Planting Geometry May Be Used to Optimize Plant Density and Yields without Changing Yield Potential per Plant in Sweet Corn
Abstract
:1. Introduction
2. Results
2.1. Days to Tasseling, Days to Silking, and Days to Tasseling Silking Interval
2.2. Plant Height and First Ear Height
2.3. Plant Density, Leaf Area Index, and Stem Diameter
2.4. SPAD Chlorophyll Value and Maximum Quantum Efficiency of PSII (Fv/Fm)
2.5. Ear Number per Plant, Ear Yield, Marketable Ear Number, and Marketable Ear Yield
2.6. Kernel Number per Ear and Fresh Kernel Yield
2.7. Correlations Coefficients Result among Traits
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sangoi, L. Understanding plant density effects on maize growth and development: An important issue to maximize grain yield. Ciência Rural 2001, 31, 159–168. [Google Scholar] [CrossRef]
- Sher, A.; Khan, A.; Cai, L.J.; Ahmad, M.I.; Asharf, U.; Jamoro, S.A. Response of maize grown under high plant density; performance, issues and management-a critical review. Adv. Crop Sci. Technol 2017, 5, 1–8. [Google Scholar] [CrossRef]
- Arslan, Z.; Williams, M. Türkiye ve dünya tatlı mısır üretiminde sorunlar. Türktarım Derg. 2015, 224, 64–68. [Google Scholar]
- Bharathi, A.; Balusamy, M.; Somasundaram, E.; Shanmugasundaram, R. INM on sweet corn kernel quality of sweet corn. J. Pharmacogn. Phytochem. 2020, 9, 01–04. [Google Scholar]
- Li, R.; Zhang, G.; Liu, G.; Wang, K.; Xie, R.; Hou, P.; Ming, B.; Wang, Z.; Li, S. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food Energy Secur. 2021, 10, e312. [Google Scholar] [CrossRef]
- FAOSTAT. World Food and Agriculture—Statistical Yearbook 2022; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- TUIK. Crop Production Statistics; Turkish Statistical Institute: Ankara, Turkey, 2022.
- Zhai, J.; Zhang, Y.; Zhang, G.; Xu, W.; Xie, R.; Ming, B.; Hou, P.; Wang, K.; Xue, J.; Li, S. Nitrogen application and dense planting to obtain high yields from maize. Agronomy 2022, 12, 1308. [Google Scholar] [CrossRef]
- Rossini, M.; Maddonni, G.A.; Otegui, M.E. Inter-plant competition for resources in maize crops grown under contrasting nitrogen supply and density: Variability in plant and ear growth. Field Crops Res. 2011, 121, 373–380. [Google Scholar] [CrossRef]
- Du, X.; Wang, Z.; Lei, W.; Kong, L. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Sci. Rep. 2021, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xie, R.; Wang, K.; Hou, P.; Ming, B.; Zhang, G.; Liu, G.; Wu, M.; Yang, Z.; Li, S. Response of canopy structure, light interception and grain yield to plant density in maize. J. Agric. Sci. 2018, 156, 785–794. [Google Scholar] [CrossRef]
- Zhang, G.; Ming, B.; Shen, D.; Xie, R.; Hou, P.; Xue, J.; Wang, K.; Li, S. Optimizing grain yield and water use efficiency based on the relationship between leaf area index and evapotranspiration. Agriculture 2021, 11, 313. [Google Scholar] [CrossRef]
- Zhang, G.; Shen, D.; Xie, R.; Ming, B.; Hou, P.; Xue, J.; Li, R.; Chen, J.; Wang, K.; Li, S. Optimizing planting density to improve nitrogen use of super high-yield maize. Agron. J. 2020, 112, 4147–4158. [Google Scholar] [CrossRef]
- Li, J.; Xie, R.; Wang, K.; Ming, B.; Guo, Y.; Zhang, G.; Li, S. Variations in maize dry matter, harvest index, and grain yield with plant density. Agron. J. 2015, 107, 829–834. [Google Scholar] [CrossRef]
- Bernhard, B.J.; Below, F.E. Plant population and row spacing effects on corn: Plant growth, phenology, and grain yield. Agron. J. 2020, 112, 2456–2465. [Google Scholar] [CrossRef]
- Winans, E.T.; Beyrer, T.A.; Below, F.E. Managing density stress to close the maize yield gap. Front. Plant Sci. 2021, 12, 2477. [Google Scholar] [CrossRef]
