Interaction Between Heavy Metals Posed Chemical Stress and Essential Oil Production of Medicinal Plants
Abstract
:1. Introduction
2. Exposure Routes
2.1. Uptake from the Soil
2.2. Foliar Uptake
3. Potential Toxic Effects of HMs
4. Effects of Heavy Metals on Essential Oil Production
4.1. Lab-Scale Studies
4.2. Field Experiments
4.3. Assessment of Atmospheric Heavy Metal Pollution
5. Possible Mechanisms
6. Bioaccumulation
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheljazkov, V.D.; Craker, L.E.; Xing, B. Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ. Exp. Bot. 2006, 58, 9–16. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, C. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Khalid, S.; Abbas, G.; Shahid, N.; Nadeem, M.; Sabir, M.; Aslam, M. Heavy Metal Stress and Crop Productivity. In Crop Production and Global Environmental Issues; Hakeem, H.R., Ed.; Springer International Publishing: Chem, Switzerland, 2015. [Google Scholar]
- Rai, P.K.; Leeb, S.S.; Zhang Tsang, U.F.; Kime, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef]
- Meng, W.; Wang, Z.; Hu, B.; Wang, Z.; Li, H.; Goodman, R.C. Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China: A case study assessment. Agric. Water Manag. 2016, 171, 153–161. [Google Scholar] [CrossRef]
- Karahan, F.; Ozyigit, I.I.; Saracoglu, I.A.; Yalcin, I.E.; Ozyigit, A.H.; Ilcim, A. Heavy metal levels and mineral nutrient status in different parts of various medicinal plants collected from eastern Mediterranean region of Turkey. Biol. Trace Elem. Res. 2020, 197, 316–329. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Chen, F.A.; Hsu, M.J. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environ. Pollut. 2008, 155, 320–326. [Google Scholar] [CrossRef]
- Tomaszewska-Sowa, M.; Kobierski, M.; Sawilska, A.K.; Figas, A. Assessment of phytoaccumulation of trace elements in medicinal plants from natural habitats. Herba Pol. 2018, 64, 11–19. [Google Scholar] [CrossRef]
- Stankovic, D.; Krstic, B.; Orlovic, S.; Trivan, G.; Poljak, P.L.; Nikolic, M.S. Woody plants and herbs as bioindicators of the current condition of the natural environment in Serbia. J. Med. Plants Res. 2011, 5, 3507–3512. [Google Scholar]
- Chen, S.L.; Yu, H.; Luo, H.M.; Wu, Q.; Li, C.F.; Steinmetz, A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin. Med. 2016, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.M.; KumarMeena, A.; Galib. Detection of toxic heavy metals and pesticide residue in herbal plants which are commonly used in the herbal formulations. Environ. Monit. Assess. 2011, 181, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Vinogradova, N.; Glukhov, A.; Chaplygin, V.; Kumar, P.; Mandzhieva, S.; Minkina, T.; Rajput, V.D. The content of heavy metals in medicinal plants in various environmental conditions: A review. Horticulturae 2023, 9, 239. [Google Scholar] [CrossRef]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Yeshi, K.; Crayn, D.; Ritmejerytė, E.; Wangchuk, P. Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 2022, 27, 313. [Google Scholar] [CrossRef]
- Lajayer, B.A.; Ghorbanpour, M.; Nikabadi, S. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotox. Environ. Saf. 2017, 145, 377–390. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef]
