Antifungal Properties of Sargassum cinereum and Padina boergesenii Extracts Against Fungi Associated with Strawberry Fruits Concerning Mycotoxin Production
Abstract
:1. Introduction
2. Results
2.1. Primary Phytochemicals of S. cinereum and P. boergesenii
2.2. FTIR Analysis
2.3. The GC–MS Chromatogram of the Acetone Extracts of Seaweeds
2.4. Mycobiota Analysis
2.5. Molecular Identification
2.6. In Vitro Antifungal Activity
2.7. Fungal Pathogenicity and Aggressiveness on Strawberry Fruits (In Vivo Antifungal Activity)
2.8. Extraction and Detection of Botrydial and Dihydrobotrydial Toxins, and Ochratoxin A
3. Discussion
4. Materials and Methods
4.1. Seaweed Sample Collection
4.2. Preparing Seaweed Extracts
4.3. Qualitative Phytochemical Analysis
4.4. FTIR Spectroscopy
4.5. GC–MS Analysis
4.6. Gathering Samples of Strawberries
4.7. Mycobiota Analysis
4.8. DNA Extraction
4.9. Polymerase Chain Reaction, Amplification of 5.8S rDNA, and Gene Sequencing
4.10. In Vitro Antifungal Activity
4.11. Fungal Pathogenicity and Aggressiveness (In Vivo Antifungal Activity) on Strawberry Fruit
4.12. Extraction and Detection of Botrydial and Dihydrobotrydial Toxins
4.13. Extraction and Detection of Ochratoxin A
4.14. Chromatographic Analysis
4.15. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Reference No.
References
- Shen, H.; Wei, Y.; Wang, X.; Xu, C.; Shao, X. The marine yeast Sporidiobolus pararoseus ZMY-1 has antagonistic properties against Botrytis cinerea in vitro and in strawberry fruit. Postharvest Biol. Technol. 2019, 150, 1–8. [Google Scholar] [CrossRef]
- Bhaskara, R.M.; Belkacemi, K.; Corcuff, R.; Castaigne, F.; Arul, J. Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biol. Technol. 2000, 20, 39–51. [Google Scholar] [CrossRef]
- Schestibratov, K.A.; Dolgov, S.V. Transgenic strawberry plants expressing thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Sci. Hortic. 2005, 106, 177–189. [Google Scholar] [CrossRef]
- Kusstatscher, P.; Cernava, T.; Abdelfattah, A.; Gokul, J.; Korsten, L.; Berg, G. Microbiome approaches provide the key to biologically control postharvest pathogens and storability of fruits and vegetables. FEMS Microbiol. Ecol. 2020, 96, fiaa119. [Google Scholar] [CrossRef] [PubMed]
- Tournas, V.H.; Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 2005, 105, 11–17. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Freilich, S.; Bartuv, R.; Zhimo, V.Y.; Kumar, A.; Biasi, A.; Salim, S.; Feygenberg, O.; Burchard, E.; Dardick, C.; et al. Global analysis of the apple fruit microbiome: Are all apples the same? Environ. Microbiol. 2021, 23, 6038–6055. [Google Scholar] [CrossRef]
- Hassan, E.A.; Mostafa, Y.S.; Alamri, S.; Hashem, M.; Nafady, N.A. Biosafe Management of Botrytis Grey Mold of Strawberry Fruit by Novel Bioagents. Plants 2021, 10, 2737. [Google Scholar] [CrossRef]
- Tenea, G.N.; Reyes, P.; Molina, D. Fungal Mycobiome of Mature Strawberry Fruits (Fragaria x ananassa Variety ‘Monterey’) Suggests a Potential Market Site Contamination with Harmful Yeasts. Foods 2024, 13, 1175. [Google Scholar] [CrossRef]
- Zhao, Y.; Coninck, B.D.; Ribeiro, B.; Nicolaï, B.; Hertog, M. Early detection of Botrytis cinerea in strawberry fruit during quiescent infection using selected ion flow tube mass spectrometry (SIFT-MS). Int. J. Food Microbiol. 2023, 402, 110313. [Google Scholar] [CrossRef]
- El-Shahir, A.A. Detection of Mycobiota and Aflatoxigenic Fungi in Wheat Flour from Markets in Qena City, Egypt. Egypt. J. Microbiol. 2021, 56, 1–10. [Google Scholar] [CrossRef]
- Saleem, A.; El-Shahir, A.A. Morphological and molecular characterization of some Alternaria species isolated from tomato fruits concerning mycotoxin production and polyketide synthase genes. Plants 2022, 11, 1168. [Google Scholar] [CrossRef] [PubMed]
- Farghl, A.A.M.; El-Sheekh, M.M.; El-Shahir, A.A. Seaweed extracts as biological control of aflatoxins produced by Aspergillus parasiticus and Aspergillus flavus. Egypt. J. BPC 2023, 33, 50. [Google Scholar] [CrossRef]
- Minova, S.; Seskena, R.; Voitkane, S.; Metla, Z.; Daugavietis, M.; Jankevica, L. Impact of pine (Pinus sylvestris L.) and spruce (Picea abies (L.) Karst.) bark extracts on important strawberry pathogens. Proc. Latv. Acad. Sci. Sect. B Nat. Exact. Appl. Sci. 2015, 69, 62–67. [Google Scholar] [CrossRef]
