QTL Detection of Salt Tolerance at Soybean Seedling Stage Based on Genome-Wide Association Analysis and Linkage Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Evaluation of Traits Related to Salt Tolerance
2.3. Genome-Wide Association Analysis
2.4. Linkage Analysis
2.5. Prediction of Candidate Gene
2.6. Development of Molecular Marker
3. Results
3.1. Statistics and Analysis of Phenotype
3.2. Linkage Disequilibrium Analysis
3.3. Kinship and Population Structure Analysis
3.4. Genome-Wide Association Analysis of Salt Tolerance-Related QTLs
3.5. Linkage Analysis of Salt Tolerance-Related QTLs
3.6. Comparison of Salt Tolerance QTL Consistency Regions in Soybean and Screening of Candidate Genes
3.7. Development and Validation of Salt-Tolerant Molecular Marker
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flowers, T.; Yeo, A. Breeding for salinity resistance in crop plants: Where next? Funct. Plant Biol. 1995, 22, 875–884. [Google Scholar] [CrossRef]
- Ashraf, M.; Wu, L. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 1994, 13, 17–42. [Google Scholar] [CrossRef]
- Phang, T.H.; Shao, G.; Lam, H.M. Salt tolerance in soybean. J. Integr. Plant Biol. 2008, 50, 1196–1212. [Google Scholar] [CrossRef]
- Li, W.Y.F.; Wong, F.L.; Tsai, S.N.; Phang, T.H.; Shao, G.; Lam, H.M. Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ. 2006, 29, 1122–1137. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Kan, G.; Shao, H.; Yu, D. Physiological and transcriptional responses to salt stress in salt-tolerant and salt-sensitive soybean (Glycine max [L.] Merr.) seedlings. Land Degrad. Dev. 2018, 29, 2707–2719. [Google Scholar] [CrossRef]
- Begum, N.; Hasanuzzaman, M.; Li, Y.; Akhtar, K.; Zhang, C.; Zhao, T. Seed germination behavior, growth, physiology and antioxidant metabolism of four contrasting cultivars under combined drought and salinity in soybean. Antioxidants 2022, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Amirjani, M. Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am. J. Plant Physiol. 2010, 5, 350–360. [Google Scholar] [CrossRef]
- Lee, G.; Boerma, H.; Villagarcia, M.; Zhou, X.; Carter, T.; Li, Z.; Gibbs, M. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor. Appl. Genet. 2004, 109, 1610–1619. [Google Scholar] [CrossRef]
- Hamwieh, A.; Xu, D. Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans. Breed. Sci 2008, 58, 355–359. [Google Scholar] [CrossRef]
- Guan, R.; Qu, Y.; Guo, Y.; Yu, L.; Liu, Y.; Jiang, J.; Chen, J.; Ren, Y.; Liu, G.; Tian, L. Salinity tolerance in soybean is modulated by natural variation in G m SALT 3. Plant J. 2014, 80, 937–950. [Google Scholar] [CrossRef]
- Do, T.D.; Vuong, T.D.; Dunn, D.; Smothers, S.; Patil, G.; Yungbluth, D.C.; Chen, P.; Scaboo, A.; Xu, D.; Carter, T.E. Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. Theor. Appl. Genet. 2018, 131, 513–524. [Google Scholar] [CrossRef]
- Zhang, W.; Liao, X.; Cui, Y.; Ma, W.; Zhang, X.; Du, H.; Ma, Y.; Ning, L.; Wang, H.; Huang, F. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. PLoS Genet. 2019, 15, e1007798. [Google Scholar] [CrossRef]
- Guo, X.; Jiang, J.; Liu, Y.; Yu, L.; Chang, R.; Guan, R.; Qiu, L. Identification of a novel salt tolerance-related locus in wild soybean (Glycine soja Sieb. & Zucc.). Front. Plant Sci. 2021, 12, 791175. [Google Scholar] [CrossRef]
- Cho, K.-H.; Kim, M.Y.; Kwon, H.; Yang, X.; Lee, S.-H. Novel QTL identification and candidate gene analysis for enhancing salt tolerance in soybean (Glycine max (L.) Merr.). Plant Sci. 2021, 313, 111085. [Google Scholar] [CrossRef]