- Boechat, C.L.; Carlos, F.S.; Gianello, C.; de Oliveira Camargo, F.A. Heavy metals and nutrients uptake by medicinal plants cultivated on multi-metal contaminated soil samples from an abandoned gold ore processing site. Water Air Soil Pollut. 2016, 227, 392. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Roșca, M.; Hagiu-Zaleschi, L.; Simion, I.M.; Daraban, G.M.; Stoleru, V. Medicinal plant growth in heavy metals contaminated soils: Responses to metal stress and induced risks to human health. Toxics 2022, 10, 499. [Google Scholar] [CrossRef]
- Maleki, M.; Ghorbanpour, M.; Kariman, K. Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene 2017, 11, 247–254. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Wolf, W.M. The impact of soil pH on heavy metals uptake and photosynthesis efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules 2022, 27, 4671. [Google Scholar] [CrossRef] [PubMed]
- Abdu, N.; Abdullahi, A.A.; Abdulkadir, A. Heavy metals and soil microbes. Environ. Chem. Lett. 2017, 15, 65–84. [Google Scholar] [CrossRef]
- Olowoyo, J.O.; Okedeyi, O.O.; Mkolo, N.M.; Lion, G.N.; Mdakane, S.T.R. Uptake and translocation of heavy metals by medicinal plants growing around a waste dump site in Pretoria, South Africa. S. Afr. J. Bot. 2012, 78, 116–121. [Google Scholar] [CrossRef]
- Tripathi, S.; Sharma, P.; Singh, K.; Purchase, D.; Chandra, R. Translocation of heavy metals in medicinally important herbal plants growing on complex organometallic sludge of sugarcane molasses-based distillery waste. Environ. Technol. Innov. 2021, 22, 101434. [Google Scholar] [CrossRef]
- Pehoiu, G.; Murarescu, O.; Radulescu, C.; Dulama, I.D.; Teodorescu, S.; Stirbescu, R.M.; Bucurica, I.A.; Stanescu, S.G. Heavy metals accumulation and translocation in native plants grown on tailing dumps and human health risk. Plant Soil 2020, 456, 405–424. [Google Scholar] [CrossRef]
- Srivastava, A.; Jain, V.K. Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi. Chemosphere 2007, 68, 579–589. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Luo, J.; Xie, M.; Wang, T.; Lian, H. Accumulation and quantitative estimates of airborne lead for a wild plant (Aster subulatus). Chemosphere 2011, 82, 1351–1357. [Google Scholar] [CrossRef]
- Hieu, N.T.; Lee, B.-K. Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmos. Res. 2010, 98, 526–537. [Google Scholar] [CrossRef]
- Casotti Rienda, I.; Nunes, T.; Amato, F.; Lucarelli, F.; Kováts, N.; Hubai, K.; Alves, C.A. Preliminary assessment of road dust from Portuguese motorways: Chemical profile, health risks, and ecotoxicological screening. Air Qual. Atmos. Health 2023, 16, 2579–2590. [Google Scholar] [CrossRef]
- Khillare, P.S.; Balachandran, S.; Meena, B.R. Spatial and temporal variation of heavy metals in atmospheric aerosol of Delhi. Environ. Monit. Assess. 2004, 90, 1–21. [Google Scholar] [CrossRef]
- Velali, E.; Papachristou, E.; Pantazaki, A.; Choli-Papadopoulou, T.; Planou, S.; Kouras, A.; Manoli, E.; Besis, A.; Voutsa, D.; Samara, C. Redox activity and in vitro bioactivity of the water-soluble fraction of urban particulate matter in relation to particle size and chemical composition. Environ. Pollut. 2016, 208, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ji, X.; Ku, T.; Li, G.; Sang, N. Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: A study based on myocardial toxicity. Environ. Pollut. 2016, 216, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Tomašević, M.; Vukmirović, Z.; Rajšić, S.; Tasić, M.; Stevanović, B. Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area. Chemosphere 2005, 61, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.P.; Wang, Y.S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmos. Chem. Phys. 2015, 15, 951–972. [Google Scholar] [CrossRef]