- Wang, X.; Shi, J.; Wang, R. Effect of Burkholderia contaminans on postharvest diseases and induced resistance of strawberry fruits. Plant Pathol. J. 2018, 34, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Abbey, J.A.; Percival, D.; Abbey, L.; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)—Prospects and challenges. Biocontrol. Sci. Technol. 2019, 29, 207–228. [Google Scholar] [CrossRef]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L.; Agraria, D.; Mediterranea, U.; Feo, L.; Calabria, R. Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Gharieb, M.M.; El-Sabbagh, S.M.; Hamza, W.T. Antimicrobial efficacy of some marine macroalgae of Red Sea. IJMIR 2014, 3, 21–28. [Google Scholar]
- Sheikh, H.; El-Naggar, A.; Al-Sobahi, D. Evaluation of antimycotic activity of extracts of marine algae collected from Red Sea Coast, Jeddah, Saudi Arabia. J. Biosci. Med. 2018, 6, 51–68. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Naglaa, R.A.K.; Hesham, M.A.; Asmaa, J.; Hamdy, G.; Alwaleed, E.A. Efficacy of the marine red alga Laurencia papillosa extract on alloxan stimulated hyperglycemic activity in male wistar albino rats. Bioact. Carbohydr. Diet. Fibre. 2024, 31, 100403. [Google Scholar]
- Alwaleed, E.A.; Asmaa, J.; Naglaa, R.A.K.; Hamdy, G. Evaluation of the pancreatoprotective effect of algal extracts on Allox-an-induced diabetic rat. Bioact. Carbohydr. Diet. Fibre. 2020, 24, 100237. [Google Scholar]
- Al-Saif, S.S.A.; Abd-Alraouf, N.; El-Wazanani, H.A.; Aref, I.A. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J. Biol. Sci. 2014, 14, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Righini, H.; Roberti, R.; Baraldi, E. Use of algae in strawberry management. J. Appl. Phycol. 2018, 30, 3551–3564. [Google Scholar] [CrossRef]
- Reshma, P.; Naik, M.K.; Aiyaz, M.; Niranjana, S.R.; Chennappa, G.; Shaikh, S.S.; Sayyed, R.Z. Induced systemic resistance by 2,4diacetylphloroglucinol positive fluorescent Pseudomonas strains against rice sheath blight. Indian. J. Exp. Biol. 2018, 56, 207–212. [Google Scholar]
- Kamel, H.M. Impact of garlic oil, seaweed extract and imazalil on keeping quality of Valencia orange fruits during cold storage. J. Hort. Sci. 2014, 6, 116–125. [Google Scholar]
- Alwaleed, E.A. Biochemical composition and nutraceutical perspectives Red Sea seaweeds. Am. J. Appl. Sci. 2019, 16, 346–354. [Google Scholar] [CrossRef]
- Ely, R.; Supriya, T.; Naik, C.G. Antimicrobial activity of marine organisms collected off the coast of East India. J. Exp. Mar. Biol. Ecol. 2004, 309, 121–127. [Google Scholar] [CrossRef]
- Radhika, D.; Veerabahu, C.; Priya, R. Antibacterial activity of some selected seaweeds from the Gulf of Mannar Coast, South India. Asian J. Pharm. Clin. Res. 2012, 5, 89–90. [Google Scholar]
- Cordeiro, R.A.; Gomes, V.M.; Carvalho, A.F.; Melo, V.M. Effect of proteins from the red seaweed Hypnea musciformis (Wulfen) Lamouroux on the growth of human pathogen yeasts. Braz. Arch. Biol. Technol. 2006, 49, 915–921. [Google Scholar] [CrossRef]
- Padmakumar, K.P.; Ayyakannu, K. Seasonal variation of antibacterial and antifungal activities of the extracts of marine algae from southern coasts of India. Bot. Mar. 1997, 40, 507–515. [Google Scholar] [CrossRef]
- Alagic, S.; Stancic, I.; Palic, R.; Stojanovic, G.; Lepojevic, Z. Chemical composition of the supercritical carbon dioxide extracts of the Yaka, Prilep and Otlja tobaccos. J. Essent. Oil Res. 2006, 18, 185–188. [Google Scholar] [CrossRef]
- Das, D.; Arulkumar, A.; Paramasivam, S.; Lopez-Santamarina, A.; Mondragon, A.; Miranda Lopez, J.M. Phytochemical Constituents, Antimicrobial Properties and Bioactivity of Marine Red Seaweed (Kappaphycus alvarezii) and Seagrass (Cymodocea serrulata). Foods 2023, 24, 2811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balamurugan, M.; Selvam, G.G.; Thinakaran, T.X. Biochemical study and GC-MS analysis of Hypnea musciformis (Wulf.) Lamouroux. Am. Eurasian J. Sci. Res. 2013, 8, 117–123. [Google Scholar]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Hassanpour, S.H.; Doroudi, A. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna J. Phytomed. 2023, 13, 354–376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fraga-Corral, M.; Otero, P.; Cassani, L.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Chamorro, F.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods 2021, 10, 251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matanjun, P.; Mohamed, S.; Mustapha, N.M.; Muhammad, K.; Ming, C.H. Antioxidant activities and phenolics content of eight species of seaweeds from North Borneo. J. Appl. Phycol. 2008, 20, 367–373. [Google Scholar] [CrossRef]