- Devi, A.S.; Darvhankar, B.N.M.S. Effect of varieties and spacing of maize on yield: A review. Pharma Innov. J. 2021, 10, 812–815. [Google Scholar]
- Enujeke, E. Effects of variety and spacing on yield indices of open-pollinated Maize in Asaba area of Delta State. Sustain. Agric. Res. 2013, 2, 1–12. [Google Scholar] [CrossRef]
- Valentinuz, O.R.; Tollenaar, M. Effect of genotype, nitrogen, plant density, and row spacing on the area-per-leaf profile in maize. Agron. J. 2006, 98, 94–99. [Google Scholar] [CrossRef]
- Ming, B.; Xie, R.; Hou, P.; Li, L.; Wang, K.; Li, S. Changes of maize planting density in China. Sci. Agric. Sin. 2017, 50, 1960–1972. [Google Scholar]
- Burton, A.B.; Kemanian, A.R. Maize yield in response to alternating low-and high-density rows of diverse hybrids. Eur. J. Agron. 2022, 135, 126472. [Google Scholar] [CrossRef]
- Nivetha, T.; Srinivasan, G.; Shanthi, M.; Gurusamy, A.; Vellaikumar, S. Impact of different crop geometry in maize on fall armyworm, Spodoptera frugiperda infestation. Indian J. Ecol. 2022, 49, 822–825. [Google Scholar]
- Getaneh, L.; Belete, K.; Tana, T. Growth and Productivity of Maize (Zea mays L.) as Influenced by Inter and Intra-Row Spacing in Kombolcha, Eastern Ethiopia. J. Biol. 2016, 12, 90–101. [Google Scholar]
- Sharratt, B.S.; McWilliams, D.A. Microclimatic and rooting characteristics of narrow-row versus conventional-row corn. Agron. J. 2005, 97, 1129–1135. [Google Scholar] [CrossRef]
- Widdicombe, W.D.; Thelen, K.D. Row width and plant density effects on corn grain production in the northern Corn Belt. Agron. J. 2002, 94, 1020–1023. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, S.; Li, M.; Zhang, Q.; Zong, R.; Li, Q. Response of Water Radiation Utilization of Summer Maize to Planting Density and Genotypes in the North China Plain. Agronomy 2022, 13, 68. [Google Scholar] [CrossRef]
- Alam, M.J.; Uddin, M.A.; Nahar, M.K.; Ali, M.Y.; Ahmed, K.S. Enhancement of maize productivity through using improved techniques of spacing. J. Exp. Biosci. 2020, 11, 27–34. [Google Scholar]
- Dangariya, M.; Dudhat, M.; Bavalgave, V.; Thanki, J. Growth, yield and quality of Rabi sweet corn as influenced by different spacing and fertilizer levels. Int. J. Agric. Sci. 2017, 13, 38–42. [Google Scholar] [CrossRef]
- Mathukia, R.; Choudhary, R.; Shivran, A.; Bhosale, N. Response of rabi sweet corn to plant geometry and fertilizer. J. Crop Weed 2014, 10, 189–192. [Google Scholar]
- Andrade, F.H.; Calvino, P.; Cirilo, A.; Barbieri, P. Yield responses to narrow rows depend on increased radiation interception. Agron. J. 2002, 94, 975–980. [Google Scholar] [CrossRef]
- Maddonni, G.Á.; Martínez-Bercovich, J. Row spacing, landscape position, and maize grain yield. Int. J. Agron. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Bhatt, P.S. Response of sweet corn hybrid to varying plant densities and nitrogen levels. Afr. J. Agric. Res. 2012, 7, 6158–6166. [Google Scholar]
- Temesgen, T.; Kebena, T. Effects of Varieties and Intra Row Spacing on Yield of Maize (Zea mays L.) under Supplementary Irrigation at Guliso, Western Ethiopia. Int. J. Environ. Sci. Nat. Resour. 2019, 19, 144–151. [Google Scholar] [CrossRef]
- Biswas, M.M.I.; Ullah, M.J.; Mannan, M.A.; Tasnim, M.; Mamun, M.A.; Begum, H. Influence of Planting Geometry on Growth, Phenology, and Yield of White Maize in Padma-Washed Lands. Int. J. Environ. Clim. Chang 2024, 14, 914–927. [Google Scholar] [CrossRef]
- Stansluos, A.A.L.; Öztürk, A.; Kodaz, S. Agronomic performance of different sweet corn cultivars in the highest plain of Turkey: Plant growth and yields. IOSR J. Agric. Vet. Sci. 2020, 13, 13–22. [Google Scholar]
