Influence of Ensiling Timing and Inoculation on Whole Plant Maize Silage Fermentation and Aerobic Stability (Preliminary Research)
Abstract
:1. Introduction
2. Results
2.1. Characterization of Maize Forage after Test Conditions before Ensiling in Mini-Silo
2.1.1. Forage Temperature and Contamination by Yeast and Mold
2.1.2. Forage Chemical Composition
2.2. Characterisation of Maize Silage Ensiled into Mini-Silo and Fermented for 60 Days
2.2.1. Nutrient Composition and Microbial Characteristics of Maize Silage Fermented for 60 Days
2.2.2. Fermentation Characteristics of Maize SILAGE Fermented for 60 Days
2.3. Characteristics of Maize Silage Aerobic Stability
3. Discussion
3.1. Characterisation of Maize Forage after Test Conditions before Ensiling in Mini-Silo
3.2. Chemical (Nutrient) Composition, Fermentation Profile and Microbial Parameters of Maize Silages after 60 Days of Fermentation
3.3. Characterization of Aerobic Stability
4. Materials and Methods
4.1. Study Site and Experimental Design
- T0C: Non-inoculated, promptly ensiled.
- T1C: Non-inoculated, with a 24 h ensiling pause, uncovered.
- T2C: Non-inoculated, with a 24 h ensiling pause, covered.
- T3I: Inoculated, promptly ensiled.
- T4I: Inoculated, with a 24 h ensiling pause, uncovered.
- T5I: Inoculated, with a 24 h ensiling pause, covered.
4.2. Ensiling into Mini-Silo
4.3. Mini-Silages Sampling, Chemical and Microbiological Analyses
4.4. Aerobic Stability Evaluation of the Silages
4.5. Calculations for Corrected Dry Matter (DMc) Concentration, Dry Matter Loss and Metabolizable Energy (ME)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Brüning, D.; Gerlach, K.; Weiß, K.; Südekum, K.-H. Effect of compaction, delayed sealing and aerobic exposure on forage choice and short-term intake of maize silage by goats. Grass Forage Sci. 2018, 73, 392–405. [Google Scholar] [CrossRef]
- Michel, P.H.F.; Gonçalves, L.C.; Rodrigues, J.A.S.; Keller, K.M.; Raposo, V.S.; Lima, E.M.; Santos, F.P.C.; Jayme, D.G. Re-ensiling and inoculant application with Lactobacillus plantarum and Propionibacterium acidipropionici on sorghum silages. Grass Forage Sci. 2017, 72, 432–440. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Muck, R.E. Ensiling in 2050: Some challenges and opportunities. Grass Forage Sci. 2019, 74, 178–187. [Google Scholar] [CrossRef]
- Weiss, K.; Kroschewski, B.; Auerbach, H. The influence of delayed sealing and repeated air ingress during the storage of maize silage on fermentation patterns, yeast development and aerobic stability. Fermentation 2022, 8, 48. [Google Scholar] [CrossRef]
- dos Anjos, G.V.S.; Gonçalves, L.C.; Rodrigues, J.A.S.; Keller, K.M.; Coelho, M.M.; Michel, P.H.F.; Ottoni, D.; Jayme, D.G. Effect of re-ensiling on the quality of sorghum silage. J. Dairy Sci. 2018, 101, 6047–6054. [Google Scholar] [CrossRef]
- Mickan, F.J.; Martin, M.D.; Piltz, J.W. Silage storage. In Successful Silage, 2nd ed.; Kaiser, A.G., Piltz, J.V., Burns, H.M., Griffiths, N.W., Eds.; Dairy Australia and New South Wales Department of Primary Industries: Orange, Australia, 2004; Chapter 9; pp. 217–252. Available online: https://cdn-prod.dairyaustralia.com.au/-/media/project/dairy-australia-sites/national-home/resources/2020/07/09/successful-silage-contents-and-introduction/successful-silage-contents-and-introduction.pdf?rev=43a1e929eab54d58b9cce1910dd727c0 (accessed on 3 February 2020).
