Influence of Foliar Application of Nanoparticles on Low Temperature Resistance of Rice Seedlings
Abstract
:1. Introduction
2. Results
2.1. XRD Analysis of Nanoparticles
2.2. Effect of Nanoparticles on Plant Growth Parameters
2.3. Effect of Nanoparticles on Photosynthetic Pigment
2.4. Application of ZnO, FeO, TiO, and CeO2 NPs Alleviate Chilling-Induced Oxidative Stress in Rice
2.5. Impact of NPs on Antioxidant Enzymes
2.6. Principal Component, Correlation Plots, and Regression Analysis
3. Materials and Methods
3.1. Plant Materials and Growth Conditions
3.2. Experimental Design and Treatments
3.3. Details of NPs
3.4. Agronomic Characters
3.5. Determination of Chlorophyll (Chl.)
3.6. Measurement of Malondialdehyde (MDA) Content
3.7. Measurement of Free Proline (Pro)
3.8. Activity of Antioxidant Enzyme
3.9. Statistical Analysis
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Wei, X.; Tong, X.; Zhao, J.; Liu, X.; Wang, H.; Tang, L.; Shu, Y.; Li, G.; Wang, Y.; et al. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. Mol. Plant 2022, 15, 706–722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhao, X.Q.; Wang, W.S.; Pan, Y.J.; Huang, L.Y.; Liu, X.Y.; Zong, Y.; Zhu, L.H.; Yang, D.C.; Fu, B.Y. Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS ONE 2012, 7, e43274. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.H.; Xin, Y.Y.; Tan, Y.J.; Hu, X.J.; Bai, J.J.; Liu, Z.Y.; Yu, Y.L.; Li, L.Y.; Peng, C.; Fan, T.; et al. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc. Natl. Acad. Sci. USA 2019, 116, 3494–3501. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Bi, Y.M.; Zhu, T.; Rothsteinm, S.J. Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NAL. Plant Mol. Biol. 2007, 65, 775–797. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Q.; Hussain, S.; Mei, J.; Dong, H.; Peng, S.; Nie, L. Pre-sowing seed treatments in direct-seeded early rice: Consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci. Rep. 2016, 6, 19637. [Google Scholar] [CrossRef]
- Shimono, H.; Okada, M.; Kanda, E.; Arakawa, I. Low temperature-induced sterility in rice: Evidence for the effects of temperature before panicle initiation. Field Crops Res. 2007, 101, 221–231. [Google Scholar] [CrossRef]
- Chen, S.; Yin, C.; Strasser, R.J.; Govindjee; Yang, C.; Qiang, S. Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana. Plant Physiol. Biochem. 2012, 52, 38–51. [Google Scholar] [CrossRef]
- Liu, W.Y.; Yu, K.M.; He, T.F.; Li, F.F.; Zhang, D.X.; Liu, J.X. The low temperature induced physiological responses of Avena-nuda L., a cold-tolerant plant species. Transfus. Apher. Sci. 2013, 2013, 658793. [Google Scholar] [CrossRef]
- He, J.; Duan, Y.; Hua, D.; Fan, G.; Wang, L.; Liu, Y.; Chen, Z.; Han, L.; Qu, L.J.; Gong, Z. DEXH Box RNA Helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell 2012, 24, 1815–1833. [Google Scholar] [CrossRef]
- Jeong, S.W.; Choi, S.M.; Lee, D.S.; Ahn, S.N.; Hur, Y.; Chow, W.S.; Park, Y.I. Differential susceptibility of photosynthesis to light-chilling stress in rice (Oryza sativa L.) depends on the capacity for photochemical dissipation of light. Mol. Cells 2002, 13, 419–428. [Google Scholar] [CrossRef]
- Tretter, L.; Adam-Vizi, V. Alpha-ketoglutarate dehydrogenase: A target and generator of oxidative stress. Philos. Trans. R. Soc. B 2005, 360, 2335–2345. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Jiang, M.; Zhang, H.; Li, R. Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza sativa L.) by regulating antioxidative system and chilling response transcription factors. Molecules 2021, 26, 2196. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Noman, M.; Manzoor, N.; Shahid, M.; Abdullah, M.; Ali, L.; Wang, G.A.; Hashem, A.; Al-Arjani, A.F.; Alqarawi, A.A.; et al. Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicol. Environ. Saf. 2021, 209, 111829. [Google Scholar] [CrossRef]
