.; Tian, J.; Liu, Y.; Wei, A. miRNAs and their target genes regulate the antioxidant system of Zanthoxylum bungeanum under drought stress. Plant Physiol. Biochem. 2020, 150, 196–203. [Google Scholar] [CrossRef]
- Aukerman, M.J.; Sakai, H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 2003, 15, 2730–2741. [Google Scholar] [CrossRef]
- Tripathi, R.K.; Bregitzer, P.; Singh, J. Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 nnit in barley. Sci. Rep. 2018, 8, 7085. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Sun, M.Y.; Wang, X.S.; Li, W.B.; Li, Y.G. Over-expression of GmGIa-regulated soybean miR172a confers early flowering in transgenic Arabidopsis thaliana. Int. J. Mol. Sci. 2016, 17, 645. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Upadhyaya, N.M.; Gubler, F.; Helliwell, C.A. Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol. 2009, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Sharma, A. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways. Comptes Rendus Biol. 2017, 340, 481–491. [Google Scholar] [CrossRef]
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; Lopez, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef] [PubMed]
- Chou, K.C.; Shen, H.B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. KaKs_Calculator 3.0: Calculating selective pressure on coding and non-coding sequences. Genom. Proteom. Bioinf. 2022, 20, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The conserved domain database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.H.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Forslund, K.; Coelho, L.P.; Szklarczyk, D.; Jensen, L.J.; Von Mering, C.; Bork, P. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 2017, 34, 2115–2122. [Google Scholar] [CrossRef]
- Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018, 46, W49–W54. [Google Scholar] [CrossRef] [PubMed]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, D. Cytoscape automation: Empowering workflow-based network analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Sharif, Y.; Chen, K.; Wang, L.; Fu, H.; Zhuang, Y.; Chitikineni, A.; Chen, H.; Zhang, C.; Varshney, R.K.; et al. Genome-wide characterization of ascorbate peroxidase gene family in Peanut (Arachis hypogea L.) revealed their crucial role in growth and multiple stress tolerance. Front. Plant Sci. 2022, 13, 962182. [Google Scholar] [CrossRef]
Gene ID | Gene Name | Length | Molecular Weight (Da) | pI | Instability Index | Aliphatic Index | GRAVY | Subcellular |
---|---|---|---|---|---|---|---|---|
AH01G00870.1 | AhCASP1 | 158 | 17,410.640 | 5.030 | 32.870 | 108.040 | 0.946 | Cell membrane |
AH01G22790.1 | AhCASP2 | 200 | 22,455.880 | 9.510 | 34.390 | 101.000 | 0.495 | Chloroplast |