- Cai, Y.; Du, Z.; Yamasaki, S.; Nguluve, D.; Tinga, B.; Macome, F.; Oya, T. Influence of microbial additive on microbial populations, ensiling characteristics, and spoilage loss of delayed sealing silage of Napier grass. Asian-Aust. J. Anim. Sci. 2020, 33, 1103–1112. [Google Scholar] [CrossRef]
- Puntillo, M.; Gaggiotti, M.; Oteiza, J.M.; Binetti, A.; Massera, A.; Vinderola, G. Potential of Lactic Acid Bacteria Isolated From Different Forages as Silage Inoculants for Improving Fermentation Quality and Aerobic Stability. Front. Microbiol. 2020, 11, 586716. [Google Scholar] [CrossRef]
- Drouin, P.; Tremblay, J.; Renaud, J.; Apper, E. Microbiota succession during aerobic stability of maize silage inoculated with Lentilactobacillus buchneri NCIMB 40788 and Lentilactobacillus hilgardii CNCM-I-4785. MicrobiologyOpen 2021, 10, e1153. [Google Scholar] [CrossRef] [PubMed]
- Saarisalo, E.; Jalava, T.; Skyttä, E.; Haikara, A.; Jaakkola, S. Effect of lactic acid bacteria inoculants, formic acid, potassium sorbate and sodium benzoate on fermentation quality and aerobic stability of wilted grass. Agric. Food Sci. 2006, 15, 185–199. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage Review: Factors Affecting Dry Matter and Quality Losses in Silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Kroschewski, B.; Auerbach, H. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J. Dairy Sci. 2016, 99, 8053–8069. [Google Scholar] [CrossRef] [PubMed]
- Pauly, T.; Sundberg, M.; Spörndly, R. Effects of delayed sealing during silo filling—Experiments with lab-scale silos. In Proceedings of the 4th Nordic Feed Science Conference, Uppsala, Sweden, 12–13 June 2013; Udén, P., Eriksson, T., Rustas, B.-O., Müller, C.E., Spörndly, R., Pauly, T., Emanuelson, M., Eds.; Swedish University of Agricultural Sciences (SLU): Uppsala, Sweden, 2013; pp. 30–33. Available online: https://pub.epsilon.slu.se/15037/1/pauly_et_al_180226.pdf (accessed on 25 November 2023).
- Kim, S.C.; Adesogan, A.T. Influence of Ensiling Temperature, Simulated Rainfall, and Delayed Sealing on Fermentation Characteristics and Aerobic Stability of Corn Silage. J. Dairy Sci. 2006, 89, 3122–3132. [Google Scholar] [CrossRef]
- Krizsan, S.J.; Randby, A.T. The effect of fermentation quality on the voluntary intake of grass silage by growing cattle fed silage as the sole feed. J. Anim. Sci. 2007, 85, 984–996. [Google Scholar] [CrossRef] [PubMed]
- de Melo, N.N.; Carvalho-Estrada, P.d.A.; Tavares, Q.G.; Pereira, L.d.M.; Delai Vigne, G.L.; Camargo Rezende, D.M.L.; Schmidt, P. The Effects of Short-Time Delayed Sealing on Fermentation, Aerobic Stability and Chemical Composition on Maize Silages. Agronomy 2023, 13, 223. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991; 340p, Available online: http://books.google.com/books?id=oUcjAQAAMAAJ (accessed on 15 March 2015).