- Muezzinoglu, A.; Cizmecioglu, S.C. Deposition of heavy metals in a Mediterranean climate area. Atmos. Res. 2006, 81, 1–16. [Google Scholar] [CrossRef]
- Cherednichenko, V.S.; Cherednichenko, A.V.; Cherednichenko, A.V.; Zheksenbaeva, A.K.; Madibekov, A.S. Heavy metal deposition through precipitation in Kazakhstan. Heliyon 2021, 7, e05844. [Google Scholar] [CrossRef]
- Schreck, E.; Foucault, Y.; Sarret, G.; Sobanska, S.; Cécillon, L.; Castrec-Rouelle, M.; Uzu, G.; Dumat, C. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Sci. Total Environ. 2012, 427, 253–262. [Google Scholar] [CrossRef]
- El-Khatib, A.A.; Barakat, N.A.; Youssef, N.A.; Samir, N.A. Bioaccumulation of heavy metals air pollutants by urban trees. Int. J. Phytoremediat. 2020, 22, 210–222. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Michell, P.; Reiling, K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For. Urban Green. 2018, 30, 98–107. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, H.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427–428, 347–354. [Google Scholar] [CrossRef]
- Margenat, A.; Matamoros, V.; Díez, S.; Cañameras, N.; Comas, J.; Bayona, J.M. Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture. Sci. Total Environ. 2018, 637–638, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Feki, K.; Tounsi, S.; Mrabet, M.; Mhadhbi, H.; Brini, F. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. Environ. Sci. Pollut. Res. 2021, 28, 64967–64986. [Google Scholar] [CrossRef] [PubMed]
- Al-Rashedy, H.S.M. Effect of cobalt and nickel on growth and some physiological aspects of mint (Mentha spicata). Plant Cell Biotechnol. Mol. Biol. 2020, 21, 163–171. [Google Scholar]
- Giannakoula, A.; Therios, I.; Chatzissavvidis, C. Effect of lead and copper on photosynthetic apparatus in citrus (Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants 2021, 10, 155. [Google Scholar] [CrossRef]
- Sytar, O.; Kumar, A.; Latowski, D.; Kuczynska, P.; Strzałka, K.; Prasad, M.N.V. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant. 2013, 35, 985–999. [Google Scholar] [CrossRef]
- Goncharuk, E.A.; Zagoskina, N.V. Heavy metals, their phytotoxicity, and the role of phenolic antioxidants in plant stress responses with focus on cadmium. Molecules 2023, 28, 3921. [Google Scholar] [CrossRef]
- Dinu, C.; Gheorghe, S.; Tenea, A.G.; Stoica, C.; Vasile, G.G.; Popescu, R.L.; Serban, E.A.; Pascu, L.F. Toxic Metals (As, Cd, Ni, Pb) impact in the most common medicinal plant (Mentha piperita). Int. J. Environ. Res. Public Heaith 2021, 18, 3904. [Google Scholar] [CrossRef]
- Mansoor, S.; Ali, A.; Kour, N.; Bornhorst, J.; AlHarbi, K.; Rinklebe, J.; Abd El Moneim, D.; Ahmad, P.; Chung, Y.S. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants 2023, 12, 3003. [Google Scholar] [CrossRef]
- Biswas, T.; Parveen, O.; Pandey, V.P.; Mathur, A.; Dwivedi, U.N. Heavy metal accumulation efficiency, growth and centelloside production in the medicinal herb Centella asiatica (L.) urban under different soil concentrations of cadmium and lead. Ind. Crop Prod. 2020, 157, 112948. [Google Scholar] [CrossRef]
- Hubai, K.; Kováts, N.; Sainnokhoi, T.A.; Eck-Varanka, B.; Hoffer, A.; Tóth, Á.; Teke, G. Phytotoxicity of particulate matter from controlled burning of different plastic waste types. Bull. Environ. Contam. Tox. 2022, 109, 852–858. [Google Scholar] [CrossRef]
