Exploration of Strawberry Fruit Quality During Harvest Season Under a Semi-Forcing Culture with Plants Nursed Without Chilling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments and Fruit Harvest
2.1.1. Genotypes Behavior among Harvest Dates
2.1.2. Fruit Quality Stability in INIA Yrupé
2.2. Physicochemical Analyses and Free Sugars Determination
2.3. Bioactive Compounds Anthocyanins and Phenolics
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sparacino, A.; Ollani, S.; Baima, L.; Oliviero, M.; Borra, D.; Rui, M.; Mastromonaco, G. Analyzing strawberry preferences: Best–worst scaling methodology and purchase styles. Foods 2024, 13, 1474. [Google Scholar] [CrossRef] [PubMed]
- Lewers, K.S.; Newell, M.J.; Park, E.; Luo, Y. Consumer preference and physiochemical analyses of fresh strawberries from ten cultivars. Int. J. Fruit Sci. 2020, 20 (Suppl. S2), 733–756. [Google Scholar] [CrossRef]
- Fecka, I.; Nowicka, A.; Kucharska, A.Z.; Sokół-Łętowska, A. The effect of strawberry ripeness on the content of polyphenols, cinnamates, L-ascorbic and carboxylic acids. J. Food Compos. Anal. 2021, 95, 103669. [Google Scholar] [CrossRef]
- Reis, L.; Forney, C.F.; Jordan, M.; Munro Pennell, K.; Fillmore, S.; Schemberger, M.O.; Ayub, R.A. Metabolic profile of strawberry fruit ripened on the plant following treatment with an ethylene elicitor or inhibitor. Front. Plant Sci. 2020, 11, 995. [Google Scholar] [CrossRef]
- Cozzolino, R.; Pace, B.; Palumbo, M.; Laurino, C.; Picariello, G.; Siano, F.; De Giulio, B.; Pelosi, S.; Cefola, M. Profiles of volatile and phenolic compounds as markers of ripening stage in Candonga strawberries. Foods 2021, 10, 3102. [Google Scholar] [CrossRef]
- Khammayom, N.; Maruyama, N.; Chaichana, C. The effect of climatic parameters on strawberry production in a small walk-in greenhouse. AgriEngineering 2022, 4, 104–121. [Google Scholar] [CrossRef]
- Ariza, M.T.; Miranda, L.; Gómez-Mora, J.A.; Medina, J.J.; Lozano, D.; Gavilán, P.; Soria, C.; Martínez-Ferri, E. Yield and fruit quality of strawberry cultivars under different irrigation regimes. Agronomy 2021, 11, 261. [Google Scholar] [CrossRef]
- Cervantes, L.; Martinez-Ferri, E.; Soria, C.; Ariza, M.T. Bioavailability of phenolic compounds in strawberry, raspberry and blueberry: Insights for breeding programs. Food Biosci. 2020, 37, 100680. [Google Scholar] [CrossRef]
- Cervantes, L.; Ariza, M.T.; Gómez-Mora, J.A.; Miranda, L.; Medina, J.J.; Soria, C.; Martínez-Ferri, E. Light exposure affects fruit quality in different strawberry cultivars under field conditions. Sci. Hortic. 2019, 252, 291–297. [Google Scholar] [CrossRef]
- Topcu, H.; Degirmenci, I.; Ayvaz Sonmez, D.; Paizila, A.; Karci, H.; Kafkas, S.; Kafkas, E.; Ercisli, S.; Alatawi, A. Sugar, invertase enzyme activities and invertase gene expression in different developmental stages of strawberry fruits. Plants 2022, 11, 509. [Google Scholar] [CrossRef]
- Dzhanfezova, T.; Barba-Espín, G.; Müller, R.; Joernsgaard, B.; Hegelund, J.N.; Madsen, B.; Larsen, D.H.; Martínez Vega, M.; Toldam-Andersen, T.B. Anthocyanin profile, antioxidant activity and total phenolic content of a strawberry (Fragaria × ananassa Duch) genetic resource collection. Food Biosci. 2020, 36, 100620. [Google Scholar] [CrossRef]
- Parra-Palma, C.; Morales-Quintana, L.; Ramos, P. Phenolic content, color development, and pigment−related gene expression: A comparative analysis in different cultivars of strawberry during the ripening process. Agronomy 2020, 10, 588. [Google Scholar] [CrossRef]