- Prabakaran, G.; Moovendhan, M.; Arumugam, A.; Matharasi, A.; Dineshkumar, R.; Sampathkumar, P. Quantitativeanalysis of phytochemical profile in marine microalgae Chlorella vulgaris. Int. J. Pharm. Biol. Sci. 2018, 8, 562–565. [Google Scholar]
- Jiménez-Escrig, A.; Sánchez-Muniz, F.J. Dietary fibre from edible seaweeds: Chemical struc-ture physicochemical properties and effects on cholesterol metabolism. Nutr. Res. 2011, 20, 585–598. [Google Scholar] [CrossRef]
- Besednova, N.N.; Zaporozhets, T.S.; Somova, L.M.; Kuznetsova, T.A. Review: Prospects for the Use of Extracts and Polysaccharides from Marine Algae to Prevent and Treat the Diseases Caused by Helicobacter pylori. Helicobact 2015, 20, 89–97. [Google Scholar] [CrossRef]
- Sahar, W.M.; Shobier, A.H. GC/MS identification and applications of bioactive seaweed extracts from Mediterranean coast of Egypt. Egypt. J. Aquat. Biol. Fish. 2018, 22, 1–21. [Google Scholar]
- Djapic, N. Corallina officinalis chemical compounds obtained by supercritical fluid extraction. AACL Bioflux. 2018, 11, 422–428. [Google Scholar]
- Sasaki, Y.; Orikasa, T.; Nakamura, N.; Hayashi, K.; Yasaka, Y.; Makino, N.; Shobatake, K.; Koide, S.; Shiina, T. Dataset for life cycle assessment of strawberry-package supply chain with considering food loss during transportation. Data Brief. 2021, 39, 107473. [Google Scholar] [CrossRef] [PubMed]
- Satitmunnaithum, J.; Kitazawa, H.; Arofatullah, N.A.; Widiastuti, A.; Kharisma, A.D.; Yamane, K.; Tanabata, S.; Sato, T. Microbial population size and strawberry fruit firmness after drop shock-induced mechanical damage. Postharvest Biol. Technol. 2022, 192, 112008. [Google Scholar] [CrossRef]
- Barakat, R.M.; Al-Masri, M.I. Effect of Trichoderma harzianum in combination with fungicides in controlling grey mould disease (Botrytis cinerea) of strawberry. Am. J. Plant Sci. 2017, 8, 651. [Google Scholar] [CrossRef]
- Rasiukevičiūtė, N.; Rugienius, R.; Šikšnianienė, J.B. Genetic diversity of Botrytis cinerea from strawberry in Lithuania. Zemdirbyste-Agric. 2018, 105, 265–270. [Google Scholar] [CrossRef]
- Rosero-Hernandez, E.D.; Moraga, J.; Collado, I.G.; Echeverri, F. Natural compounds that modulate the development of the fungus Botrytis cinerea and protect Solanum lycopersicum. Plants 2019, 8, 111. [Google Scholar] [CrossRef]
- Vorotnikova, E.; Van Sickle, J.J.; Borisova, T. The Economic value of the precision disease management system for anthracnose and Botrytis fruit rot for the Florida strawberry industry. In Proceedings of the Southern Agricultural Economics Association Annual Meeting, Birmingham, Alabama, 4–7 February 2012; p. 20. [Google Scholar]
- Ali, M.I.A.; Shalaby, N.M.M.; Elgamal, M.H.A.; Mousa, A.S.M. Antifungal effects of different plant extracts and their major components of selected Aloe species. Phytother. Res. 1999, 13, 401–407. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, Z.G.; Riley-Saldaña, C.A.; González-Esquinca, A.; Castro-Moreno, M.; de-la-Cruz-Chacón, I. Antifungal activity of Solanum extracts against phytopathogenic Curvularia lunata. J. Plant. Prot. Res. 2018, 58, 311–315. [Google Scholar] [CrossRef]
- Mohamed, A.; Youssef, N.; El-Shahir, A. In vitro antioxidant and antifungal activities of different solvent extracts of leaf peel and gel of Aloe succotrina and their bio-control of leaf spot disease of Phaseolus vulgaris seedlings. S. Afr. J. Bot. 2022, 147, 1112–1123. [Google Scholar] [CrossRef]
- Kayalvizhi, K.; Subramanian, V.; Anantharaman, P.; Kathiresan, K. Antimicrobial activity of seaweeds from the gulf of Mannar. Int. J. Pharm. 2012, 3, 306–314. Available online: http://www.bipublication.com (accessed on 25 February 2012).