- Du, Z.; Risu, N.; Gentu, G.; Jia, Y.; Cai, Y. Dynamic Changes and Characterization of the Protein and Carbohydrate Fractions of Native Grass Grown in Inner Mongolia during Ensiling and the Aerobic Stage. Asian-Aust. J. Anim. Sci. 2020, 33, 556–567. [Google Scholar] [CrossRef]
- Hao, W.; Tian, P.; Zheng, M.; Wang, H.; Xu, C. Characteristics of Proteolytic Microorganisms and Their Effects on Proteolysis in Total Mixed Ration Silages of Soybean Curd Residue. Asian-Aust. J. Anim. Sci. 2020, 33, 100–110. [Google Scholar] [CrossRef]
- Hristov, A.N.; Bannink, A.; Crompton, L.A.; Huhtanen, P.; Kreuzer, M.; McGee, M.; Nozière, P.; Reynolds, C.K.; Bayat, A.R.; Yáñez-Ruiz, D.R.; et al. Invited Review: Nitrogen in Ruminant Nutrition: A Review of Measurement Techniques. J. Dairy Sci. 2019, 102, 5811–5852. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, H.; Nadeau, E. Effects of additive type on fermentation and aerobic stability and its interaction with air exposure on silage nutritive value. Agronomy 2020, 10, 1229. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Taylor, C.C.; Ranjit, N.J.; Mills, J.A.; Neylon, J.M.; Kung, L., Jr. The effect of treating whole-plant barley with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for dairy cows. J. Dairy Sci. 2002, 85, 1793–1800. [Google Scholar] [CrossRef]
- Driehuis, F.; Oude Elferink, S.J.W.H.; Van Wikselaar, P.G. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci. 2001, 56, 330–343. [Google Scholar] [CrossRef]
- Mills, J.A.; Kung, L., Jr. The effect of delayed ensiling and application of a propionic acid-based additive on the fermentation of barley silage. J. Dairy Sci. 2002, 85, 1969–1975. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy: Madison, WI, USA, 2003; pp. 31–93. [Google Scholar] [CrossRef]
- Paradhipta, D.H.V.; Lee, S.S.; Kang, B.; Joo, Y.H.; Lee, H.J.; Lee, Y.; Kim, J.; Kim, S.C. Dual-purpose inoculants and their effects on corn silage. Microorganisms 2020, 8, 765. [Google Scholar] [CrossRef] [PubMed]
- Kung, L., Jr. Potential factors that may limit the effectiveness of silage additives. In Proceedings of the 15th International Silage Conference, Madison, WI, USA, 27–29 July 2009; Broderick, G.A., Adesogan, A.T., Bocher, L.W., Bolsen, K.K., Contreras-Govea, F.E., Harrison, J.H., Muck, R.E., Eds.; U.S. Dairy Forage Research Center: Madison, WI, USA, 2009; pp. 37–45. Available online: https://www.researchgate.net/publication/252522700_Potential_factors_that_may_limit_the_effectiveness_of_silage_additives#fullTextFileContent (accessed on 10 August 2009).
- Rooke, J.A.; Hatfield, R.D. Biochemistry of ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy: Madison, WI, USA, 2003; pp. 95–139. [Google Scholar] [CrossRef]
- Nutcher, K.; Salacci, R.; Kuber, C.P.; Kuber, R.; Uriarte, M.E.; Bolsen, K.K. Effects of Sealing Time Post-Filling and Sealing Material on Fermentation, Nutritional Quality, and Organic Matter Loss of Whole-Plant Maize Ensiled in a Drive-over Pile. In Proceedings of the XVII International Silage Conference, Piracicaba, SP, Brazil, 1–3 July 2015; Daniel, J.L.P., Morais, G., Junges, D., Nussio, L.G., Eds.; ESALQ: Piracicaba, Brazil, 2015; pp. 320–321. Available online: https://www.isfqcbrazil.com.br/proceedings/2015/Proceedings-of-the-XVII-International-Silage-Conference-Brazil-2015.pdf (accessed on 5 August 2015).