- Adrees, M.; Khan, Z.S.; Ali, S.; Hafeez, M.; Khalid, S.; Rehman, M.Z.U.; Hussain, A.; Hussain, K.; Chatha, S.A.S.; Rizwan, M. Simultaneous Mitigation of Cadmium and Drought Stress in Wheat by Soil Application of Iron Nanoparticles. Chemosphere 2020, 238, 124681. [Google Scholar] [CrossRef]
- Mohammadi, H.; Esmailpour, M.; Gheranpaye, A. Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants. Acta Agric. Slov. 2016, 107, 385–396. [Google Scholar] [CrossRef]
- Maity, A. Influence of Metal Nanoparticles (NPs) on Germination and Yield of Oat (Avena sativa) and Berseem (Trifolium alexandrinum). Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 595–607. [Google Scholar] [CrossRef]
- Mohammadi, R.; Amiri, N.M.; Mantri, L. Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ. J. Plant Physiol. 2013, 61, 768–775. [Google Scholar] [CrossRef]
- Hasanpour, H.; Maali-Amir, R.; Zeinali, H. Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. Russ. J. Plant Physiol. 2015, 62, 779–787. [Google Scholar] [CrossRef]
- Tang, S.Q. Effects of Low Temperature and Water-Logging Stress at Bus Stage on Growth Characteristics and Yield of Early Indica Rice. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2019. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Ulusu, Y.; Öztürk, L.; Elmastaş, M. Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress. Russ. J. Plant Physiol. 2017, 64, 883–888. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Karabal, E.; Yücel, M.; Öktem, H.A. Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci. 2003, 164, 925–933. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, K.X.; Wang, W.S.; Gong, W.; Liu, W.C.; Chen, H.G.; Xu, H.H.; Lu, Y.T. Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12. Plant Cell Physiol. 2015, 56, 727–736. [Google Scholar] [CrossRef]
- Yang, G.; Xia, Y.Y.; Ren, W.K. Glutamine metabolism in Th17/Treg cell fate: Applications in Th17 cell-associated diseases. Sci. China Life Sci. 2021, 64, 221–233. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Zhao, J.; Wang, J. The protective effects of nitric oxide on chilling stress in rice. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Zhu, J.; Li, Y.; Wang, Y. Alleviation of chilling injury in rice seedlings by the application of zinc oxide nanoparticles. Plant Physiol. Biochem. 2019, 143, 21–29. [Google Scholar]
- Li, Y.; Zhu, J.; Zhao, W.; Wang, Y. Effects of zinc oxide nanoparticles on the chilling tolerance of rice seedlings. J. Plant Physiol. 2021, 266, 153537. [Google Scholar]
- Huang, X.; Zheng, X.; Cai, J.; Liu, Y.; Jiang, H. Effects of iron oxide nanoparticles on the growth and photosynthetic pigments of maize (Zea mays). Int. J. Agric. Biol. 2017, 19, 577–582. [Google Scholar]
- Kumar, V.; Sharma, N.; Kumar, P. The use of iron oxide nanoparticles for the production of high-quality rice. Plant Physiol. Biochem. 2018, 125, 195–202. [Google Scholar]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2016, 514, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Back, K.; Lee, H. Effects of TiO2 nanoparticles on growth and development of Arabidopsis thaliana. Environ. Sci. Pollut. Res. 2018, 25, 14926–14932. [Google Scholar]
- Alotaibi, M.O.; Ikram, M.; Alotaibi, N.M.; Hussain, G.S.; Ghoneim, A.M.; Younis, U.; Naz, N.; Danish, S. Examining the role of AMF-Biochar in the regulation of spinach growth attributes, nutrients concentrations, and antioxidant enzymes in mitigating drought stress. Plant Stress 2023, 10, 100205. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.; Zu, X.; Gong, J.; Deng, H.; Hang, R.; Zhang, X.; Liu, C.; Deng, X.; Luo, L.; et al. Pseudouridylation of chloroplast ribosomal RNA contributes to low temperature acclimation in rice. New Phytol. 2022, 236, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.T.; Wang, W.; Mao, B.G.; Chu, C.C. Cold stress tolerance in rice: Physiological changes, molecular mechanism, and future prospects. Hereditas 2018, 40, 171–185. [Google Scholar] [CrossRef]