- Porte, C.; Jha, S.; Dwivedi, S.; Jaiswal, P. Effect of different nitrogen levels and planting geometry on growth parameters and seed yield of African tall fodder maize (Zea mays L.). Pharma Innov. J. 2023, 12, 3570–3574. [Google Scholar]
- Thakur, S.; Jha, S.; Dhurwe, R.; Shesh, J.; Kumar, H.; Singh, R. Effect of Crop Geometry and Nitrogen Levels on Growth of Baby Corn (Zea mays L.). Int. J. Res. Agron. 2020, 3, 55–57. [Google Scholar] [CrossRef]
- Maresma, A.; Ballesta, A.; Santiveri, F.; Lloveras, J. Sowing date affects maize development and yield in irrigated mediterranean environments. Agriculture 2019, 9, 67. [Google Scholar] [CrossRef]
- Ordas, B.; Revilla, P.; Ordas, A.; Malvar, R.A. Hybrids sugary× sugary enhancer of sweet corn: A valuable option for cool environments. Sci. Hortic. 2008, 118, 111–114. [Google Scholar] [CrossRef]
- Walia, S.S.; Kumar, N.; Kaur, K.; Sharma, M. Effect of crop geometry and nitrogen management on growth parameters, yield and quality parameters of baby corn (Zea mays L.). J. Krishi Vigyan 2023, 11, 45–50. [Google Scholar] [CrossRef]
- Khan, Z.; Khalil, S.; Nigar, S.; Khalil, I.; Haq, I.; Ahmad, I.; Ali, A.; Khan, M. Phenology and yield of sweet corn landraces influenced by planting dates. Sarhad J. Agric 2009, 25, 153–157. [Google Scholar]
- Sönmez, K.; Özlem, A.; Kinaci, E.; Kinaci, G.; Kutlu, İ.; Başçİftçİ, Z.B.; Evrenosoğlu, Y. Bazı şeker mısır çeşitlerinin (Zea mays saccharata Sturt) bitki, koçan ve verim özellikleri. Ziraat Fakültesi Derg. 2013, 8, 28–40. [Google Scholar]
- Shahen, S.; Zahir, S.; Khalail, S.K.; Amanullah, J.; Jan, M.T.; Afzal, M.; Akbar, H.; Hamayoon, K.; Nawab, K.; Muhammad, F. Effects of Variable Nitrogen Source and Rate on Leaf Area Index and Total Dry Matter Accumulation in Maize (Zea mays L.) Genotypes under Calcareous So. Turk. J. Field Crops 2014, 19, 276–284. [Google Scholar]
- Nisar, S.; Rashid, Z.; Touseef, A.; Kumar, R.; Nissa, S.U.; Faheem, J.; Angrez, A.; Sabina, N.; Shabeena, M.; Tanveer, A. Productivity of Fodder Maize (Zea mays L.) SFM-1 under Varied Sowing Dates and Nitrogen Levels. Int. J. Bio-Resour. Stress Manag. 2024, 15, 1–12. [Google Scholar] [CrossRef]
- Liu, G.; Hou, P.; Xie, R.; Ming, B.; Wang, K.; Liu, W.; Yang, Y.; Xu, W.; Chen, J.; Li, S. Nitrogen uptake and response to radiation distribution in the canopy of high-yield maize. Crop Sci. 2019, 59, 1236–1247. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Zhang, Y.; Heskel, M.A.; Lu, X.; Munger, J.W.; Sun, S.; Tang, J. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest. Glob. Change Biol. 2017, 23, 2874–2886. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi-Golezani, K.; Heydari, S.; Dalil, B. Field performance of maize (Zea mays L.) cultivars under drought stress. Acta Agric. Slov. 2018, 111, 25–32. [Google Scholar] [CrossRef]
- Baishya, L.; Kawikhonliu, Z.; Lotha, M.M.; Rajkhowa, D. Performance of maize (Zea mays) varieties in different cropping geometry with greengram (Vigna radiata). Indian J. Agric. Sci. 2022, 92, 1496–1501. [Google Scholar] [CrossRef]
- Bharud, S.; Bharud, R.; Mokate, A. Yield and quality of sweet corn [Zea mays (L.) var. Saccharata] as influenced by planting geometry and fertilizer levels. Int. J. Plant Sci. 2014, 9, 240–243. [Google Scholar]
- Thakur, A.K.; Thakur, D.S.; Patel, R.K.; Pradhan, A.; Kumar, P. Effect of Different Plant Geometry and Nitrogen Levels, Inrelation to Growth Characters, Yield and Economics on Sweet Corn (Zea mays Sachharata L.) At Bastar Plateau Zone. Bioscan 2015, 10, 1223–1226. [Google Scholar]
- Saif, U.; Maqsood, M.; Farooq, M.; Hussain, S.; Habib, A. Effect of planting patterns and different irrigation levels on yield and yield component of maize (Zea mays L.). Int. J. Agric. Biol. 2003, 5, 64–66. [Google Scholar]