- Zeng, A.; Chen, P.; Korth, K.; Hancock, F.; Pereira, A.; Brye, K.; Wu, C.; Shi, A. Genome-wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Mol. Breed. 2017, 37, 30. [Google Scholar] [CrossRef]
- Do, T.D.; Vuong, T.D.; Dunn, D.; Clubb, M.; Valliyodan, B.; Patil, G.; Chen, P.; Xu, D.; Nguyen, H.T.; Shannon, J.G. Identification of new loci for salt tolerance in soybean by high-resolution genome-wide association mapping. BMC Genom. 2019, 20, 318. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, M.; Zhang, H.; Liu, X.; Zhang, W.; Wang, Q.; Jia, Q.; Xu, D.; Chen, H.; Su, C. A genome-wide association analysis for salt tolerance during the soybean germination stage and development of KASP markers. Front. Plant Sci. 2024, 15, 1352465. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yue, X.-L.; Feng, J.-Y.; Gong, X.; Zhang, W.-J.; Zuo, J.-F.; Zhang, Y.-M. Identification of QTNs, QTN-by-environment interactions, and their candidate genes for salt tolerance related traits in soybean. BMC Plant Biol. 2024, 24, 316. [Google Scholar] [CrossRef]
- Sun, M.; Li, N.; Yu, K.; Zhan, Y.; Yuan, M.; Teng, W.; Li, W.; Zhao, X.; Xiao, J.; Han, Y. QTL mapping of lodging tolerance in soybean. Crop Pasture Sci. 2021, 72, 426–433. [Google Scholar] [CrossRef]
- Sun, X.; Liu, D.; Zhang, X.; Li, W.; Liu, H.; Hong, W.; Jiang, C.; Guan, N.; Ma, C.; Zeng, H. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 2013, 8, e58700. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Wen, X.; Falush, D. Documentation for Structure Software: Version 2.3; University of Chicago: Chicago, IL, USA, 2002. [Google Scholar]
- Huang, L.; Zeng, A.; Chen, P.; Wu, C.; Wang, D.; Wen, Z. Genomewide association analysis of salt tolerance in soybean [Glycine max (L.) Merr.]. Plant Breed. 2018, 137, 714–720. [Google Scholar] [CrossRef]
- Han, K.; Jeong, H.-J.; Yang, H.-B.; Kang, S.-M.; Kwon, J.-K.; Kim, S.; Choi, D.; Kang, B.-C. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Res. 2016, 23, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Shi, X.; Yan, L.; Yang, C.; Yan, W.; Moseley, D.O.; Wang, T.; Liu, B.; Di, R.; Chen, P.; Zhang, M. Identification of a major quantitative trait locus underlying salt tolerance in ‘Jidou 12′ soybean cultivar. BMC Res. Notes 2018, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.; Nisa, W.U.; Das, A.K.; Nisa, V.U.; Thapa, S.; Garg, T.; Sandhu, S.K.; Vikal, Y. Statistical and Quantitative Genetics Studies. In Genomics Data Analysis for Crop Improvement; Springer: Berlin/Heidelberg, Germany, 2024; pp. 95–123. [Google Scholar] [CrossRef]
- Boopathi, N.M.; Boopathi, N.M. QTL analysis. In Genetic Mapping and Marker Assisted Selection: Basics, Practice and Benefits; Springer: Berlin/Heidelberg, Germany, 2020; pp. 253–326. [Google Scholar] [CrossRef]
- Hamwieh, A.; Tuyen, D.D.; Cong, H.; Benitez, E.R.; Takahashi, R.; Xu, D. Identification and validation of a major QTL for salt tolerance in soybean. Euphytica 2011, 179, 451–459. [Google Scholar] [CrossRef]
- Zeng, A.; Lara, L.; Chen, P.; Luan, X.; Hancock, F.; Korth, K.; Brye, K.; Pereira, A.; Wu, C. Quantitative trait loci for chloride tolerance in ‘Osage’soybean. Crop Sci. 2017, 57, 2345–2353. [Google Scholar] [CrossRef]