- Ahmad, I.Z.; Ahmad, A.; Mabood, A.; Tabassum, H. Effects of Different Metal Stresses on the Antioxidant Defense Systems of Medicinal Plants. In Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation Under Abiotic Stress; Khan, M., Khan, N., Eds.; Springer: Singapore, 2017. [Google Scholar]
- Rahbarian, R.; Azizi, E.; Behdad, A.; Mirbolook, A. Effects of chromium on enzymatic/nonenzymatic antioxidants and oxidant levels of Portulaca oleracea L. J. Med. Plants By-Prod. 2019, 8, 21–31. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1991; p. 365. [Google Scholar]
- Pirooz, P.; Amooaghaie, R.; Ahadi, A.; Sharififar, F.; Torkzadeh-Mahani, M. Silicon and nitric oxide synergistically modulate the production of essential oil and rosmarinic acid in Salvia officinalis under Cu stress. Protoplasma 2022, 259, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Es-sbihi, F.Z.; Hazzoumi, Z.; Benhima, R.; Amrani Joutei, K. Effects of salicylic acid on growth, mineral nutrition, glandular hairs distribution and essential oil composition in Salvia officinalis L. grown under copper stress. Environ. Sustain. 2020, 3, 199–208. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Changes in essential oil, kava pyrones and total phenolics of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. leaves exposed to copper sulphate. Environ. Exp. Bot. 2007, 59, 347–353. [Google Scholar]
- Lajayer, H.A.; Savaghebi, G.; Hadian, J.; Hatami, M.; Pezhmanmehr, M. Comparison of copper and zinc effects on growth, micro-and macronutrients status and essential oil constituents in pennyroyal (Mentha pulegium L.). Braz. J. Bot. 2017, 40, 379–388. [Google Scholar] [CrossRef]
- Babashpour-Asl, M.; Farajzadeh-Memari-Tabrizi, E.; Yousefpour-Dokhanieh, A. Foliar-applied selenium nanoparticles alleviate cadmium stress. through changes in physio-biochemical status and essential oil profile of coriander (Coriandrum sativum L.) leaves. Environ. Sci. Pollut. Res. 2022, 29, 80021–80031. [Google Scholar] [CrossRef]
- Fattahi, B.; Arzani, K.; Souri, M.K.; Barzegar, M. Effects of cadmium and lead on seed germination, morphological traits, and essential oil composition of sweet basil (Ocimum basilicum L.). Ind. Crop Prod. 2019, 138, 111584. [Google Scholar] [CrossRef]
- Poursaeid, M.; Iranbakhsh, A.; Ebadi, M.; Fotokian, M.H. Morpho-physiological and phytochemical responses of basil (Ocimum basilicum L.) to toxic heavy metal cadmium. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 11902. [Google Scholar] [CrossRef]
- Mohammed, N.A.; Ali, W.N.; Younis, Z.M.; Zeebaree, P.J.; Qasim, M.J. Response of Two Mint Cultivars Peppermint (Mentha piperita L.) and Curly Mint (Mentha spicata var. crispa) to Different Levels of Cadmium Contamination. Pak. J. Life Soc. Sci. 2024, 22, 99–116. [Google Scholar] [CrossRef]
- Youssef, N.A. Changes in the morphological traits and the essential oil content of sweet basil (Ocimum basilicum L.) as induced by cadmium and lead treatments. Int. J. Phytoremediat. 2021, 23, 291–299. [Google Scholar] [CrossRef]
- Kilic, S.; Kilic, M. Effects of cadmium-induced stress on essential oil production, morphology and physiology of lemon balm (Melissa officinalis L., Lamiaceae). Appl. Ecol. Environ. Res. 2017, 15, 1653–1669. [Google Scholar] [CrossRef]
- Amirmoradi, S.; Moghaddam, P.R.; Koocheki, A.; Danesh, S.; Fotovat, A. Effect of cadmium and lead on quantitative and essential oil traits of peppermint (Mentha piperita L.). Not. Sci. Biol. 2012, 4, 101–109. [Google Scholar] [CrossRef]