AH01G27590.1 | AhCASP3 | 184 | 19,521.210 | 9.860 | 30.550 | 125.000 | 0.726 | Chloroplast |
AH01G27600.1 | AhCASP4 | 192 | 20,653.250 | 9.550 | 29.280 | 114.740 | 0.617 | Cell membrane |
AH02G02150.1 | AhCASP5 | 170 | 18,992.310 | 8.240 | 33.890 | 110.120 | 0.680 | Cell membrane |
AH02G14400.1 | AhCASP6 | 129 | 14,159.910 | 10.530 | 32.350 | 123.800 | 0.561 | Peroxisome |
AH02G19940.1 | AhCASP7 | 155 | 17,076.360 | 9.250 | 42.090 | 99.480 | 0.751 | Cell membrane |
AH02G23610.1 | AhCASP8 | 174 | 19,302.090 | 6.720 | 25.710 | 92.590 | 0.217 | Cell membrane/Chloroplast/Peroxisome |
AH03G00710.1 | AhCASP9 | 128 | 13,763.520 | 6.690 | 53.330 | 89.920 | −0.098 | Cell membrane |
AH03G01440.1 | AhCASP10 | 199 | 20,893.680 | 5.800 | 45.110 | 89.750 | 0.261 | Cell membrane |
AH03G01480.1 | AhCASP11 | 128 | 13,763.520 | 6.690 | 53.330 | 89.920 | −0.098 | Cell membrane |
AH03G04600.1 | AhCASP12 | 152 | 16,577.660 | 6.680 | 29.900 | 120.590 | 0.968 | Cell membrane |
AH03G14800.1 | AhCASP13 | 166 | 18,174.900 | 9.610 | 21.420 | 127.530 | 0.887 | Cell membrane/Nucleus |
AH03G17620.1 | AhCASP14 | 222 | 23,645.640 | 9.020 | 33.690 | 101.580 | 0.539 | Cell membrane |
AH03G30890.1 | AhCASP15 | 205 | 22,831.880 | 8.090 | 28.810 | 88.540 | 0.477 | Cell membrane |
AH03G36880.1 | AhCASP16 | 810 | 89,355.450 | 8.830 | 42.510 | 100.300 | 0.272 | Chloroplast |
AH03G39480.1 | AhCASP17 | 209 | 22,590.160 | 7.570 | 48.110 | 92.060 | 0.412 | Cell membrane |
AH03G42570.1 | AhCASP18 | 187 | 20,528.560 | 10.150 | 43.820 | 115.240 | 0.811 | Chloroplast |
AH03G44420.1 | AhCASP19 | 191 | 20,647.480 | 9.610 | 24.700 | 111.360 | 0.536 | Chloroplast/Nucleus/Peroxisome |
AH04G05340.1 | AhCASP20 | 201 | 21,647.660 | 9.240 | 26.370 | 112.440 | 0.674 | Cell membrane/Chloroplast/Golgi apparatus/Peroxisome |
AH05G06060.1 | AhCASP21 | 153 | 16,646.660 | 4.460 | 29.570 | 110.330 | 1.061 | Cell membrane |
AH05G18110.1 | AhCASP22 | 184 | 19,606.320 | 9.370 | 26.220 | 129.460 | 0.930 | Chloroplast/Golgi apparatus |
AH05G29740.1 | AhCASP23 | 175 | 18,952.240 | 9.550 | 28.090 | 115.260 | 0.704 | Chloroplast |
AH05G30620.1 | AhCASP24 | 273 | 29,920.480 | 8.790 | 47.580 | 89.300 | −0.052 | Chloroplast/Nucleus |
AH05G31520.1 | AhCASP25 | 258 | 28,998.780 | 7.710 | 63.510 | 66.940 | −0.307 | Nucleus |
AH05G37160.1 | AhCASP26 | 180 | 19,143.040 | 7.710 | 46.220 | 89.060 | 0.441 | Cell membrane |
AH06G18360.1 | AhCASP27 | 234 | 26,676.070 | 9.910 | 28.460 | 111.200 | 0.496 | Chloroplast |
AH06G24120.1 | AhCASP28 | 194 | 21,650.230 | 8.350 | 45.760 | 100.050 | 0.537 | Cell membrane |
AH06G25820.1 | AhCASP29 | 200 | 22,063.660 | 9.390 | 45.660 | 100.600 | 0.149 | Nucleus |
AH06G26150.1 | AhCASP30 | 370 | 40,467.550 | 7.750 | 61.550 | 72.190 | −0.324 | Nucleus |