- Yang, B.; Ma, H.Y.; Wang, X.M. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endo-phyte Phomopsis liquidambari. Plant Physiol. Biochem. 2014, 82, 172–182. [Google Scholar] [CrossRef]
- Fanourakis, D.; Aliniaeifard, S.; Sellin, A.; Giday, H.; Tsaniklidis, G. Stomatal behavior following mid- or long-term exposure to high relative air humidity: A review. Plant Physiol. Biochem. 2020, 153, 92–105. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Arshad, M.S.; Farooq, M.; Asch, F.; Krishna, J.S.V.; Prasad, P.V.V.; Siddique, K.H.M. Thermal stress impacts reproductive development and grain yield in rice. Plant Physiol. Biochem. 2017, 115, 57–72. [Google Scholar] [CrossRef]
- Baek, K.H.; Skinner, D.Z. Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. J. Agric. Chem. Environ. 2012, 1, 34–40. [Google Scholar] [CrossRef]
Nano-Particles (mg/L) | Plant Height (cm) | Fresh Weight (g/Plant) | Dry Weight (g/Plant) | Root Length (cm) | ChlA (µg/g FW) | Chl b (µg/g FW) |
---|---|---|---|---|---|---|
Zinc oxide(mg/L) | ||||||
CK | 35.88 a | 15.43 a | 1.523 a | 21.84 a | 151.5 a | 130.4 a |
0 | 19.47 d | 8.60 d | 0.809 c | 11.38 d | 82.2 c | 74.9 d |
50 | 24.1 c | 9.93 cd | 0.922 c | 14.09 c | 94.4 c | 87.1 cd |
100 | 27.92 b | 11.48 b | 1.242 b | 18.17 b | 125.1 b | 107.6 b |
200 | 26.75 bc | 11.13 bc | 1.177 b | 17.12 b | 118.6 b | 98.5 bc |
LSD(0.05) | 3.66 | 1.543 | 0.1135 | 2.628 | 12.83 | 14.86 |
Iron oxide(mg/L) | ||||||
CK | 35.04 a | 15.18 a | 1.520 a | 17.23 a | 159.1 a | 107.3 a |
0 | 17.5 d | 8.27 d | 0.795 c | 9.37 d | 91.67 c | 60.3 d |
50 | 23.88 b | 12.52 b | 1.278 b | 14.38 b | 138.8 b | 95.4 ab |
75 | 23.34 b | 11.05 bc | 0.899 c | 11.53 c | 128.9 b | 85.7 bc |
100 | 20.0 c | 10.71 c | 0.871 c | 10.18 cd | 101.6 c | 76.5 c |
LSD(0.05) | 1.92 | 1.72 | 0.1255 | 2.0393 | 12.28 | 14.83 |
Titanium oxide (mg/L) | ||||||
CK | 35.88 a | 16.68 a | 1.508 a | 22.7 a | 144.8 a | 128.2 a |
0 | 16.98 d | 9.46 c | 0.795 c | 12.508 b | 75.7 d | 69.7 c |
50 | 27.74 b | 11.32 b | 1.278 b | 12.825 b | 128.4 b | 93.1 b |
75 | 25.95 bc | 10.19 bc | 0.899 c | 12.64 b | 118.6 b | 82.9 bc |
100 | 23.7 c | 9.75 c | 0.871 c | 12.7 b | 86.6 c | 74.3 c |
LSD(0.05) | 2.92 | 1.22 | 0.1068 | 1.98 | 10.35 | 17.29 |
Cerium oxide (mg/L) | ||||||
CK | 33.58 a | 17.43 a | 1.739 a | 20.7 a | 158.9 a | 105.1 a |
0 | 19.3 d | 10.77 c | 0.809 c | 11.1 d | 91.5 c | 58.1 d |
50 | 23.8 c | 13.71 b | 0.922 c | 12.47 cd | 101.5 c | 74.4 c |
75 | 27.6 b | 15.1 b | 1.308 b | 15.67 b | 138.7 b | 93.2 ab |
100 | 22.42 d | 14.22 b | 0.888 c | 14.25 bc | 128.9 b | 83.6 c |
LSD(0.05) | 3.26 | 1.479 | 0.149 | 2.9 | 12.28 | 14.8 |
Cultivars | ||||||
LLY-7108 | 27.8 a | 16.45 a | 1.159 a | 15.94 a | 129.2 a | 1 o3.1 a |
LLY-32 | 24.8 b | 13.68 bc | 1.006 b | 13.14 c | 14.6 b | 81.4 b |
XZX-06 | 23.3 b | 14.83 ab | 1.048 b | 14.3 b | 123.9 a | 96.01 a |
Zhang-17 | 20.3 d | 11.85 c | 0.875 c | 10.98 d | 105.4 c | 74.03 b |
LSD | 2.8 | 1.23 | 0.111 | 1.6 | 7.62 | 8.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, S.; Ikram, M.; Xiao, J.; Khan, A.; Din, I.; Huang, J. Influence of Foliar Application of Nanoparticles on Low Temperature Resistance of Rice Seedlings. Plants 2024, 13, 2949. https://doi.org/10.3390/plants13212949
Ullah S, Ikram M, Xiao J, Khan A, Din I, Huang J. Influence of Foliar Application of Nanoparticles on Low Temperature Resistance of Rice Seedlings. Plants. 2024; 13(21):2949. https://doi.org/10.3390/plants13212949
Chicago/Turabian StyleUllah, Shafi, Muhammad Ikram, Jian Xiao, Atika Khan, Ismail Din, and Jianliang Huang. 2024. "Influence of Foliar Application of Nanoparticles on Low Temperature Resistance of Rice Seedlings" Plants 13, no. 21: 2949. https://doi.org/10.3390/plants13212949
APA StyleUllah, S., Ikram, M., Xiao, J., Khan, A., Din, I., & Huang, J. (2024). Influence of Foliar Application of Nanoparticles on Low Temperature Resistance of Rice Seedlings. Plants, 13(21), 2949. https://doi.org/10.3390/plants13212949