- Azimychetabi, Z.; Nodehi, M.S.; Moghadam, T.K.; Motesharezadeh, B. Cadmium stress alters the essential oil composition and the expression of genes involved in their synthesis in peppermint (Mentha piperita L.). Ind. Crop Prod. 2021, 168, 113602. [Google Scholar] [CrossRef]
- Kunwar, G.; Pande, C.; Tewari, G.; Singh, C.; Kharkwal, G.C. Effect of heavy metals on terpenoid composition of Ocimum basilicum L. and Mentha spicata L. J. Essen. Oil Bear. Plants 2015, 18, 818–825. [Google Scholar] [CrossRef]
- Sulastri, Y.S.; Tampubolon, K. Aromatic plants: Phytoremediation of cadmium heavy metal and the relationship to essential oil production. Int. J. Sci. Technol. Res. 2019, 8, 1064–1069. [Google Scholar]
- Sá, R.A.; Alberton, O.; Gazim, Z.C.; Laverde Jr, A.; Caetano, J.; Amorin, A.C.; Dragunski, D.C. Phytoaccumulation and effect of lead on yield and chemical composition of Mentha crispa essential oil. Desalin. Water Treat. 2015, 53, 3007–3017. [Google Scholar] [CrossRef]
- Prasad, A.; Singh, A.K.; Chand, S.; Chanotiya, C.S.; Patra, D.D. Effect of chromium and lead on yield, chemical composition of essential oil, and accumulation of heavy metals of mint species. Commun. Soil Sci. Plan. 2010, 41, 2170–2186. [Google Scholar] [CrossRef]
- Nabi, A.; Naeem, M.; Aftab, T.; Khan, M.M.A. Alterations in photosynthetic pigments, antioxidant machinery, essential oil constituents and growth of menthol mint (Mentha arvensis L.) upon nickel exposure. Braz. J. Bot. 2020, 43, 721–731. [Google Scholar] [CrossRef]
- Biswas, S.; Koul, M.; Bhatnagar, A.K. Effect of arsenic on trichome ultrastructure, essential oil yield and quality of Ocimum basilicum L. Med. Plant Res. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Scora, R.W.; Chang, A.C. Essential Oil Quality and Heavy Metal Concentrations of Peppermint Grown on a Municipal Sludge-Amended Soil. J. Environ. Qual. 1997, 26, 975–979. [Google Scholar] [CrossRef]
- Pandey, J.; Chand, S.; Pandey, S.; Patra, R.D.D. Palmarosa (Cymbopogon martinii (Roxb.) Wats.) as a putative crop for phytoremediation, in tannery sludge polluted soil. Ecotox. Environ. Saf. 2015, 122, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Gautam, M.; Agrawal, M. Influence of metals on essential oil content and composition of lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in sewage sludge amended soil. Chemosphere 2017, 175, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Nielsen, N.E. Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill.) production. J. Essent. Oil Res. 1996, 8, 259–274. [Google Scholar] [CrossRef]
- Gharib, F.A.; Mansour, K.H.; Ahmed, E.Z.; Galal, T.M. Heavy metals concentration, and antioxidant activity of the essential oil of the wild mint (Mentha longifolia L.) in the Egyptian watercourses. Int. J. Phytoremediat. 2021, 23, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Givianrad, M.H.; Hashemi, A.Z.A.M. A survey of the effect of some heavy metals in plant on the composition of the essential oils close to Veshnaveh-Qom mining area. Orient. J. Chem. 2014, 30, 737–743. [Google Scholar] [CrossRef]
- Basile, A.; Botta, B.; Bruno, M.; Rigano, D.; Sorbo, S.; Conte, B.; Rosselli, S.; Senatore, F. Effects of air pollution on production of essential oil in Feijoa Sellowiana Berg. grown in the ‘Italian Triangle of Death’. Int. J. Environ. Health 2010, 4, 250–259. [Google Scholar] [CrossRef]
- Judzentiene, A.; Stikliene, A.; Kupcinskiene, E. Changes in the essential oil composition in the needles of Scots pine (Pinus sylvestris L.) under anthropogenic stress. Sci. World 2007, 7, 141–150. [Google Scholar]