AH07G11350.1 | AhCASP31 | 211 | 22,581.910 | 5.880 | 24.940 | 87.010 | 0.363 | Cell membrane |
AH08G15760.1 | AhCASP32 | 222 | 23,721.760 | 8.910 | 34.200 | 100.270 | 0.586 | Cell membrane/Nucleus |
AH08G17980.1 | AhCASP33 | 205 | 22,704.030 | 8.980 | 57.460 | 75.120 | −0.439 | Nucleus |
AH09G03020.1 | AhCASP34 | 205 | 22,248.690 | 9.580 | 49.210 | 93.800 | 0.290 | Nucleus |
AH09G11490.1 | AhCASP35 | 145 | 15,417.410 | 9.870 | 26.260 | 126.970 | 0.806 | Cell membrane/Chloroplast/Golgi apparatus/Peroxisome |
AH09G21610.1 | AhCASP36 | 152 | 16,448.460 | 7.750 | 32.140 | 115.660 | 0.892 | Cell membrane |
AH09G31200.1 | AhCASP37 | 234 | 25,999.460 | 6.780 | 40.500 | 84.620 | 0.213 | Cell membrane |
AH10G25080.1 | AhCASP38 | 192 | 20,478.190 | 9.280 | 21.540 | 123.910 | 0.748 | Cell membrane |
AH11G08640.1 | AhCASP39 | 158 | 17,376.620 | 5.030 | 34.090 | 110.510 | 0.953 | Cell membrane |
AH11G21400.1 | AhCASP40 | 289 | 31,997.860 | 7.160 | 60.850 | 64.500 | −0.383 | Nucleus |
AH11G30050.1 | AhCASP41 | 192 | 20,653.250 | 9.550 | 29.280 | 114.740 | 0.617 | Cell membrane |
AH11G30070.1 | AhCASP42 | 183 | 19,441.120 | 9.860 | 33.650 | 124.100 | 0.745 | Cell membrane/Chloroplast/Golgi apparatus/Nucleus/Peroxisome |
AH11G35090.1 | AhCASP43 | 185 | 20,578.650 | 9.490 | 30.560 | 106.000 | 0.487 | Chloroplast/Nucleus |
AH12G02290.1 | AhCASP44 | 170 | 18,992.310 | 8.240 | 33.890 | 110.120 | 0.680 | Cell membrane |
AH12G22250.1 | AhCASP45 | 155 | 17,076.360 | 9.250 | 42.090 | 99.480 | 0.751 | Cell membrane |
AH12G35210.1 | AhCASP46 | 197 | 21,076.530 | 6.390 | 20.650 | 113.400 | 0.674 | Cell membrane |
AH12G35220.1 | AhCASP47 | 197 | 20,858.530 | 8.620 | 32.210 | 114.010 | 0.827 | Cell membrane |
AH13G03220.1 | AhCASP48 | 195 | 20,666.460 | 5.400 | 43.300 | 91.590 | 0.274 | Cell membrane |
AH13G06630.1 | AhCASP49 | 156 | 16,936.820 | 5.610 | 37.610 | 110.580 | 0.855 | Cell membrane |
AH13G17400.1 | AhCASP50 | 166 | 18,128.810 | 9.610 | 20.910 | 128.670 | 0.887 | Cell membrane |
AH13G20190.1 | AhCASP51 | 222 | 23,717.800 | 9.040 | 37.090 | 103.740 | 0.584 | Cell membrane |
AH13G29210.1 | AhCASP52 | 208 | 22,435.490 | 9.600 | 30.120 | 113.560 | 0.447 | Peroxisome |
AH13G34990.1 | AhCASP53 | 222 | 24,705.100 | 8.090 | 34.410 | 90.540 | 0.441 | Cell membrane |
AH13G40110.1 | AhCASP54 | 161 | 17,258.670 | 9.640 | 33.040 | 138.140 | 0.988 | Cell membrane/Nucleus |
AH13G42370.1 | AhCASP55 | 209 | 22,589.130 | 7.570 | 46.280 | 91.580 | 0.401 | Cell membrane |
AH13G45190.1 | AhCASP56 | 187 | 20,521.580 | 10.150 | 38.000 | 114.170 | 0.831 | Chloroplast |
AH13G47090.1 | AhCASP57 | 191 | 20,643.480 | 9.610 | 22.840 | 113.930 | 0.548 | Chloroplast/Nucleus/Peroxisome |