- Alhaag, H.; Yuan, X.; Mala, A.; Bai, J.; Shao, T. Fermentation characteristics of Lactobacillus plantarum and Pediococcus species isolated from sweet sorghum silage and their application as silage inoculants. Appl. Sci. 2019, 9, 1247. [Google Scholar] [CrossRef]
- Comino, L.; Tabacco, E.; Righi, F.; Revello-Chion, A.; Quarantelli, A.; Borreani, G. Effects of an inoculant containing a Lactobacillus buchneri that produces ferulate-esterase on fermentation products, aerobic stability, and fiber digestibility of maize silage harvested at different stages of maturity. Anim. Feed Sci. Technol. 2014, 198, 94–106. [Google Scholar] [CrossRef]
- Uriarte-Archundia, M.E.; Bolsen, K.K.; Brent, B.E. A study of the chemical and microbial changes in whole-plant corn silage during fermentation and storage: Effects of packing density and sealing technique. Kans. Agric. Exp. Stn. Rep. 2002, 0, 347. Available online: https://newprairiepress.org/cgi/viewcontent.cgi?article=1750&context=kaesrr (accessed on 15 January 2015). [CrossRef]
- Kung, L., Jr.; Ranjit, N.K. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J. Dairy Sci. 2001, 84, 1149–1155. [Google Scholar] [CrossRef]
- Tabacco, E.; Piano, S.; Revello-Chion, A.; Boreanni, G. Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions. J. Dairy Sci. 2011, 94, 5589–5598. [Google Scholar] [CrossRef]
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C. ISO: Geneva, Switzerland, 1998. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:15214:ed-1:v1:en (accessed on 18 June 2018).
- Jatkauskas, J.; Vrotniakiene, V.; Eisner, I.; Witt, K.L.; do Amaral, R.C. Comparison of the Chemical andMicrobial Composition and Aerobic Stability of High-Moisture Barley Grain Ensiled with Either Chemical or Viable Lactic Acid Bacteria Application. Fermentation 2024, 10, 62. [Google Scholar] [CrossRef]
- Weissbach, F.E.; Strubelt, C. Correcting the dry matter content of maize silages as a substrate for biogas production. Landtech. Net63 2008, 2, 82–83. Available online: https://www.agricultural-engineering.eu/landtechnik/article/download/2008-63-2-082-083/2008-63-2-082-083-en-pdf/1151 (accessed on 19 June 2016).
- SNP (Committee for Requirements Standards of the Society for Nutritional Physiology). Formulas for estimating the content of metabolizable energy in feed from permanent grassland and whole maize plants. (GfE (Ausschuss für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie). Formeln zur Schätzung des Gehaltes an Umsetzbarer Energie in Futtermitteln aus Aufwüchsen des Dauergrünlandes und Mais-Ganzpflanzen) original. In Proceedings of the Society Nutrition Physiology, Gottingen, Germany, 3–5 March 1998; Tagung der Gesellschaft für Ernährungsphysiologie 7. Pallauf, J., Ed.; DLG: Frankfurt, Germany, 1998; pp. 141–150. Available online: https://gfe-frankfurt.de/blog (accessed on 22 September 2018).
Item | T1C | T2C | T4I | T5I | SE | p-Value |