- Nie, W.-x.; Xu, L.; Yu, B.-j. A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant. Protoplasma 2015, 252, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.-Z.; Wang, H.-W.; Huang, J.; Tian, A.-G.; Wang, Y.-J.; Zhang, J.-S.; Chen, S.-Y. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol. Biol. 2005, 59, 809–820. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X.; Gu, H.; Wu, B.; Zhang, H.; Yuan, X.; Cui, X. GmHKT1; 4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants. Plant Growth Regul. 2014, 73, 299–308. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, M.; Li, L.; Xu, Z.; Chen, X.; Guo, J.; Ma, Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot. 2009, 60, 3781–3796. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zou, H.-F.; Wei, W.; Hao, Y.-J.; Tian, A.-G.; Huang, J.; Liu, Y.-F.; Zhang, J.-S.; Chen, S.-Y. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 2008, 228, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zou, H.-F.; Wang, H.-W.; Zhang, W.-K.; Ma, B.; Zhang, J.-S.; Chen, S.-Y. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res. 2008, 18, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, G.L.; Marques, C.S.; Costa, M.D.; Reis, P.A.; Alves, M.S.; Carvalho, C.M.; Fietto, L.G.; Fontes, E.P. Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 2009, 444, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; An, J.; Liu, Z.; Yu, B.; Chen, J. Salt stress induced soybean GmIFS1 expression and isoflavone accumulation and salt tolerance in transgenic soybean cotyledon hairy roots and tobacco. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 128, 469–477. [Google Scholar] [CrossRef]
- Yan, J.; Wang, B.; Jiang, Y.; Cheng, L.; Wu, T. GmFNSII-controlled soybean flavone metabolism responds to abiotic stresses and regulates plant salt tolerance. Plant Cell Physiol. 2014, 55, 74–86. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Xu, Z.-S.; He, G.-Y.; Yang, G.-X.; Chen, M.; Li, L.-C.; Ma, Y.-Z. Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis. Biochem. Biophys. Res. Commun. 2012, 427, 731–736. [Google Scholar] [CrossRef]
- Rao, S.S.; El-Habbak, M.H.; Havens, W.M.; Singh, A.; Zheng, D.; Vaughn, L.; Haudenshield, J.S.; Hartman, G.L.; Korban, S.S.; Ghabrial, S.A. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol. Plant Pathol. 2014, 15, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-S.; Chen, Q.-S.; Xin, D.-W.; Qi, Z.-M.; Zhang, C.; Li, S.-N.; Jin, Y.-M.; Mo, L.; Mei, H.-Y.; Su, A.-Y. Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots. J. Integr. Agric. 2018, 17, 1959–1971. [Google Scholar] [CrossRef]
- Qiu, Y.-W.; Zhe, F.; Fu, M.-M.; Yuan, X.-H.; Luo, C.-C.; Yu, Y.-B.; Feng, Y.-Z.; Qi, W.; Li, F.-L. GsMAPK4, a positive regulator of soybean tolerance to salinity stress. J. Integr. Agric. 2019, 18, 372–380. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Kumar, M.; Xu, L.; Wan, Q.; Huang, Y.-H.; Xu, Z.-L.; He, X.-L.; Ma, J.-B.; Pandey, G.K.; Shao, H.-B. Genome-wide identification of major intrinsic proteins in Glycine soja and characterization of GmTIP2; 1 function under salt and water stress. Sci. Rep. 2017, 7, 4106. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Mao, T.; Sun, S.; Guo, X.; Guo, L.; Huang, L.; Wang, Z.; Zhang, Y.; Li, M.; Sheng, Y. Constitutive expression of GmF6′ H1 from soybean improves salt tolerance in transgenic Arabidopsis. Plant Physiol. Bioch. 2019, 141, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.-J.; Tao, J.-J.; Cheng, T.; Bian, X.-H.; Wei, W.; Zhang, W.-K.; Ma, B.; Chen, S.-Y.; Zhang, J.-S. Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol. Plant 2016, 9, 1337–1340. [Google Scholar] [CrossRef]