- Lavanya, R.; Veerappan, N. Pharmaceutical Properties of Marine Macroalgal Communities from Gulf of Mannar against Human Fungal Pathogens. Asian Pac. J. Trop. Dis. 2012, 2, S320–S323. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Ahmed, A.Y.; Soliman, A.S.; Abdel-Ghafour, S.E.; Sobhy, H.M. Biological control of soil borne cucumber diseases using green marine macroalgae. Egypt. J. Biol. Pest. Control. 2021, 31, 72. [Google Scholar] [CrossRef]
- Rushdi, M.I.; Abdel-Rahman, I.A.M.; Saber, H.; Attia, E.Z.; Madkour, H.A.; Abdelmohsen, U.R. A review on the pharmacological potential of the genus Padina. S. Afr. J. Bot. 2012, 141, 37–48. [Google Scholar] [CrossRef]
- Pourakbar, L.; Moghaddam, S.S.; Enshasy, H.A.E.; Sayyed, R.Z. Antifungal Activity of the Extract of a Macroalgae, Gracilariopsis persica, against Four Plant Pathogenic Fungi. Plants 2021, 10, 1781. [Google Scholar] [CrossRef]
- Mohamed, S.S.; Saber, A.A. Antifungal potential of the bioactive constituents in extracts of the mostly untapped brown seaweed Hormophysa cuneiformis from The Egyptian Coastal Waters. Saudi J. Biol. Sci. 2019, 59, 2501–2505. [Google Scholar] [CrossRef]
- Lotfi, A.; Kottb, M.; Elsayed, A.; Shafik, H. Antifungal Activity of Some Mediterranean Seaweed Against Macrophomina phaseolina and Fusarium oxysporum in vitro. Alfarama J. Basic. Appl. Sci. 2020, 2, 81–96. [Google Scholar] [CrossRef]
- Guedes, E.A.; Araújo, M.A.; Souza, A.K.; de Souza, L.I.; de Barros, L.D.; Maranhão, F.C.; Sant’Ana, A.E. Antifungal activities of different extracts of marine macroalgae against dermatophytes and Candida species. Mycopathologia 2012, 174, 223–232. [Google Scholar] [CrossRef]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef]
- Vatsos, I.N.; Rebours, C. Seaweed extracts as antimicrobial agents in aquaculture. J. Appl. Phycol. 2015, 27, 2017–2035. [Google Scholar] [CrossRef]
- Manilal, A.; Selvin, J.; George, S. In vivo therapeutic potentiality of red seaweed, Asparagopsis (Bonnemaisoniales, Rhodophyta) in the treatment of vibriosis in Penaeus monodon, Fabricius. Saudi J. Biol. Sci. 2012, 19, 165–175. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Rice, L.B. Antifungal Agents: Mode of Action, Mechanisms of Resistance, and Correlation of These Mechanisms with Bacterial Resistance. Clin. Microbiol. Rev. 1999, 12, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.D.P.; Dinamarco, T.M.; Curti, C.; Uyemura, S.A. Classical and Alternative Components of the Mitochondrial Respiratory Chain in Pathogenic Fungi as Potential Therapeutic Targets. J. Bioenerg. Biomembr. 2011, 43, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.; Pinto, E.; Andrade, P.B.; Valentão, P. Antifungal Activity of Phlorotannins against Dermatophytes and Yeasts: Approaches to the Mechanism of Action and Influence on Candida albicans Virulence Factor. PLoS ONE 2013, 8, e72203. [Google Scholar] [CrossRef] [PubMed]
- Vicente, T.F.L.; Lemos, M.F.L.; Félix, R.; Valentão, P.; Félix, C. Marine Macroalgae, a Source of Natural Inhibitors of Fungal Phytopathogens. J. Fungi 2021, 7, 1006. [Google Scholar] [CrossRef] [PubMed]
- Tyśkiewicz, K.; Tyśkiewicz, R.; Konkol, M.; Rój, E.; Jaroszuk-Ściseł, J.; Skalicka-Woźniak, K. Antifungal Properties of Fucus vesiculosus L. Supercritical Fluid Extract Against Fusarium culmorum and Fusarium oxysporum. Molecules 2019, 24, 3518. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef]