---|---|---|---|---|---|---|
Temperature after 24 h interruption | 36.10 a | 33.18 b | 27.94 c | 25.08 d | 0.354 | <0.01 |
Hours for the temperature to increase 3 °C versus ambient | 6.0 c | 9.6 bc | 12.0 b | 18.0 a | 1.697 | <0.01 |
Yeast, log | 6.90 a | 6.67 a | 5.74 b | 5.66 b | 0.163 | <0.01 |
Molds, log | 5.94 a | 5.75 a | 4.42 b | 4.11 b | 0.177 | <0.01 |
LAB, log | 4.95 bc | 5.59 b | 6.92 a | 7.04 a | 0.356 | <0.01 |
Item | T0C | T1C | T2C | T3I | T4I | T5I | SE | p-Value |
---|---|---|---|---|---|---|---|---|
DM, g kg−1 | 365.8 | 366.1 | 366.2 | 366.9 | 366.6 | 366.6 | 3.856 | 1.000 |
CP | 102.7 | 102.9 | 101.3 | 100.3 | 103.6 | 102.0 | 2.292 | 0.744 |
CF | 198.4 | 197.1 | 196.4 | 197.7 | 197.5 | 195.2 | 3.651 | 0.966 |
WSC | 76.6 | 74.1 | 76.0 | 77.8 | 76.5 | 77.5 | 4.963 | 0.983 |
Starch | 328.4 | 326.1 | 324.1 | 327.4 | 329.4 | 326.4 | 8.435 | 0.992 |
ME, MJ | 9.97 | 9.97 | 9.97 | 10.02 | 9.99 | 10.05 | 0.087 | 0.880 |
pH | 5.74 | 5.72 | 5.72 | 5.74 | 5.69 | 5.68 | 0.032 | 0.331 |
Item | T0C | T1C | T2C | T3I | T4I | T5I | SE | p-Value |
---|---|---|---|---|---|---|---|---|
DMc, g kg−1 | 348.8 bc | 345.8 c | 347.4 c | 356.2 a | 354.5 ab | 355.2 a | 3.085 | <0.01 |
CP | 92.7 ab | 88.4 c | 89.9 bc | 93.8 a | 90.6 abc | 91.6 abc | 1.147 | 0.01 |
WSC | 13.6 | 11.9 | 11.5 | 13.8 | 16.2 | 12.7 | 2.189 | 0.335 |
Starch | 331.1 abc | 326.6 c | 328.4 bc | 344.4 a | 339.4 abc | 336.6 abc | 4.694 | <0.01 |
DM loss | 61.63 a | 69.61 a | 64.54 a | 40.04 b | 44.39 b | 42.54 b | 2.863 | <0.01 |
ME, MJ | 9.56 | 9.50 | 9.52 | 9.62 | 9.56 | 9.60 | 0.044 | 0.687 |
Yeast, log10 cfu g−1 | 2.38 b | 3.30 a | 3.10 a | 1.40 c | 2.07 b | 1.99 b | 0.143 | <0.01 |
Mold, log10 cfu g−1 | 2.23 b | 3.18 a | 3.03 a | 1.00 c | 1.28 c | 1.16 c | 0.096 | <0.01 |
LAB, log10 cfu g−1 | 6.53 b | 6.51 b | 6.67 b | 7.92 a | 7.56 c | 7.78 a | 0.173 | <0.01 |
Item | T0C | T1C | T2C | T3I | T4I | T5I | SE | p-Value |
---|---|---|---|---|---|---|---|---|
LA | 46.59 bc | 38.36 d | 39.59 cd | 60.54 a | 49.78 b | 51.6 b | 2.320 | <0.01 |
AA | 16.6 c | 18.38 c | 17.42 c | 20.63 b | 24.70 a | 22.60 b | 0.642 | <0.01 |
BA | 0.42 ac | 1.12 a | 0.53 ac | 0.01 b | 0.07 b | 0.05 b | 0.280 | <0.05 |
AL | 26.70 c | 34.32 a | 31.07 b | 25.80 c | 24.49 c | 25.30 c | 0.815 | <0.01 |
ETH | 26.09 b | 30.87 a | 27.50 b | 15.52 c | 17.93 c | 17.60 c | 0.952 | <0.01 |
Pp | 1.93 d | 2.35 d | 2.11 d | 8.89 a | 4.37 c | 6.84 b | 0.209 | <0.01 |
Ammonia-N, g kg−1 total N | 52.68 b | 63.01 a | 55.37 ab | 38.03 c | 40.35 bc | 38.56 c | 3.208 | <0.01 |
pH | 3.88 bc | 3.98 a | 3.90 b | 3.80 d | 3.82 cd | 3.80 d | 0.020 | <0.01 |
Item | T0C | T1C | T2C | T3I | T4I | T5I | SE | p-Value |
---|---|---|---|---|---|---|---|---|
DMc, g kg−1 | 326.7 bc | 320.4 c | 327.1 bc | 346.6 a | 337.6 ab | 341.2 ab | 4.709 | <0.01 |
CP | 91.5 | 87.6 | 88.0 | 93.1 | 92.0 | 91.7 | 2.085 | 0.065 |
WSC | 5.6 | 5.5 | 4.7 | 5.8 | 6.8 | 5.1 | 1.076 | 0.520 |