- Nivinskiene, O.; Butkiene, R.; Gudalevic, A.; Mockute, D.; Meskauskiene, V.; Grigaliunaite, B. Influence of urban environment on chemical composition of Tilia cordata essential oil. Chemija 2007, 18, 44–49. [Google Scholar]
- Hubai, K.; Székely, O.; Teke, G.; Kováts, N. Is essential oil production influenced by air pollution in Ocimum basilicum L.? Biochem. Syst. Ecol. 2021, 96, 104248. [Google Scholar] [CrossRef]
- Desalme, D.; Binet, P.; Chiapusio, G. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants. Environ. Sci. Technol. 2013, 47, 3967–3981. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Bartwal, A.; Mall, R.; Lohani, P.; Guru, S.K.; Arora, S. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J. Plant Growth Regul. 2013, 32, 216–232. [Google Scholar] [CrossRef]
- Bibbiani, S.; Colzi, I.; Taiti, C.; Nissim, W.G.; Papini, A.; Mancuso, S.; Gonnelli, C. Smelling the metal: Volatile organic compound emission under Zn excess in the mint Tetradenia riparia. Plant Sci. 2018, 271, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Maiga, A.; Diallo, D.; Bye, R. Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J. Agric. Food Chem. 2005, 53, 2316–2321. [Google Scholar] [CrossRef]
- Chen, Y.G.; Huang, J.H.; Luo, R.; Ge, H.Z.; Wołowicz, A.; Wawrzkiewicz, M.; Gładysz-Płaska, A.; Li, B.; Yu, Q.-X.; Kołodyńska, D.; et al. Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. Ecotoxicol. Environ. Saf. 2021, 219, 112336. [Google Scholar] [CrossRef]
- Luo, L.; Wang, B.; Jiang, J.; Fitzgerald, M.; Huang, Q.; Yu, Z.; Li, H.; Zhang, J.; Wei, J.; Yang, C.; et al. Heavy metal contaminations in herbal medicines: Determination, comprehensive risk assessments, and solutions. Front. Pharmacol. 2021, 11, 595335. [Google Scholar] [CrossRef]
- Karahan, F. Evaluation of trace element and heavy metal levels of some ethnobotanically important medicinal plants used as remedies in Southern Turkey in terms of human health risk. Biol. Trace Element Res. 2023, 201, 493–513. [Google Scholar] [CrossRef]
- Asiminicesei, D.M.; Vasilachi, I.C.; Gavrilescu, M.A.R.I.A. Heavy metal contamination of medicinal plants and potential implications on human health. Rev. Chim. 2020, 71, 16–36. [Google Scholar] [CrossRef]
- Sarma, H.; Deka, S.; Deka, H.; Saikia, R.R. Accumulation of Heavy Metals in Selected Medicinal Plants. In Reviews of Environmental Contamination and Toxicology; Whitacre, D., Ed.; Springer: New York, NY, USA, 2012; Volume 214. [Google Scholar]
- Collin, S.; Baskar, A.; Geevarghese, D.M.; Ali, M.N.V.S.; Bahubali, P.; Choudhary, R.; Lvov, V.; Tovar, G.I.; Senatov, F.; Koppala, S. Bioaccumulation of lead (Pb) and its effects in plants: A review. J. Hazard. Mater. Lett. 2022, 3, 100064. [Google Scholar] [CrossRef]
- Chand, S.; Singh, S.; Singh, V.K.; Patra, D.D. Utilization of heavy metal-rich tannery sludge for sweet basil (Ocimum basilicum L.) cultivation. Environ. Sci. Pollut. Res. 2015, 22, 7470–7475. [Google Scholar] [CrossRef]
- Dinu, C.; Vasile, G.G.; Buleandra, M.; Popa, D.E.; Gheorghe, S.; Ungureanu, E.M. Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. J. Soil Sediments 2020, 20, 2141–2154. [Google Scholar] [CrossRef]
- Lal, K.; Yadav, R.K.; Kaur, R.; Bundela, D.S.; Khan, M.I.; Chaudhary, M.; Meena, R.L.; Dar, S.R.; Singh, G. Productivity, essential oil yield, and heavy metal accumulation in lemon grass (Cymbopogon flexuosus) under varied wastewater–Groundwater irrigation regimes. Ind. Crop Prod. 2013, 45, 270–278. [Google Scholar] [CrossRef]