- Durán-Patrón, R.; Hernández-Galán, R.; Rebordinos, L.G.; Cantoral, J.M.; Collado, I.G. Structure-activity relationships of new phytotoxic metabolites with the botryane skeleton from Botrytis cinerea. Tetrahedron 1999, 55, 2389–2400. [Google Scholar] [CrossRef]
- Huang, L.; Yong, K.W.L.; Fernando, W.C.; Carpinelli de Jesus, M.; De Voss, J.J.; Sultanbawa, Y.; Fletcher, M.T. The Inactivation by Curcumin-Mediated Photosensitization of Botrytis cinerea Spores Isolated from Strawberry Fruits. Toxins 2021, 13, 196. [Google Scholar] [CrossRef]
- Dalmais, B.; Schumacher, J.; Moraga, J.; Le Pêcheur, P.; Tudzynski, B.; Collado, I.G.; Viaud, M. The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Mol. Plant Pathol. 2011, 12, 564–579. [Google Scholar] [CrossRef]
- Choquer, M.; Fournier, E.; Kunz, C.; Levis, C.; Pradier, J.-M.; Simon, A.; Viaud, M. Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol. Lett. 2007, 277, 1–10. [Google Scholar] [CrossRef]
- Colmenares, A.J.; Aleu, J.; Durán-Patrón, R.; Collado, I.G.; Hernández-Galán, R. The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J. Chem. Ecol. 2002, 28, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Moraga, J.; Dalmais, B.; Bueno, I.I.; Aleu, J.; Hanson, J.R. Genetic and molecular basis of botrydial biosynthesis. Connecting cytochrome P450-encoding genes to biosynthetic intermediates. ACS Chem. Biol. 2016, 11, 2838–2846. [Google Scholar] [CrossRef] [PubMed]
- Van der Merwe, K.J.; Steyn, P.S.; Fourie, L.; Scott, D.B.; Theron, J.J. Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 1965, 205, 1112–1113. [Google Scholar] [CrossRef] [PubMed]
- Varga, J.; Rigó, K.; Téren, J.; Mesterházy, Á. Recent advances in ochratoxin research I. Production, detection and occurrence of ochratoxins. Cereal Res. Commun. 2001, 29, 85–92. [Google Scholar] [CrossRef]
- Smith, J.E.; Moss, M.O. Mycotoxins, formation, analysis and significance. Food Microbiol. 1985, 2, 291. [Google Scholar]
- International Agency for Research on Cancer (IARC). Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monogr. Eval. Carcinog. Risks Hum. WHO/IARC Lyons 1993, 56, 1–599. [Google Scholar]
- Accensi, F.; Abarca, M.L.; Cabañes, F.J. Occurrence of Aspergillus species in mixed feeds and component raw materials and their ability to produce ochratoxin A. Food Microbiol. 2004, 21, 623–627. [Google Scholar] [CrossRef]
- Pel, H.J.; de Winde, J.H.; Archer, D.B.; Dyer, P.S.; Hofmann, G.; Schaap, P.J.; Turner, G.; de Vries, R.P.; Albang, R.; Albermann, K.; et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger. Nat. Biotechnol. 2007, 25, 221–231. [Google Scholar] [CrossRef]
- Nielsen, K.F.; Mogensen, J.M.; Johansen, M.; Larsen, T.O.; Frisvad, J.C. Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal. Bioanal. Chem. 2009, 395, 1225–1242. [Google Scholar] [CrossRef]
- Astoreca, A.L.; Barberis, C.L.; Magnoli, C.E.; Dalcero, A. Growth and ochratoxin A production by Aspergillus niger group strains in coffee beans in relation to environmental factors. World Mycotoxin J. 2010, 3, 59–65. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Larsen, T.O.; Thrane, U.; Meijer, M.; Varga, J.; Samson, R.A.; Nielsen, K.F. Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLoS ONE 2011, 6, e23496. [Google Scholar] [CrossRef] [PubMed]