Starch | 320.2 bcd | 310.1 d | 314.7 cd | 338.1 a | 333.0 ab | 329.7 abc | 5.269 | <0.01 |
DM loss | 148.93 a | 153.22 a | 133.58 a | 62.94 c | 89.09 b | 78.92 b | 10.575 | <0.01 |
ME, MJ | 9.30 b | 9.28 b | 9.32 b | 9.54 a | 9.56 a | 9.56 a | 0.034 | <0.01 |
Item | T0C | T1C | T2C | T3I | T4I | T5I | SE | p-Value |
---|---|---|---|---|---|---|---|---|
LA | 10.18 c | 6.44 c | 9.48 c | 42.19 a | 24.52 b | 32.12 b | 3.118 | <0.01 |
AA | 6.94 b | 6.36 b | 9.70 b | 17.36 a | 19.56 a | 20.64 a | 1.321 | <0.01 |
BA | 0.86 a | 0.55 ab | 1.00 a | 0.24 b | 0.36 b | 0.28 b | 0.154 | <0.01 |
AL | 6.20 b | 7.16 b | 10.76 a | 10.62 a | 9.14 ab | 11.54 a | 1.046 | <0.01 |
ETH | 4.26 bc | 4.94 b | 8.30 a | 2.64 c | 3.02 bc | 5.22 b | 0.736 | <0.01 |
Pp | 0.94 c | 1.41 c | 1.28 c | 7.20 a | 5.42 b | 5.56 b | 0.496 | <0.01 |
Ammonia-N, g kg−1 total N | 29.68 bc | 32.30 ab | 37.55 a | 27.58 bc | 25.74 c | 28.40 bc | 1.726 | <0.01 |
pH | 5.22 a | 5.36 a | 5.28 a | 3.90 c | 4.14 b | 4.10 b | 0.052 | <0.01 |
Item | T0C | T1C | T2C | T3I | T4I | T5I | SE | p-Value |
---|---|---|---|---|---|---|---|---|
AS, hours | 144.0 c | 146.4 c | 171.6 c | 394.8 a | 312.0 b | 363.6 ab | 26.020 | <0.01 |
HT, °C | 27.72 a | 28.14 a | 27.34 a | 23.12 c | 25.12 b | 23.44 bc | 0.634 | <0.01 |
Microbial count at day 7 of aerobic exposure | ||||||||
Yeast | 8.21 a | 9.00 a | 8.22 a | 2.64 b | 2.88 b | 2.78 b | 0.357 | <0.01 |
Mold | 6.47 a | 6.18 a | 6.42 a | 1.95 b | 2.11 b | 2.03 b | 0.306 | <0.01 |
Microbial count at the end of 17 days aerobic exposure | ||||||||
Yeast | 9.02 a | 9.11 a | 9.03 a | 4.94 b | 5.09 b | 4.87 b | 0.453 | <0.01 |
Mold | 9.22 a | 9.38 a | 9.30 a | 3.10 b | 5.04 b | 3.85 b | 0.295 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jatkauskas, J.; Vrotniakiene, V.; Amaral, R.C.d.; Witt, K.L.; Cappellozza, B.l. Influence of Ensiling Timing and Inoculation on Whole Plant Maize Silage Fermentation and Aerobic Stability (Preliminary Research). Plants 2024, 13, 2894. https://doi.org/10.3390/plants13202894
Jatkauskas J, Vrotniakiene V, Amaral RCd, Witt KL, Cappellozza Bl. Influence of Ensiling Timing and Inoculation on Whole Plant Maize Silage Fermentation and Aerobic Stability (Preliminary Research). Plants. 2024; 13(20):2894. https://doi.org/10.3390/plants13202894
Chicago/Turabian StyleJatkauskas, Jonas, Vilma Vrotniakiene, Rafael Camargo do Amaral, Kristian Lybek Witt, and Bruno leda Cappellozza. 2024. "Influence of Ensiling Timing and Inoculation on Whole Plant Maize Silage Fermentation and Aerobic Stability (Preliminary Research)" Plants 13, no. 20: 2894. https://doi.org/10.3390/plants13202894
APA StyleJatkauskas, J., Vrotniakiene, V., Amaral, R. C. d., Witt, K. L., & Cappellozza, B. l. (2024). Influence of Ensiling Timing and Inoculation on Whole Plant Maize Silage Fermentation and Aerobic Stability (Preliminary Research). Plants, 13(20), 2894. https://doi.org/10.3390/plants13202894