- Sirijan, M.; Pipattanawong, N.; Saeng-on, B.; Chaiprasart, P. Anthocyanin content, bioactive compounds and physico-chemical characteristics of potential new strawberry cultivars rich in anthocyanins. J. Berry Res. 2020, 10, 397–410. [Google Scholar] [CrossRef]
- Duarte, L.J.; Chaves, V.C.; Nascimento, M.V.P.D.S.; Calvete, E.; Li, M.; Ciraolo, E.; Ghigo, A.; Hirsch, E.; Simões, C.M.O.; Reginatto, F.H.; et al. Molecular mechanism of action of pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chem. 2018, 247, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Simkova, K.; Veberic, R.; Hudina, M.; Grohar, M.C.; Ivancic, T.; Smrke, T.; Pelacci, M.; Jakopic, J. Berry size and weight as factors influencing the chemical composition of strawberry fruit. J. Food Compos. Anal. 2023, 123, 105509. [Google Scholar] [CrossRef]
- Lado, J.; Moltini, A.I.; Vicente, E.; Rodríguez, G.; Rodríguez, M.; López, M.; Billiris, A.; Ares, G. Integration of sensory analysis into plant breeding: A review. Agrociencia Urug. 2019, 23, e71. [Google Scholar] [CrossRef]
- Holmes, G.J. The California strawberry industry: Current trends and future prospects. Int. J. Fruit Sci. 2024, 24, 115–129. [Google Scholar] [CrossRef]
- Tanino, K.K.; Wang, R. Modeling chilling requirement and diurnal temperature differences on flowering and yield performance in strawberry crown production. HortScience 2008, 43, 2060–2065. [Google Scholar] [CrossRef]
- Krüger, E.; Josuttis, M.; Nestby, R.; Toldam-Andersen, T.B.; Carlen, C.; Mezzetti, B. Influence of growing conditions at different latitudes of Europe on strawberry growth performance, yield and quality. J. Berry Res. 2012, 2, 143–157. [Google Scholar] [CrossRef]
- Neri, D.; Baruzzi, G.; Massetani, F.; Faedi, W. Strawberry production in forced and protected culture in Europe as a response to climate change. Can. J. Plant Sci. 2012, 92, 1021–1036. [Google Scholar] [CrossRef]
- Paladini Moreira, A.F.; Vilela de Resende, J.T.; Shimizu, G.D.; Hata, F.T.; do Nascimento, D.; Barbosa Oliveira, L.V.; Suek Zanin, D.; Mariguele, K.H. Characterization of strawberry genotypes with low chilling requirement for cultivation in tropical regions. Sci. Hortic. 2022, 292, 110629. [Google Scholar] [CrossRef]
- Menzel, C. Higher temperatures decrease fruit size in strawberry growing in the subtropics. Horticulturae 2021, 7, 34. [Google Scholar] [CrossRef]
- Rugienius, R.; Frercks, B.; Mažeikienė, I.; Rasiukevičiūtė, N.; Baniulis, D.; Stanys, V. Development of Climate-Resilient Varieties in Rosaceous Berries. In Genomic Designing of Climate-Smart Fruit Crops; Kole, C., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Vicente, E.; Giménez, G.; Manzzioni, A.; Vilaró, F.; González Arcos, M.; Cabot, M. Strawberry breeding in Uruguay. Acta Hortic. 2009, 842, 411–414. [Google Scholar] [CrossRef]
- Akpenpuun, T.D.; Ogunlowo, Q.O.; Na, W.-H.; Rabiu, A.; Adesanya, M.A.; Dutta, P.; Zakir, E.; Ogundele, O.M.; Kim, H.-T.; Lee, H.-W. Review of temperature management strategies and techniques in the greenhouse microenvironment. Adeleke Univ. J. Eng. Technol. 2023, 6, 126–147. [Google Scholar]
- Pedrozo, P.; Vicente, E.; Moltini, A.I.; Ibáñez, F.; Lado, B.; Fariña, L.; Ares, G.; Lado, J. Strawberry fruit quality: Impacts of the harvest date with a breeding perspective. JSFA Rep. 2023, 3, 597–608. [Google Scholar] [CrossRef]
- Kannaujia, P.K.; Asrey, R. Effect of harvesting season and cultivars on storage behaviour, nutritional quality and consumer acceptability of strawberry (Fragaria × ananassa Duch.) fruits. Acta Physiol. Plant. 2021, 43, 88. [Google Scholar] [CrossRef]