- Romero, S.M.; Comeria, R.M.; Larumbe, G.; Ritieni, A.; Vaamonde, G.; Fernández, P.V. Toxigenic fungi isolated from dried vine fruits in Argentina. Int. J. Food Microbiol. 2005, 104, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Magnoli, C.; Violante, M.; Combina, M.; Palacio, G.; Dalcero, A. Mycoflora and ochratoxin-producing strains of Aspergillus section Nigri in wine grapes in Argentina. Lett. Appl. Microbiol. 2010, 37, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Pfliegler, W.P.; Pócsi, I.; Győri, Z.; Pusztahelyi, T. The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota. Front. Microbiol. 2020, 10, 2921. [Google Scholar] [CrossRef]
- Ráduly, Z.; Szabó, L.; Madar, A.; Pócsi, I.; Csernoch, L. Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front. Microbiol. 2020, 10, 2908. [Google Scholar] [CrossRef]
- Marino, A.; Fiorentino, C.; Spataro, F.; Nostro, A. Effect of temperature on production of Ochratoxin A by Aspergillus niger in orange juice. J. Toxins 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Han, X.; Jiang, H.; Li, F. Dynamic Ochratoxin A Production by Strains of Aspergillus niger Intended Used in Food Industry of China. Toxins 2019, 11, 122. [Google Scholar] [CrossRef]
- Botha, A.J.C. Mucor contaminated food constitutes a limited potential health hazard with regard to healthy consumers. In Encyclopedia of Food Microbiology, 2nd ed.; Hardback; Academic Press, Elsevier, Ltd.: Amsterdam, The Netherlands, 2014; ISBN 9780123847300. [Google Scholar]
- Ziaee, A.; Zia, M.; Bayat, M.; Hashemi, J. Molecular Identification of Mucor and Lichtheimia Species in Pure Cultures of Zygomycetes. Jundishapur. J. Microbiol. 2016, 9, e35237. [Google Scholar] [CrossRef]
- Elkenany, R.M.; Awad, A. Types of Mycotoxins and different approaches used for their detection in foodstuffs. Mansoura Vet. Med. J. 2020, 21, 25–32. [Google Scholar] [CrossRef]
- Pandey, A.K.; Samota, M.K.; Kumar, A.; Silva, A.S.; Dubey, N.K. Fungal mycotoxins in food commodities: Present status and future concerns. Front. Sustain. Food Syst. 2023, 7, 1162595. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. Algae Base; National University of Ireland: Galaway, Ireland, 2011. [Google Scholar]
- Patra, J.K.; Rath, S.K.; Rathod, K.; Jena, V.K.; Thatoi, H. Evaluation of antioxidant and antimicrobial activity of seaweed (Sargassum sp.) extract: A study on inhibition of Glutathione-s-transferase activity. Turk. J. Biol. 2008, 32, 119–125. [Google Scholar]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 3rd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Domsch, K.; Gams, W.; Anderson, T.H. Compendium of Soil Fungi, 2nd ed.; IHW-Verlag: Eching, Germany, 2007; p. 672. [Google Scholar]
- Sambrook, J.; Fritsch, E.R.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Tarini, N.M.A.; Wahid, M.H.; Ibrahim, F.; Yasmon, A.; Djauzi, S. Development of multiplex-PCR assay for rapid detection of Candida spp. Med. J. Indones. 2010, 19, 83–87. [Google Scholar] [CrossRef]
- El-Shahir, A.A.; El-Wakil, D.A.; Abdel Latef, A.A.H.; Youssef, N.H. Bioactive Compounds and Antifungal Activity of Leaves and Fruits Methanolic Extracts of Ziziphus spina-christi L. Plants 2022, 11, 746. [Google Scholar] [CrossRef] [PubMed]
- Liñeiro, E.; Macias-Sánchez, A.J.; Espinazo, M.; Cantoral, J.M.; Moraga, J.; Collado, I.G.; Fernández-Acero, F.J. Phenotypic effects and inhibition of botrydial biosynthesis induced by different plant-based elicitors in Botrytis cinerea. Curr. Microbiol. 2017, 75, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.B.; Hubka, V.; Klaassen, C.H.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B.; et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014, 78, 141–173. [Google Scholar] [CrossRef] [PubMed]