- Öktem, A.; gülgün ÖKTEM, A. Bazı şeker mısır (Zea mays saccharata Sturt) genotiplerinin Harran Ovası koşullarında verim karakteristiklerinin belirlenmesi. Uludağ Üniversitesi Ziraat Fakültesi Derg. 2006, 20, 33–46. [Google Scholar]
- Öktem, A.; Öktem, A.G.; Coşkun, Y. Determination of sowing dates of sweet corn (Zea mays L. Saccharata Sturt.) under Şanlıurfa conditions. Turk. J. Agric. For. 2004, 28, 83–91. [Google Scholar]
- Ertek, A.; Kara, B. Yield and quality of sweet corn under deficit irrigation. Agric. Water Manag. 2013, 129, 138–144. [Google Scholar] [CrossRef]
- Dhaliwal, D.S.; Williams, M.M. Optimum plant density for crowding stress tolerant processing sweet corn. PLoS ONE 2019, 14, e0223107. [Google Scholar] [CrossRef]
- Young Kil, K.; Hyeon Gui, M. Effects of Planting Density and Tiller Removal Growth and Yield of Sweet Corn Hybrids. Korean J. Crop Sci. 1989, 34, 192–197. [Google Scholar]
- Moteva, M.; Kostadinov, G.; Spalevic, V.; Georgieva, V.; Tanaskovik, V.; Koleva, N. Sweet corn-conventional tillage vs. no-tillage in humid conditions. Poljopr. I Sumar. 2017, 63, 17. [Google Scholar] [CrossRef]
- Uçak, A.B.; Oktem, A.; Sezer, C.; Cengiz, R.; Inal, B. Determination of arid and temperature resistant sweet corn (Zea mays saccharata Sturt) lines. Int. J. Environ. Agric. Res. (IJOEAR) 2016, 2, 79–88. [Google Scholar]
- Farsiani, A.; Ghobadi, M.E.; Jalali-Honarmand, S. The effect of water deficit and sowing date on yield components and seed sugar contents of sweet corn (Zea mays L.). Afr. J. Agric. Res. 2011, 6, 5769–5774. [Google Scholar]
- Szymanek, M.; Dobrzański jr, B.; Niedziółka, I.; Rybczyński, R. Sweet Corn: Harvest and Technology Physical Properties and Quality; B. Dobrzański Institute of Agrophysics Polish Academy of Aciences: Lublin, Poland, 2005; 227p, Available online: http://www.ipan.lublin.pl/wp-content/uploads/2017/03/mat_coe26.pdf (accessed on 30 August 2024).
- Özerkişi, E. Tekirdağ Koşullarında Farklı Sıra Üzeri Mesafelerin Bazı Şeker Mısırı (Zea mays L. saccharata Sturt.) Çeşitlerinde Taze Koçan Verimi Ve Kalite Özelliklerine Etkisi. Master’s Thesis, Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, Tekirdağ, Türkiye, 2016. [Google Scholar]
- Jafarikouhini, N.; Kazemeini, S.A.; Sinclair, T.R. Fresh sweet corn yield sensitivity to deficit nitrogen and water conditions. J. Crop Improv. 2022, 36, 593–603. [Google Scholar] [CrossRef]
- Sakin, M.A.; Azapoğlu, Ö. Tokat-Kazova koşullarında şeker mısırın (Zea mays saccharata Sturt.) taze koçan ve tane verimi ile bazı verim ve kalite özelliklerine azot ve fosforun etkileri. J. Agric. Fac. Gaziosmanpaşa Univ. (JAFAG) 2017, 34, 46–55. [Google Scholar]
- Tokatlidis, I.; Koutsika-Satiriou, M.; Fasoulas, A. The development of density-independent hybrids in maize. Maydica 2001, 46, 21–26. [Google Scholar]
- Manan, J.; Singh, G.; Sharma, M.; Singh, G. Effect of plant spacing on yield and yield attributes of maize hybrids. J. Krishi Vigyan 2016, 5, 41–45. [Google Scholar] [CrossRef]
- Lal, K.; Kumar, S.; Shrivastav, S.P.; Singh, V.; Kuswaha, C. Character association and causation analysis of certain quantitative traits in maize (Zea may L.). Indian J. Agric. Res. 2022, 1, 5. [Google Scholar] [CrossRef]
- Shahrokhi, M.; Khorasani, S.K.; Ortez, O. Grain yield and its contributing traits in promising sweetcorn hybrids. Agrosystems Geosci. Environ. 2024, 7, e20477. [Google Scholar] [CrossRef]
- ASAE S352. 2 APR1988 (R2008); Moisture Measurement-Unground Grain and Seeds. American Society of Agricultural Engineers: St Joseph, MI, USA, 2008; Volume 1.