AH14G06350.1 | AhCASP58 | 233 | 26,029.940 | 9.630 | 33.820 | 85.280 | 0.194 | Cell membrane/Cell wall/Chloroplast/Mitochondrion/Nucleus/Peroxisome |
AH14G06890.1 | AhCASP59 | 201 | 21,680.650 | 9.240 | 25.410 | 109.550 | 0.644 | Cell membrane/Chloroplast/Golgi apparatus/Peroxisome |
AH14G18560.1 | AhCASP60 | 124 | 13,547.170 | 9.370 | 22.580 | 128.790 | 0.841 | Cell membrane |
AH14G22800.1 | AhCASP61 | 292 | 32,598.040 | 9.510 | 48.550 | 73.420 | −0.216 | Cell membrane/Mitochondrion/Nucleus |
AH14G32740.1 | AhCASP62 | 128 | 13,859.640 | 9.230 | 14.940 | 137.730 | 0.930 | Cell membrane/Chloroplast |
AH14G40830.1 | AhCASP63 | 171 | 18,650.630 | 6.260 | 25.350 | 105.500 | 0.645 | Cell membrane |
AH15G02130.1 | AhCASP64 | 153 | 16,630.660 | 4.460 | 29.570 | 110.980 | 1.078 | Cell membrane |
AH15G14530.1 | AhCASP65 | 72 | 7734.140 | 8.340 | 36.500 | 105.830 | 0.590 | Cell membrane/Golgi apparatus |
AH15G21900.1 | AhCASP66 | 258 | 28,924.680 | 7.710 | 62.470 | 67.710 | −0.304 | Nucleus |
AH15G23250.1 | AhCASP67 | 275 | 30,269.910 | 8.900 | 46.840 | 87.240 | −0.077 | Chloroplast |
AH15G24290.1 | AhCASP68 | 175 | 18,998.330 | 9.550 | 31.870 | 114.170 | 0.699 | Chloroplast |
AH16G06190.1 | AhCASP69 | 202 | 22,036.010 | 9.270 | 35.040 | 108.560 | 0.648 | Chloroplast |
AH16G29800.1 | AhCASP70 | 194 | 21,654.240 | 8.350 | 45.610 | 97.530 | 0.512 | Cell membrane |
AH16G32140.1 | AhCASP71 | 200 | 22,098.510 | 8.520 | 46.370 | 98.150 | 0.111 | Nucleus |
AH16G32610.1 | AhCASP72 | 373 | 40,707.730 | 7.130 | 60.930 | 71.610 | −0.351 | Nucleus |
AH17G10700.1 | AhCASP73 | 211 | 22,581.910 | 5.880 | 24.940 | 87.010 | 0.363 | Cell membrane |
AH18G06070.1 | AhCASP74 | 222 | 23,731.800 | 8.910 | 33.460 | 100.720 | 0.586 | Nucleus |
AH19G00710.1 | AhCASP75 | 180 | 19,143.040 | 7.710 | 46.220 | 89.060 | 0.441 | Cell membrane |
AH19G04550.1 | AhCASP76 | 205 | 22,248.690 | 9.580 | 49.210 | 93.800 | 0.290 | Nucleus |
AH19G27380.1 | AhCASP77 | 152 | 16,383.340 | 6.800 | 31.650 | 113.090 | 0.912 | Cell membrane |
AH19G31300.1 | AhCASP78 | 75 | 8172.800 | 9.700 | 25.450 | 123.330 | 0.681 | Cell membrane/Chloroplast/Peroxisome |
AH19G36900.1 | AhCASP79 | 195 | 21,762.850 | 8.930 | 42.000 | 90.050 | 0.251 | Cell membrane |
AH20G32430.1 | AhCASP80 | 191 | 20,292.920 | 9.300 | 27.180 | 122.510 | 0.721 | Cell membrane |
Gene 1 | Gene 2 | Ka | Ks | Ka/Ks | Divergence Time (Mya) |
---|---|---|---|---|---|
AhCASP1 | AhCASP39 | 0.0028 | 0.0445 | 0.0628 | 2.62 |
AhCASP2 | AhCASP43 | 0.0095 | 0.0076 | 1.2581 | 0.45 |
AhCASP3 | AhCASP42 | 0.0074 | 0.0436 | 0.1695 | 2.56 |
AhCASP1 | AhCASP64 | 0.1117 | 1.0843 | 0.1030 | 63.78 |
AhCASP3 | AhCASP69 | 0.4946 | 2.5809 | 0.1917 | 151.82 |
AhCASP17 | AhCASP31 | 0.2680 | 0.9484 | 0.2826 | 55.79 |