- Ben Miri, Y.; Benabdallah, A.; Chentir, I.; Djenane, D.; Luvisi, A.; De Bellis, L. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024, 13, 1184. [Google Scholar] [CrossRef]
- Tessini, C.; Mardones, C.; von Baer, D.; Vega, M.; Herlitz, E.; Saelzer, R.; Silva, J.; Torres, O. Alternatives for sample pre-treatment and HPLC determination of Ochratoxin A in red wine using fluorescence detection. Anal. Chim. Acta 2010, 660, 119–126. [Google Scholar] [CrossRef]
Phytochemicals | Different Solvents | ||
---|---|---|---|
Ethyl Acetate (Poor-Polar) | Acetone (Middle-Polar) | Methanol (Polar) | |
Alkaloids | +++ | - | +++ |
Terpenoids | + | + | + |
Flavonoids | + | - | + |
Tannins | - | + | - |
Polyphenols | +++ | ++ | + |
Quinones | ++ | +++ | +++ |
Phytochemicals | Different Solvents | ||
---|---|---|---|
Ethyl Acetate (Poor-Polar) | Acetone (Middle-Polar) | Methanol (Polar) | |
Alkaloids | - | - | + |
Terpenoids | ++ | + | - |
Flavonoids | + | - | + |
Tannins | - | + | + |
Polyphenols | +++ | ++ | + |
Quinones | + | + | +++ |
Peak No. | Compound Name | Molecular Weight | Chemical Structure and Molecular Formula | Retention Time | Biological Activity According to [25,26] |
---|---|---|---|---|---|
1 | Heptadecane | 240 | C17H36 | 17.68 | Exhibited antibacterial and antifungal activity |
2 | Methyl tetradecanoate | 272 | C15H30O2 | 18.17 | Antioxidant and antibacterial |
3 | 2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, [R-[R*,R*-(E)]]-(CAS) | 296 | C20H40O2 | 19.64 | |
4 | Phytol, acetate | 338 | C22H42O2 | 19.73 | Antibacterial activity |
5 | 7,10-Hexadecadienoic acid, methyl ester | 266 | C17H30O2 | 20.25 | |
6 | 9-Hexadecenoic acid, methyl ester, (Z)- | 268 | C17H32O2 | 20.68 | |
7 | Hexadecanoic acid, methyl ester | 270 | C17H34O2 | 21.09 | Antioxidant |
8 | Phytol | 296 | C20H40O | 22.60 | |
9 | 9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- | 292 | C19H32O2 | 23.22 | Antibacterial, anticandidal, and anticancer |
10 | Heptadecanoic acid, 16-methyl-, methyl ester | 298 | C19H38O2 | 23.46 | |
11 | 11-Eicosenoic acid, methyl ester | 324 | C21H40O2 | 25.49 | Alpha-glucosidase inhibitor activity, detergents, and lubricants |
12 | Lucenin | 610 | C27H30O16 | 27.67 | |
13 | Docosanoic acid, methyl ester (CAS) | 354 | C23H46O2 | 29.95 |
Fungi | TC | % | NCI and OR |
---|---|---|---|
Acremonium strictum | 10 | 2.52 | 4 L |
Alternaria alternata | 21 | 5.29 | 5 L |
Aspergillus | 68 | 17.13 | 21 H |
A. flavus | 8 | 2.02 | 4 L |
A. fumigatus | 3 | 0.76 | 2 R |
A. niger | 57 | 14.36 | 19 H |
Botrytis cinerea | 152 | 38.29 | 23 H |
Fusarium oxysporum | 6 | 1.51 | 4 L |
Humicola grisea | 7 | 1.76 | 4 L |
Mucor irregularis | 67 | 16.88 | 20 H |
Penicillium chrysogenum | 7 | 1.76 | 4 L |
Phoma medicaginis | 59 | 14.86 | 7 M |
Rhizopus oryzae | 9 | 2.27 | 3 L |
Gross total count | 397 | ||
Number of genera | 10 | ||
Number of species | 12 |
Fungi | Extract Concentration (mg/mL) | Sargassum cinereum | Padina boergesenii | ||||
---|---|---|---|---|---|---|---|
Methanol | Ethyl Acetate | Acetone | Methanol | Ethyl Acetate | Acetone | ||
100 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
80 | 100.00 | 100.00 | 100.00 | 96.87 | 100.00 | 100.00 | |