- Okumura, R.S.; de Cinque Mariano, D.; Franco, A.A.N.; Zaccheo, P.V.C.; Zorzenoni, T.O. Sweet corn: Genetic aspects, agronomic and nutritional traits. Appl. Res. Agrotechnology 2013, 6, 105–114. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, W.; Fan, H.; Fan, Z.; Hu, F.; Yu, A.; Zhao, C.; Chai, Q.; Aziiba, E.A.; Zhang, X. Photosynthetic physiological characteristics of water and nitrogen coupling for enhanced high-density tolerance and increased yield of maize in arid irrigation regions. Front. Plant Sci. 2021, 12, 726568. [Google Scholar] [CrossRef] [PubMed]
- Team, R. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020. [Google Scholar]
F Values | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sources of Variation | df | DT 1 | DS | DT-DS | PH | FEH | PD | LAI | SD | SPAD | Fv/Fm | ENP | EY | MEN | MEY | KNE | FKY |
Blocks | 2 | ||||||||||||||||
Year (Y) | 1 | 564.09 *** 2 | 92.70 *** | 121.63 *** | 38.47 *** | 61.49 *** | 1.18 | 126.74 *** | 36.78 *** | 0.23 | 1.35 | 0.88 | 74.53 *** | 4.84 * | 152.62 *** | 7.70 ** | 35.88 *** |
Planting geometry (PG) | 7 | 5.31 *** | 2.87** | 5.03 *** | 0.60 | 1.58 | 99.32 *** | 12.10 *** | 1.57 | 1.10 | 7.68 *** | 4.44 *** | 16.61 *** | 22.09 *** | 41.51 *** | 1.85 | 19.26 *** |
Variety (V) | 2 | 147.87 *** | 76.66 *** | 11.85 *** | 27.21 *** | 55.00 *** | 0.37 | 9.80 *** | 7.27 ** | 8.70 *** | 4.34 * | 5.35 ** | 16.84 *** | 6.97 ** | 18.83 *** | 1.36 | 21.88 *** |
Y × PG | 7 | 2.15 * | 1.07 | 1.53 | 1.52 | 1.46 | 1.25 | 1.27 | 1.41 | 1.55 | 4.23 *** | 0.27 | 0.63 | 0.98 | 0.86 | 2.43 * | 2.43 * |
Y × V | 2 | 8.46 *** | 11.43 *** | 1.45 | 6.54 ** | 2.76 | 0.02 | 2.79 | 3.80 * | 0.57 | 4.83 ** | 0.51 | 3.61 * | 0.79 | 0.14 | 3.11 * | 0.68 |
V × PG | 14 | 1.53 | 1.45 | 1.36 | 1.42 | 1.48 | 0.33 | 1.13 | 1.09 | 1.46 | 2.17 * | 1.27 | 2.24 * | 0.37 | 1.64 | 0.90 | 0.49 |
Y × PG × V | 14 | 1.68 | 1.65 | 0.64 | 1.26 | 1.50 | 0.93 | 0.97 | 0.73 | 1.68 | 1.54 | 0.36 | 1.62 | 0.56 | 1.13 | 0.94 | 0.56 |
Error | 96 | ||||||||||||||||
Coefficient of variation (%) | 1.47 | 1.40 | 14.19 | 3.92 | 7.40 | 3.76 | 12.54 | 6.58 | 3.96 | 2.82 | 9.80 | 11.94 | 10.70 | 9.23 | 4.40 | 17.05 |
Treatments | DT 1 (day) | DS (day) | DT-DS (day) | PH (cm) | FEH (cm) | PD (plant ha−1) | LAI | SD (mm) | SPAD (Unit) | Fv/Fm | ENP | EY (kg ha−1) | MEN (ha) | MEY (kg ha−1) | KNE | FKY (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year (Y) | ||||||||||||||||
2022 | 67.7 a 2 | 74.9 a | 7.2 b | 194.9 b | 53.8 b | 107,165 | 3.09 b | 17.7 b | 54.8 | 0.775 | 1.10 | 25,289 a | 93,061 a | 22,834 a | 656.3 b | 16,574 a |
2023 | 63.8 b | 73.2 b | 9.4 a | 203.0 a | 59.2 a | 10,6438 | 3.92 a | 18.9 a | 54.6 | 0.779 | 1.08 | 21,287 b | 89,481 b | 18,871 b | 669.8 a | 13,975 b |
Mean | 65.8 | 74.1 | 8.3 | 199.0 | 56.5 | 106,801 | 3.50 | 18.3 | 54.7 | 0.777 | 1.09 | 23,288 | 91,271 | 20,853 | 663.1 | 15,274 |
Planting geometry (PG) | ||||||||||||||||
35 × 23 cm | 64.9 d | 74.0 abc | 9.1 a | 198.5 | 56.4 | 120,444 a | 4.15 a | 17.8 | 55.8 | 0.788 ab | 1.14 ab | 26,472 a | 103,418 a | 23,442 b | 659.3 | 17,685 b |