- Nair, R.J.; Pandey, M.K. Role of Molecular Markers in Crop Breeding: A Review. Agric. Rev. 2024, 45, 52. [Google Scholar] [CrossRef]
CC | PH | RL | AGFB | BGFB | AGDB | BGDB | Mean | |
---|---|---|---|---|---|---|---|---|
CC | 1 | |||||||
PH | −0.09 | 1 | ||||||
RL | −0.05 | 0.31 ** | 1 | |||||
AGFB | −0.07 | 0.26 ** | 0.0265 | 1 | ||||
BGFB | −0.03 | 0.31 ** | 0.32 ** | 0.38 ** | 1 | |||
AGDB | 0.013 | 0.23 ** | 0.19 * | 0.49 ** | 0.37 ** | 1 | ||
BGDB | −0.14 | 0.23 * | 0.28 ** | 0.30 ** | 0.68 ** | 0.2 * | 1 | |
Mean | 0.21 * | 0.32 ** | 0.23 * | 0.35 ** | 0.23 * | 0.21 * | 0.35 ** | 1 |
Trait Name | Chromosome | Genetic Position (cM) | Range (cM) A | Interval (bp) B | LOD | PVE (%) C | QTL Name |
---|---|---|---|---|---|---|---|
CC | 2 | 22 | 20.5–23.5 | 43637691–43932528 | 2.69 | 13.95 | qZJS-2-1 |
PH | 13 | 45 | 44.5–46.5 | 33207771–33517956 | 2.52 | 11.78 | qZJS-13-1 |
RL | 16 | 28 | 26.5–28.5 | 5342596–5565208 | 2.58 | 12.31 | qZJS-16-1 |
AGFB | 1 | 43 | 42.5–43.5 | 43519723–43535518 | 2.52 | 12.23 | qZJS-1-1 |
BGFB | 15 | 129 | 128.5–129.5 | 47731881–48413184 | 2.62 | 14 | qZJS-15-1 |
AGDB | 10 | 37 | 36.5–37.5 | 37207079–37242844 | 3.04 | 16.16 | qZJS-10-1 |
BGDB | 13 | 98 | 95.5–99.5 | 15309561–15581977 | 2.9 | 11.43 | qZJS-13-2 |
Mean | 2 | 22 | 20.5–23.5 | 43637691–43932528 | 6.69 | 13.95 | qZJS-2-1 |
2 | 74 | 73.5–74.5 | 10143604–10143635 | 3.68 | 6.9 | qZJS-2-2 | |
15 | 94 | 92.5–97.5 | 47731881–48413184 | 5.48 | 11.41 | qZJS-15-1 |
Stage | Name | Chromosome | Trait | Population | PVE (%) A |
---|---|---|---|---|---|
Seedling stage | rs43642631, qZJS-2-1 | 2 | CC | Natural population, RIL population | 5.98, 13.95 |
rs47665107, rs47934112, qZJS-15-1 | 15 | Mean | Natural population, RIL population | 17.16, 12.08, 11.41 |
Stage | Gene | Chromosome | Gene Function |
---|---|---|---|
Seedling stage | Glyma.02g249300 | 2 | Glycerol-3-phosphate acyltransferase 5 |
Glyma.02g249600 | 2 | Rubisco activase | |
Glyma.02g250200 | 2 | Protein phosphatase 2CA | |
Glyma.15G250100 | 15 | nine-cis-epoxycarotenoid dioxygenase 3 | |
Glyma.15G250200 | 15 | receptor-like protein kinase 1 | |
Glyma.15G251300 | 15 | Nicotianamine synthase 1 | |
Glyma.15G252600 | 15 | Leucine-rich receptor-like protein kinase family protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Zhao, T.; Liu, S.; Han, J.; Wang, Y.; Zhao, X.; Li, Y.; Teng, W.; Zhan, Y.; Han, Y. QTL Detection of Salt Tolerance at Soybean Seedling Stage Based on Genome-Wide Association Analysis and Linkage Analysis. Plants 2024, 13, 2283. https://doi.org/10.3390/plants13162283
Sun M, Zhao T, Liu S, Han J, Wang Y, Zhao X, Li Y, Teng W, Zhan Y, Han Y. QTL Detection of Salt Tolerance at Soybean Seedling Stage Based on Genome-Wide Association Analysis and Linkage Analysis. Plants. 2024; 13(16):2283. https://doi.org/10.3390/plants13162283
Chicago/Turabian StyleSun, Maolin, Tianxin Zhao, Shuang Liu, Jinfeng Han, Yuhe Wang, Xue Zhao, Yongguang Li, Weili Teng, Yuhang Zhan, and Yingpeng Han. 2024. "QTL Detection of Salt Tolerance at Soybean Seedling Stage Based on Genome-Wide Association Analysis and Linkage Analysis" Plants 13, no. 16: 2283. https://doi.org/10.3390/plants13162283
APA StyleSun, M., Zhao, T., Liu, S., Han, J., Wang, Y., Zhao, X., Li, Y., Teng, W., Zhan, Y., & Han, Y. (2024). QTL Detection of Salt Tolerance at Soybean Seedling Stage Based on Genome-Wide Association Analysis and Linkage Analysis. Plants, 13(16), 2283. https://doi.org/10.3390/plants13162283