Botrytis cinerea | 60 | 48.19 | 100.00 | 100.00 | 94.46 | 83.13 | 100.00 |
40 | 42.17 | 94.46 | 94.46 | 78.31 | 55.90 | 90.84 | |
20 | 28.92 | 65.06 | 93.25 | 67.95 | 22.17 | 86.39 | |
100 | 100.00 | 94.89 | 92.22 | 87.11 | 100.00 | 100.00 | |
80 | 82.67 | 94.89 | 89.33 | 87.11 | 87.44 | 98.22 | |
Mucorirregularis | 60 | 67.78 | 91.89 | 87.44 | 81.89 | 80.78 | 96.67 |
40 | 66.67 | 73.78 | 84.11 | 74.11 | 74.11 | 86.33 | |
20 | 63.33 | 73.00 | 83.00 | 67.11 | 69.67 | 83.00 | |
100 | 75.35 | 83.01 | 63.86 | 78.29 | 78.80 | 87.74 | |
80 | 72.80 | 64.75 | 61.30 | 75.35 | 74.97 | 81.74 | |
Aspergillus niger | 60 | 63.86 | 49.81 | 53.64 | 51.09 | 64.75 | 71.90 |
40 | 62.58 | 49.43 | 54.92 | 6.39 | 50.70 | 64.24 | |
20 | 61.69 | 35.38 | 33.21 | 3.17 | 44.70 | 2.17 |
Treatments | Botrytis cinerea | Mucor irregularis | Aspergillus niger | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pathogenicity 1 | Aggressiveness 2 | Pathogenicity 1 | Aggressiveness 2 | Pathogenicity 1 | Aggressiveness 2 | |||||||
W | U | W | U | W | U | W | U | W | U | W | U | |
Positive control 3 | 100 | 100 | 3.4 | 3.1 | 100 | 100 | 3.8 | 3.6 | 100 | 100 | 4.2 | 3.9 |
Solvent control 4/Methanol | 100 | 100 | 3.4 | 3.5 | 100 | 100 | 3.8 | 3.5 | 100 | 100 | 4.1 | 4 |
Solvent control 4/Ethyl acetate | 100 | 100 | 3.6 | 3.7 | 100 | 100 | 3.9 | 3.6 | 100 | 100 | 4 | 3.8 |
Solvent control 4/Acetone | 100 | 100 | 3.8 | 3.6 | 100 | 100 | 3.7 | 3.6 | 100 | 100 | 4 | 3.9 |
S. cinereum/Methanol | 30 | 10 | 1.5 | 0.3 | 50 | 10 | 1 | 0.5 | 100 | 50 | 3 | 2 |
S. cinereum/Ethyl acetate | 70 | 20 | 3 | 2.5 | 100 | 30 | 3.5 | 3.1 | 100 | 70 | 3.5 | 3.3 |
S. cinereum/Acetone | 40 | 10 | 2 | 0.5 | 50 | 10 | 1.5 | 0.9 | 100 | 70 | 3.5 | 3.2 |
P. boergesenii/Methanol | 20 | 10 | 0.3 | 0.1 | 50 | 15 | 0.2 | 0.1 | 100 | 60 | 3.2 | 3 |
P. boergesenii/Ethyl acetate | 50 | 20 | 1.2 | 1 | 100 | 20 | 0.3 | 0.1 | 100 | 55 | 3.5 | 3.2 |
P. boergesenii/Acetone | 30 | 15 | 1.2 | 0.9 | 60 | 20 | 0.3 | 0.2 | 100 | 50 | 2.9 | 2.5 |
Fungi | Mycotoxins | Concentrations |
---|---|---|
Botrytis cinerea | Botrydial | 8.14 |
Dihydrobotrydial | 4.26 | |
Aspergillus niger | Ochratoxin A | 10.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Shahir, A.A.; Alzamel, N.M.; Abuzaid, A.O.; Loutfy, N.; Alwaleed, E.A. Antifungal Properties of Sargassum cinereum and Padina boergesenii Extracts Against Fungi Associated with Strawberry Fruits Concerning Mycotoxin Production. Plants 2024, 13, 3115. https://doi.org/10.3390/plants13223115
El-Shahir AA, Alzamel NM, Abuzaid AO, Loutfy N, Alwaleed EA. Antifungal Properties of Sargassum cinereum and Padina boergesenii Extracts Against Fungi Associated with Strawberry Fruits Concerning Mycotoxin Production. Plants. 2024; 13(22):3115. https://doi.org/10.3390/plants13223115
Chicago/Turabian StyleEl-Shahir, Amany A., Nurah M. Alzamel, Amani Omar Abuzaid, Naglaa Loutfy, and Eman A. Alwaleed. 2024. "Antifungal Properties of Sargassum cinereum and Padina boergesenii Extracts Against Fungi Associated with Strawberry Fruits Concerning Mycotoxin Production" Plants 13, no. 22: 3115. https://doi.org/10.3390/plants13223115
APA StyleEl-Shahir, A. A., Alzamel, N. M., Abuzaid, A. O., Loutfy, N., & Alwaleed, E. A. (2024). Antifungal Properties of Sargassum cinereum and Padina boergesenii Extracts Against Fungi Associated with Strawberry Fruits Concerning Mycotoxin Production. Plants, 13(22), 3115. https://doi.org/10.3390/plants13223115