40 × 21 cm | 65.6 bc | 73.4 c | 7.8 bc | 197.6 | 57.1 | 116,649 b | 3.79 b | 17.9 | 55.4 | 0.788 ab | 1.08 bcd | 26,495 a | 107,456 a | 24,887 a | 659.1 | 19,493 a |
45 × 19 cm | 65.2 cd | 73.9 abc | 8.7 a | 196.4 | 56.5 | 113,330 c | 3.67 bc | 18.2 | 54.9 | 0.785 ab | 1.07 bcd | 25,626 a | 95,138 b | 23,336 b | 649.0 | 16,292 b |
50 × 18 cm | 65.8 bc | 74.7 a | 8.9 a | 200.3 | 57.8 | 106,773 d | 3.47 cd | 18.3 | 55.2 | 0.791 a | 1.18 a | 23,682 b | 93,645 b | 22,032 c | 668.7 | 16,393 b |
55 × 17 cm | 66.6 a | 74.1 abc | 7.5 c | 200.1 | 56.7 | 103,632 e | 3.42 cd | 18.4 | 54.8 | 0.790 ab | 1.04 cd | 22,096 bc | 88,350 bc | 18,816 d | 673.9 | 14,521 c |
60 × 16 cm | 66.2 ab | 73.7 bc | 7.6 c | 200.3 | 54.6 | 101,538 ef | 3.26 de | 18.7 | 54.2 | 0.774 b | 1.11 abc | 21,567 cd | 85,542 cd | 19,259 d | 673.1 | 13,799 cd |
65 × 15 cm | 66.0 ab | 74.3 ab | 8.3 abc | 199.8 | 58.0 | 99,739 f | 3.24 de | 18.5 | 54.3 | 0.758 c | 1.06 cd | 20,545 cd | 80,714 de | 17,958 de | 668.7 | 12,625 de |
70 × 15 cm | 65.8 bc | 74.4 ab | 8.6 ab | 198.8 | 54.9 | 92,307 g | 3.01 e | 18.8 | 54.8 | 0.754 c | 1.02 d | 19,815 d | 75,903 e | 17,087 e | 652.9 | 11,387 e |
Variety (V) | ||||||||||||||||
Argos F1 | 64.4 c | 73.4 b | 9.0 a | 196.9 b | 56.3 b | 106,416 | 3.48 b | 18.4 a | 55.1 a | 0.773 b | 1.05 b | 21,912 b | 88,745 b | 19,841 b | 662.2 | 14,307 b |
Challenger F1 | 65.2 b | 73.3 b | 8.0 b | 194.4 b | 52.2 c | 106,875 | 3.32 b | 17.9 b | 53.6 b | 0.774 b | 1.09 ab | 22,839 b | 89,523 b | 20,531 b | 658.7 | 14,213 b |
Khan F1 | 67.7 a | 75.6 a | 7.9 b | 205.6 a | 61.1 a | 107,114 | 3.71 a | 18.8 a | 55.3 a | 0.785 a | 1.12 a | 25,114 a | 95,545 a | 22,186 a | 668.4 | 17,304 a |
Interaction (V × PG) | ||||||||||||||||
Argos F1 (35 × 23 cm) | 63.3 | 73.2 | 9.8 | 192.9 | 58.5 | 120,789 | 3.92 | 17.5 | 53.2 | 0.780 a–e | 1.12 | 25,932 bc | 98,168 | 22,076 | 663.0 | 16,669 |
Argos F1 (40 × 21 cm) | 64.2 | 73.0 | 8.8 | 191.7 | 53.6 | 115,489 | 3.77 | 17.8 | 56.7 | 0.765 b–g | 1.03 | 23,171 c–g | 105,569 | 22,960 | 652.2 | 18,057 |
Argos F1 (45 × 19 cm) | 63.7 | 73.0 | 9.3 | 197.0 | 57.4 | 113,983 | 3.73 | 18.3 | 55.4 | 0.783 a–d | 1.00 | 24,112 cde | 93,415 | 23,039 | 648.0 | 15,349 |
Argos F1 (50 × 18 cm) | 64.5 | 74.0 | 9.5 | 200.0 | 56.9 | 105,710 | 3.51 | 18.7 | 55.3 | 0.789 ab | 1.18 | 21,531 d–h | 95,278 | 20,743 | 672.1 | 16,412 |
Argos F1 (55 × 17 cm) | 65.0 | 73.2 | 8.2 | 194.4 | 54.3 | 102,920 | 3.12 | 18.4 | 54.1 | 0.777 a–f | 1.00 | 20,036 fgh | 86,298 | 18,717 | 662.5 | 14,343 |
Argos F1 (60 × 16 cm) | 65.3 | 73.3 | 8.0 | 198.3 | 54.2 | 101,236 | 3.41 | 18.2 | 54.3 | 0.790 ab | 1.07 | 21,484 d–h | 81,041 | 17,563 | 666.2 | 11,878 |
Argos F1 (65 × 15 cm) | 64.2 | 72.8 | 8.7 | 202.2 | 59.9 | 99,610 | 3.19 | 18.5 | 55.8 | 0.749 fg | 1.00 | 20,152 fgh | 77,211 | 17,363 | 676.4 | 11,781 |
Argos F1 (70 × 15 cm) | 65.0 | 74.5 | 9.5 | 198.5 | 55.3 | 91,589 | 3.17 | 19.7 | 56.0 | 0.752 efg | 1.00 | 18,875 h | 72,979 | 16,264 | 657.1 | 9965 |
Challenger F1 (35 × 23 cm) | 64.3 | 73.2 | 8.8 | 194.1 | 49.9 | 118,473 | 3.90 | 17.1 | 53.5 | 0.790 ab | 1.17 | 27,807 ab | 105,335 | 24,743 | 652.3 | 17,174 |