- Tiscornia, G. Consideraciones sobre la variablidad climática. Rev. INIA 2016, 46, 52–55. [Google Scholar]
- Vicente, E.; Varela, P.; de Saldamando, L.; Ares, G. Evaluation of the sensory characteristics of strawberry cultivars throughout the harvest season using projective mapping. J. Sci. Food Agric. 2014, 94, 591–599. [Google Scholar] [CrossRef]
- López Camelo, A.F.; Gómez, P.A. Comparison of color indexes for tomato ripening. Hortic. Bras. 2004, 22, 534–537. [Google Scholar] [CrossRef]
- Lado, J.; Vicente, E.; Manzzioni, A.; Ares, G. Application of a check-all-that-apply question for the evaluation of strawberry cultivars from a breeding program. J. Sci. Food Agric. 2010, 90, 2268–2275. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Xu, Y.; Li, L.; Soleimani Aghdam, M.; Luo, Z. Effect of exogenous sucrose on anthocyanin synthesis in postharvest strawberry fruit. Food Chem. 2019, 289, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, V.; Ibañez, F.; Cabrera, D.; Pintado, B. Bioactive compounds and antioxidant capacity in native fruits of Uruguay. INNOTEC 2020, 19, 64–75. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin-Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Ashour, M.; Al-Souti, A.S.; Hassan, S.M.; Ammar, G.A.G.; Goda, A.M.A.-S.; El-Shenody, R.; Abomohra, A.E.-F.; El-Haroun, E.; Elshobary, M.E. Commercial seaweed liquid extract as strawberry biostimulants and bioethanol production. Life 2023, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.R.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef]
- Pistón, F.; Pérez, A.G.; Sanz, C.; Refoyo, A. Strawberry postharvest shelf life is related to total acid content and fruit firmness. In Proceedings of the ISHS Acta Horticulturae 1309: IX International Strawberry Symposium, Rimini, Italy, 1–5 May 2021. [Google Scholar] [CrossRef]
- Kamperidou, I.; Vasilakakis, M. Effect of propagation material on some quality attributes of strawberry fruit (Fragaria x ananassa, var. Selva). Sci. Hortic. 2006, 107, 137–142. [Google Scholar] [CrossRef]
- Agüero, J.J.; Salazar, S.M.; Kirschbaum, D.S.; Jerez, E.F. Factors Affecting Fruit Quality in Strawberries Grown in a Subtropical Environment. Int. J. Fruit Sci. 2015, 15, 223–234. [Google Scholar] [CrossRef]
- Moing, A.; Renaud, C.; Gaudillère, M.; Raymond, P.; Roudeillac, P.; Denoyes-Rothan, B. Biochemical changes during fruit development of four strawberry cultivars. J. Am. Soc. Hortic. Sci. 2001, 126, 394–403. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Yu, O.; Tang, J.; Gu, X.; Wan, X.; Fang, C. Metabolic profiling of strawberry (Fragaria×ananassa Duch.) during fruit development and maturation. J. Exp. Bot. 2011, 62, 1103–1118. [Google Scholar] [CrossRef]
- Arizmendi, F.; Trinchin, R.; Barreiro, M. Weather regimes in subtropical South America and their impacts over Uruguay. Int. J. Climatol. 2022, 42, 9253–9270. [Google Scholar] [CrossRef]
- Lado, J.; Moltini, A.I.; Salgado, S.; Ruiz, S.; Ares, G.; Vicente, E. La calidad sensorial de las variedades de frutilla creadas en Uruguay: ¿Qué opinan los consumidores? Rev. INIA 2023, 73, 56–59. [Google Scholar]
- Andronova, N.V. Evaluating initial forms of strawberry for anthocyanin content in fruits. Sadovod. Vinograd. 2023, 1, 5–10. [Google Scholar] [CrossRef]
- Mitcham, E.J. Strawberry. University of California, Davis. 4 October 2023. Available online: https://postharvest.ucdavis.edu/produce-facts-sheets/strawberry (accessed on 4 January 2022).