AhCASP16 | AhCASP54 | 0.0794 | 0.1720 | 0.4616 | 10.12 |
AhCASP17 | AhCASP55 | 0.0087 | 0.0445 | 0.1943 | 2.62 |
AhCASP18 | AhCASP56 | 0.0167 | 0.0451 | 0.3699 | 2.65 |
AhCASP13 | AhCASP50 | 0.0053 | 0.0337 | 0.1581 | 1.98 |
AhCASP14 | AhCASP51 | 0.0326 | 0.0438 | 0.7452 | 2.58 |
AhCASP12 | AhCASP49 | 0.1079 | 0.1875 | 0.5753 | 11.03 |
AhCASP10 | AhCASP48 | 0.0023 | 0.0668 | 0.0338 | 3.93 |
AhCASP17 | AhCASP73 | 0.2679 | 0.9053 | 0.2959 | 53.25 |
AhCASP20 | AhCASP59 | 0.0066 | 0.0284 | 0.2305 | 1.67 |
AhCASP21 | AhCASP39 | 0.1117 | 1.0843 | 0.1030 | 63.78 |
AhCASP25 | AhCASP40 | 0.2872 | 1.1272 | 0.2548 | 66.31 |
AhCASP21 | AhCASP64 | 0.0029 | 0.0269 | 0.1080 | 1.58 |
AhCASP22 | AhCASP65 | 0.0186 | 0.0799 | 0.2327 | 4.70 |
AhCASP23 | AhCASP68 | 0.0103 | 0.0468 | 0.2193 | 2.75 |
AhCASP24 | AhCASP67 | 0.0277 | 0.0700 | 0.3961 | 4.12 |
AhCASP25 | AhCASP66 | 0.0051 | 0.0394 | 0.1290 | 2.32 |
AhCASP29 | AhCASP71 | 0.0110 | 0.0070 | 1.5832 | 0.41 |
AhCASP30 | AhCASP72 | 0.0084 | 0.0075 | 1.1192 | 0.44 |
AhCASP31 | AhCASP55 | 0.2629 | 0.9212 | 0.2854 | 54.19 |
AhCASP32 | AhCASP74 | 0.0100 | 0.0189 | 0.5282 | 1.11 |
AhCASP36 | AhCASP77 | 0.0058 | 0.0370 | 0.1574 | 2.18 |
AhCASP37 | AhCASP79 | 0.0046 | 0.0487 | 0.0944 | 2.86 |
AhCASP38 | AhCASP80 | 0.0191 | 0.0342 | 0.5605 | 2.01 |
AhCASP40 | AhCASP66 | 0.2843 | 1.1055 | 0.2571 | 65.03 |
AhCASP39 | AhCASP64 | 0.1151 | 1.0131 | 0.1136 | 59.59 |
AhCASP55 | AhCASP73 | 0.2628 | 0.8794 | 0.2988 | 51.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Fang, J.; Zeeshan Ul Haq, M.; Yang, W.; Yu, J.; Yang, D.; Liu, Y.; Wu, Y. Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Peanut (Arachis hypogea L.) Revealed Its Crucial Role in Growth and Multiple Stress Tolerance. Plants 2024, 13, 2077. https://doi.org/10.3390/plants13152077
Su Y, Fang J, Zeeshan Ul Haq M, Yang W, Yu J, Yang D, Liu Y, Wu Y. Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Peanut (Arachis hypogea L.) Revealed Its Crucial Role in Growth and Multiple Stress Tolerance. Plants. 2024; 13(15):2077. https://doi.org/10.3390/plants13152077
Chicago/Turabian StyleSu, Yating, Jieyun Fang, Muhammad Zeeshan Ul Haq, Wanli Yang, Jing Yu, Dongmei Yang, Ya Liu, and Yougen Wu. 2024. "Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Peanut (Arachis hypogea L.) Revealed Its Crucial Role in Growth and Multiple Stress Tolerance" Plants 13, no. 15: 2077. https://doi.org/10.3390/plants13152077
APA StyleSu, Y., Fang, J., Zeeshan Ul Haq, M., Yang, W., Yu, J., Yang, D., Liu, Y., & Wu, Y. (2024). Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Peanut (Arachis hypogea L.) Revealed Its Crucial Role in Growth and Multiple Stress Tolerance. Plants, 13(15), 2077. https://doi.org/10.3390/plants13152077