Challenger F1 (40 × 21 cm) | 65.3 | 72.3 | 7.0 | 195.8 | 56.2 | 117,063 | 3.57 | 17.7 | 54.7 | 0.777 a–f | 1.13 | 26,526 abc | 104,325 | 25,281 | 653.0 | 17,991 |
Challenger F1 (45 × 19 cm) | 65.5 | 72.8 | 7.3 | 186.9 | 50.3 | 113,415 | 3.30 | 18.0 | 53.0 | 0.772 a–f | 1.10 | 23,635 c–f | 91,285 | 21,918 | 627.4 | 14,767 |
Challenger F1 (50 × 18 cm) | 64.8 | 73.8 | 9.0 | 196.9 | 54.5 | 107,613 | 3.28 | 17.8 | 53.1 | 0.800 a | 1.20 | 21538 d–h | 91,790 | 21,003 | 657.7 | 15,426 |
Challenger F1 (55 × 17 cm) | 66.3 | 73.8 | 7.5 | 198.8 | 53.1 | 103,874 | 3.34 | 18.5 | 55.0 | 0.798 a | 1.00 | 22,004 d–h | 85,576 | 17,085 | 677.9 | 13,618 |
Challenger F1 (60 × 16 cm) | 65.0 | 72.5 | 7.5 | 199.7 | 51.7 | 102,023 | 3.15 | 18.3 | 53.8 | 0.741 g | 1.13 | 21,331 d–h | 85,542 | 19,895 | 687.8 | 13,072 |
Challenger F1 (65 × 15 cm) | 65.7 | 74.0 | 8.3 | 190.3 | 51.7 | 100,301 | 3.25 | 18.1 | 52.1 | 0.759 c–g | 1.00 | 19,665 gh | 77,692 | 17,359 | 666.8 | 11,273 |
Challenger F1 (70 × 15 cm) | 64.8 | 73.5 | 8.7 | 193.1 | 49.9 | 92,235 | 2.76 | 17.4 | 53.8 | 0.756 c–g | 1.00 | 20,207 fgh | 74,636 | 16,961 | 646.6 | 10,382 |
Khan F1 (35 × 23 cm) | 67.0 | 75.7 | 8.7 | 208.6 | 61.0 | 122,072 | 4.64 | 18.7 | 54.8 | 0.794 ab | 1.15 | 25,678 bc | 106,751 | 23,508 | 662.5 | 19,212 |
Khan F1 (40 × 21 cm) | 67.3 | 74.8 | 7.5 | 205.5 | 61.4 | 117,394 | 4.03 | 18.4 | 54.7 | 0.793 ab | 1.07 | 29,788 a | 112,474 | 26,420 | 672.2 | 22,432 |
Khan F1 (45 × 19 cm) | 66.5 | 76.0 | 9.5 | 205.3 | 61.7 | 112,592 | 3.99 | 18.3 | 56.4 | 0.800 a | 1.12 | 29,131 ab | 100,715 | 25,052 | 671.6 | 18,759 |
Khan F1 (50 × 18 cm) | 68.2 | 76.3 | 8.2 | 204.1 | 62.0 | 106,996 | 3.63 | 18.5 | 57.2 | 0.784 abc | 1.15 | 27,977 ab | 93,868 | 24,351 | 676.4 | 17,341 |
Khan F1 (55 × 17 cm) | 68.3 | 75.2 | 6.8 | 207.0 | 62.9 | 104,103 | 3.79 | 18.3 | 55.2 | 0.795 ab | 1.13 | 24,248 cd | 93,176 | 20,647 | 681.2 | 15,602 |
Khan F1 (60 × 16 cm) | 68.2 | 75.3 | 7.2 | 203.0 | 57.8 | 101,355 | 3.23 | 19.7 | 54.4 | 0.793 ab | 1.12 | 21,894 d–h | 90,043 | 20,319 | 665.2 | 16,446 |
Khan F1 (65 × 15 cm) | 68.2 | 76.2 | 8.0 | 206.8 | 62.5 | 99,305 | 3.29 | 19.1 | 55.1 | 0.765 b–g | 1.18 | 21,832 d–h | 87,238 | 19,153 | 663.0 | 14,822 |
Khan F1 (70 × 15 cm) | 67.7 | 75.2 | 7.5 | 204.9 | 59.5 | 93,098 | 3.12 | 19.3 | 54.8 | 0.754 d–g | 1.05 | 20,363 e–h | 80,095 | 18,037 | 655.0 | 13,816 |
PD 1 | LAI | ENP | EY | MEN | MEY | KNE | FKY | |
---|---|---|---|---|---|---|---|---|
PD | 1 | |||||||
LAI | 0.832 ** 2 | 1 | ||||||
ENP | 0.380 | 0.373 | 1 | |||||
EY | 0.784 ** | 0.775 ** | 0.435 * | 1 | ||||
MEN | 0.904 ** | 0.828 ** | 0.498 * | 0.845 ** | 1 | |||
MEY | 0.853 ** | 0.748 ** | 0.501 * | 0.920 ** | 0.929 ** | 1 | ||
KNE | −0.166 | 0.102 | 0.137 | 0.049 | −0.038 | −0.095 | 1 | |
FKY | 0.801 ** | 0.782 ** | 0.496 * | 0.847 ** | 0.957 ** | 0.910 ** | 0.055 | 1 |
Total Precipitation (mm) | Average Temperature (°C) | Average Relative Humidity (%) | Minimum Temperature (°C) | Maximum Temperature (°C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | 2022 | 2023 | LTA | 2022 | 2023 | LTA | 2022 | 2023 | LTA | 2022 | 2023 | 2022 | 2023 |