- Lydakis-Simantiris, N.; Fabian, M.; Skoula, M. Cultivation of medicinal and aromatic plants in heavy metal-contaminated soils. Glob. Nest J. 2016, 18, 630–642. [Google Scholar]
- Angelova, V.R.; Grekov, D.F.; Kisyov, V.K.; Ivanov, K.I. Potential of lavender (Lavandula vera L.) for phytoremediation of soils contaminated with heavy metals. Int. J. Agric. Biosyst. Eng. 2015, 9, 522–529. [Google Scholar]
Reference | Plant | HM Examined/Nature of Study |
---|---|---|
Pirooz et al. 2022 [55] | Salvia officinalis L. | Cu, lab-scale |
Es-sbihi et al. 2020 [56] | S. officinalis L. | Cu, lab-scale |
Elzaawely et al. 2007 [57] | Alpinia zerumbet (Pers.) B.L.Burtt and R.M.Sm. | Cum lab-scale |
Lajayer et al. 2017 [58] | Mentha pulegium L. | Cu, Zn, lab-scale |
Babashpour-Asl et al. 2022 [59] | Coriandrum sativum L. | Cd, lab-scale |
Fattahi et al. 2019 [60] | Ocimum basilicum L. | Cd, Pb, lab-scale |
Poursaeid et al. 2021 [61] | O. basilicum L. | Cd, lab-scale |
Mohammed et al. 2024 [62] | Mentha piperita L., M. spicata var. crispa L. | Cd, lab-scale |
Youssef 2021 [63] | O. basilicum L. | Cd, Pb, lab-scale |
Kilic and Kilic 2017 [64] | Melissa officinalis L. | Cd, lab-scale |
Amirmoradi et al. 2012 [65] | M. piperita L. | Cd, Pb, lab-scale |
Azimychetabi et al. 2021 [66] | M. piperita L. | Cd, lab-scale |
Kunwar et al. 2015 [67] | M. spicata L., O. basilicum L. | Cd, Cu, Pb, lab-scale |
Sulastri and Tampubolon 2019 [68] | Vetiveria zizanioides (L.) Nash, Cymbopogon citratus (DC.) Stapf, C. nardus (L.) Rendle, Curcuma xanthorrhiza Roxb., Pogostemon cablin (Blanco) Benth., Alpinia galanga (L.) Willd. | Cd, lab-scale |
Sá et al. 2015 [69] | M. crispa L. | Pb, lab-scale |
Prasad et al. 2010 [70] | M. piperita L., M. arvensis L., M. citrata Ehrh. | Cd, Pb, lab-scale |
Zheljazkov et al. 2006 [1] | Anethum graveolens L., Mentha piperita L., O. basilicum L. | Cd, Pb, Cu |
Nabi et al. 2020 [71] | M. arvensis L. | Ni, lab-scale |
Biswas et al. 2015 [72] | O. basilicum L. | As, lab-scale |
Scora and Chang 1997 [73] | M. piperita L. | Cd, Cr, Cu, Ni, Pb, Zn sewage sludge-treated soils |
Pandey et al. 2015 [74] | Cymbopogon martinii (Roxb.) Wats. | Cr, Ni, Pb, Cd, tannery sludge polluted soil |
Gautam and Agrawal 2017 [75] | Cymbopogon citratus (DC.) Stapf. | Red mud mixed with sewage sludge amended soil |
Zheljazkov et al. 1996 [76] | Lavandula angustifolia Mill. | Field experiment |
Gharib et al. 2021 [77] | Mentha longifolia (L.) Huds. | Field experiment |
Givianrad and Hashemi 2014 [78] | Tanacetum polycephalum Sch.Bip. | Field experiment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubai, K.; Kováts, N. Interaction Between Heavy Metals Posed Chemical Stress and Essential Oil Production of Medicinal Plants. Plants 2024, 13, 2938. https://doi.org/10.3390/plants13202938
Hubai K, Kováts N. Interaction Between Heavy Metals Posed Chemical Stress and Essential Oil Production of Medicinal Plants. Plants. 2024; 13(20):2938. https://doi.org/10.3390/plants13202938
Chicago/Turabian StyleHubai, Katalin, and Nora Kováts. 2024. "Interaction Between Heavy Metals Posed Chemical Stress and Essential Oil Production of Medicinal Plants" Plants 13, no. 20: 2938. https://doi.org/10.3390/plants13202938
APA StyleHubai, K., & Kováts, N. (2024). Interaction Between Heavy Metals Posed Chemical Stress and Essential Oil Production of Medicinal Plants. Plants, 13(20), 2938. https://doi.org/10.3390/plants13202938