INIA Guapa | INIA Ágata | INIA Yrupé | Q67.3 | T17.4 | U20.4 | |
---|---|---|---|---|---|---|
Harvest date | Color Index (external) | |||||
Jun | 45.1 ± 0.36 a | 50.9 ± 0.87 b | 45.2 ± 0.52 a | 47.5 ± 0.58 a | 47.2 ± 0.34 ab | 45.94 ± 0.19 b |
Aug | 44.8 ± 0.37 a | 48.5 ± 1.22 b | 46.6 ± 0.82 a | 48.2 ± 1.42 a | 48.3± 1.27 a | 42.28 ± 0.72 c |
Sept | 46.8 ± 0.56 a | 56.4 ± 0.29 a | 46.5 ± 1.05 a | 46.7 ± 1.79 a | 45.2 ± 0.92 b | 54.5 ± 0.57 a |
Color Index (internal) | ||||||
Jun | 18.2 ± 0.26 b | 14.2 ± 0.14 b | 17.1 ± 0.81 b | 15.7 ± 0.96 b | 14.5 ± 0.38 b | 26.2 ± 0.51 a |
Aug | 21.0 ± 0.69 a | 21.0 ± 0.46 a | 18.4 ± 0.55 b | 19.5 ± 0.56 a | 18.9 ± 0.13 a | 25.3 ± 0.73 ab |
Sept | 21.2 ± 0.51 a | 22.4 ± 0.65 a | 27.2 ± 0.55 a | 20.9 ± 0.35 a | 13.6 ± 0.58 b | 23.9 ± 0.40 b |
Firmness (N) | ||||||
Jun | 2.44 ± 0.04 b | 4.85 ± 0.15 b | 4.80 ± 0.40 ab | 3.46 ± 0.18 b | 3.09 ± 0.17 a | 5.63 ± 0.30 b |
Aug | 2.76 ± 0.08 b | 4.25 ± 0.22 b | 4.16 ± 0.26 b | 3.98 ± 0.05 b | 3.34 ± 0.20 a | 5.05 ± 0.04 b |
Sept | 7.38 ± 0.30 a | 6.16 ± 0.46 a | 5.69 ± 0.29 a | 5.89 ± 0.19 a | 3.06 ± 0.22 a | 7.35 ± 0.45 a |
Titratable Acidity | ||||||
Jun | 0.47 ± 0.01 a | 0.72 ± 0.03 a | 0.54 ± 0.01 a | 0.65 ± 0.03 a | 0.51 ± 0.07 ab | 0.55 ± 0.01 a |
Aug | 0.46 ± 0.01 a | 0.57 ± 0.02 b | 0.54 ± 0.01 a | 0.48 ± 0.01 b | 0.43 ± 0.03 b | 0.47 ± 0.02 ab |
Sept | 0.42 ± 0.01 a | 0.56 ± 0.03 b | 0.39 ± 0.01 b | 0.43 ± 0.02 b | 0.54 ± 0.00 a | 0.39 ± 0.00 b |
Soluble Solids | ||||||
Jun | 7.18 ± 0.15 c | 6.72 ± 0.17 b | 6.48 ± 0.04 c | 6.87 ± 0.03 a | 5.75 ± 0.14 c | 6.39 ± 0.27 a |
Aug | 8.59 ± 0.12 b | 7.16 ± 0.03 b | 8.59 ± 0.12 a | 7.20 ± 0.23 a | 6.79 ± 0.29 b | 6.42 ± 0.01 a |
Sept | 9.61 ± 0.07 a | 8.64 ± 0.36 a | 7.44 ± 0.30 b | 7.34 ± 0.07 a | 8.93 ± 0.06 a | 6.95 ± 0.24 a |
Ratio | ||||||
Jun | 15.3 ± 0.63 c | 9.37 ± 0.39 c | 11.9 ± 0.21 c | 10.6 ± 0.51 c | 11.8 ± 1.70 c | 11.6 ± 0.63 c |
Aug | 18.7 ± 0.36 b | 12.6 ± 0.43 b | 16.0 ± 0.35 b | 14.9 ± 0.34 b | 16.0 ± 1.51 b | 13.6 ± 0.45 b |
Sept | 22.8 ± 0.71 a | 15.4 ± 0.74 a | 19.0 ± 0.78 a | 17.1 ± 1.05 a | 16.5 ± 0.12 a | 17.7 ± 0.65 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrozo, P.; Lado, B.; Moltini, A.I.; Vicente, E.; Lado, J. Exploration of Strawberry Fruit Quality During Harvest Season Under a Semi-Forcing Culture with Plants Nursed Without Chilling. Plants 2024, 13, 3052. https://doi.org/10.3390/plants13213052
Pedrozo P, Lado B, Moltini AI, Vicente E, Lado J. Exploration of Strawberry Fruit Quality During Harvest Season Under a Semi-Forcing Culture with Plants Nursed Without Chilling. Plants. 2024; 13(21):3052. https://doi.org/10.3390/plants13213052
Chicago/Turabian StylePedrozo, Paula, Bettina Lado, Ana Inés Moltini, Esteban Vicente, and Joanna Lado. 2024. "Exploration of Strawberry Fruit Quality During Harvest Season Under a Semi-Forcing Culture with Plants Nursed Without Chilling" Plants 13, no. 21: 3052. https://doi.org/10.3390/plants13213052
APA StylePedrozo, P., Lado, B., Moltini, A. I., Vicente, E., & Lado, J. (2024). Exploration of Strawberry Fruit Quality During Harvest Season Under a Semi-Forcing Culture with Plants Nursed Without Chilling. Plants, 13(21), 3052. https://doi.org/10.3390/plants13213052