May | 89.3 | 97.0 | 68.4 | 9.1 | 10.4 | 11.0 | 67.3 | 64.3 | 64.6 | 2.1 | −4.1 | 15.9 | 22.5 |
June | 80.4 | 63.0 | 42.9 | 15.9 | 14.8 | 15.0 | 62.8 | 66.5 | 59.4 | 7.5 | 2.0 | 23.9 | 25.9 |
July | 5.2 | 55.6 | 22.2 | 19.4 | 18.2 | 19.3 | 48.1 | 57.0 | 52.7 | 9.5 | 4.0 | 28.4 | 31.8 |
August | 0.0 | 4.4 | 16.1 | 21.9 | 21.3 | 19.6 | 36.2 | 42.1 | 49.1 | 11.6 | 6.4 | 31.5 | 36.2 |
September | 8.8 | 3.3 | 21.3 | 15.5 | 16.4 | 14.2 | 42.6 | 46.3 | 51.8 | 4.3 | 1.9 | 25.7 | 31.0 |
Tot./Avg. | 183.7 | 223.3 | 170.9 | 16.4 | 16.2 | 15.7 | 51.4 | 55.2 | 55.5 |
Variety | Institution | Characteristic |
---|---|---|
Argos F1 | Semillas Fito Tarım | Super sweet, maturity period 80–90 days, ear length 23–25 cm, kernel color golden yellow, tolerant to transportation |
Challenger F1 | BAYER-Seminis | Super sweet, maturity period 80–85 days, high sugar content, kernel color yellow, plant height 170–180 cm |
Khan F1 | May Seed | Super sweet, early (maturity period 76–80 days), plant height 190–200 cm, ear length 22–23 cm, ear diameter 5–5.2 cm, row number per ear 16–18, ear weight 340–350 g, kernel color dark yellow, tolerant to lodging, tolerant to transportation |
No | Planting Geometry (Inter-Row Spacing × Intra-Row Spacing) | Targeted Plant Density (plant ha−1) |
---|---|---|
1. | 35 cm × 23 cm | 124,220 |
2. | 40 cm × 21 cm | 119,040 |
3. | 45 cm × 19 cm | 116,950 |
4. | 50 cm × 18 cm | 111,110 |
5. | 55 cm × 17 cm | 106,950 |
6. | 60 cm × 16 cm | 104,160 |
7. | 65 cm × 15 cm | 102,560 |
8. | 70 cm × 15 cm | 95,230 |
Years | Texture Class | EC (ds/m) | pH | Lime CO3 (%) | Available P2O5 (kg ha−1) | Available K2O (kg ha−1) | Organic Matter (%) | Total N (%) |
---|---|---|---|---|---|---|---|---|
2022 | clay-Loam | 0.18 | 8.0 | 1.04 | 231.0 | 823.7 | 1.50 | 0.18 |
2023 | clay-Loam | 0.25 | 7.5 | 1.07 | 203.6 | 910.5 | 1.31 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stansluos, A.A.L.; Öztürk, A.; Türkoğlu, A.; Piekutowska, M.; Niedbała, G. Planting Geometry May Be Used to Optimize Plant Density and Yields without Changing Yield Potential per Plant in Sweet Corn. Plants 2024, 13, 2465. https://doi.org/10.3390/plants13172465
Stansluos AAL, Öztürk A, Türkoğlu A, Piekutowska M, Niedbała G. Planting Geometry May Be Used to Optimize Plant Density and Yields without Changing Yield Potential per Plant in Sweet Corn. Plants. 2024; 13(17):2465. https://doi.org/10.3390/plants13172465
Chicago/Turabian StyleStansluos, Atom Atanasio Ladu, Ali Öztürk, Aras Türkoğlu, Magdalena Piekutowska, and Gniewko Niedbała. 2024. "Planting Geometry May Be Used to Optimize Plant Density and Yields without Changing Yield Potential per Plant in Sweet Corn" Plants 13, no. 17: 2465. https://doi.org/10.3390/plants13172465
APA StyleStansluos, A. A. L., Öztürk, A., Türkoğlu, A., Piekutowska, M., & Niedbała, G. (2024). Planting Geometry May Be Used to Optimize Plant Density and Yields without Changing Yield Potential per Plant in Sweet Corn. Plants, 13(17), 2465. https://doi.org/10.3390/plants13172465