Function and Evolution of the Plant MES Family of Methylesterases
Abstract
:1. Introduction to the Methylesterase Family
2. MES Family History: Discovery and Relatedness to Other Enzyme Families
3. Known Enzymatic Functions of MES Members
4. MES Biological Functions: Defense and Development
4.1. MeSA Esterases: Pathogen Defense, Drought Response, and Seed Germination
4.2. MeJA Esterases: Biotic and Abiotic Stress Response
4.3. MeIAA Esterases: Regulation of Auxin-Mediated Development
4.4. AtMES2: NAD Recycling
4.5. AtMES16: Chlorophyll Degradation During Leaf Senescence
4.6. PNAE, EAME1, EAME2, and ShMKS1: Putative Defense and Stress Responses
5. MES Family Evolution in Land Plants
5.1. MES Phylogenetic Analysis
5.2. Enzymatic Evolution of MES Functions
6. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauerle, M.R.; Schwalm, E.L.; Booker, S.J. Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation. J. Biol. Chem. 2015, 290, 3995–4002. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Gao, Y.H.; Yao, X.S.; Gao, H. Recent advances in dissecting the demethylation reactions in natural product biosynthesis. Curr. Opin. Chem. Biol. 2020, 59, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Deleris, A.; Halter, T.; Navarro, L. DNA Methylation and Demethylation in Plant Immunity. Annu. Rev. Phytopathol. 2016, 54, 579–603. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, H.; Bowman, J.L.; Chen, F. Plant SABATH Methyltransferases: Diverse Functions, Unusual Reaction Mechanisms and Complex Evolution. Crit. Rev. Plant Sci. 2024, 43, 291–312. [Google Scholar] [CrossRef]
- Kohli, P.; Kalia, M.; Gupta, R. Pectin Methylesterases: A Review. J. Bioprocess. Biotech. 2015, 5, 227. [Google Scholar] [CrossRef]
- Noel, J.P.; Dixon, R.A.; Pichersky, E.; Zubieta, C.; Ferrer, J.-L. Chapter two Structural, functional, and evolutionary basis for methylation of plant small molecules. In Recent Advances in Phytochemistry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 37, pp. 37–58. [Google Scholar]
- Gershater, M.C.; Edwards, R. Regulating biological activity in plants with carboxylesterases. Plant Sci. 2007, 173, 579–588. [Google Scholar] [CrossRef]
- D’Auria, J.C.; Chen, F.; Pichersky, E. The SABATH family of MTs in Arabidopsis thaliana and other plant species. Recent Adv. Phytochem. 2003, 37, 253–284. [Google Scholar]
- Yang, Y.; Xu, R.; Ma, C.J.; Vlot, A.C.; Klessig, D.F.; Pichersky, E. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiol. 2008, 147, 1034–1045. [Google Scholar] [CrossRef]
- Dogru, E.; Warzecha, H.; Seibel, F.; Haebel, S.; Lottspeich, F.; Stockigt, J. The gene encoding polyneuridine aldehyde esterase of monoterpenoid indole alkaloid biosynthesis in plants is an ortholog of the alpha/betahydrolase super family. Eur. J. Biochem. 2000, 267, 1397–1406. [Google Scholar] [CrossRef]
- Stuhlfelder, C.; Mueller, M.J.; Warzecha, H. Cloning and expression of a tomato cDNA encoding a methyl jasmonate cleaving esterase. Eur. J. Biochem. 2004, 271, 2976–2983. [Google Scholar] [CrossRef]
- Forouhar, F.; Yang, Y.; Kumar, D.; Chen, Y.; Fridman, E.; Park, S.W.; Chiang, Y.; Acton, T.B.; Montelione, G.T.; Pichersky, E.; et al. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc. Natl. Acad. Sci. USA 2005, 102, 1773–1778. [Google Scholar] [CrossRef]
- Markovic, O.; Janecek, S. Pectin methylesterases: Sequence-structural features and phylogenetic relationships. Carbohydr. Res. 2004, 339, 2281–2295. [Google Scholar] [CrossRef]
- Nardini, M.; Dijkstra, B.W. Alpha/beta hydrolase fold enzymes: The family keeps growing. Curr. Opin. Struct. Biol. 1999, 9, 732–737. [Google Scholar] [CrossRef]
- Oakeshott, J.G.; Claudianos, C.; Russell, R.J.; Robin, G.C. Carboxyl/cholinesterases: A case study of the evolution of a successful multigene family. Bioessays 1999, 21, 1031–1042. [Google Scholar] [CrossRef]
- Ollis, D.L.; Cheah, E.; Cygler, M.; Dijkstra, B.; Frolow, F.; Franken, S.M.; Harel, M.; Remington, S.J.; Silman, I.; Schrag, J.; et al. The alpha/beta hydrolase fold. Protein Eng. 1992, 5, 197–211. [Google Scholar] [CrossRef]
- Mindrebo, J.T.; Nartey, C.M.; Seto, Y.; Burkart, M.D.; Noel, J.P. Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Curr. Opin. Struct. Biol. 2016, 41, 233–246. [Google Scholar] [CrossRef]
- Cao, X.; Duan, W.; Wei, C.; Chen, K.; Grierson, D.; Zhang, B. Genome-Wide Identification and Functional Analysis of Carboxylesterase and Methylesterase Gene Families in Peach (Prunus persica L. Batsch). Front. Plant. Sci. 2019, 10, 1511. [Google Scholar] [CrossRef]
- Cummins, I.; Landrum, M.; Steel, P.G.; Edwards, R. Structure activity studies with xenobiotic substrates using carboxylesterases isolated from Arabidopsis thaliana. Phytochemistry 2007, 68, 811–818. [Google Scholar] [CrossRef]
- Ileperuma, N.R.; Marshall, S.D.; Squire, C.J.; Baker, H.M.; Oakeshott, J.G.; Russell, R.J.; Plummer, K.M.; Newcomb, R.D.; Baker, E.N. High-resolution crystal structure of plant carboxylesterase AeCXE1, from Actinidia eriantha, and its complex with a high-affinity inhibitor paraoxon. Biochemistry 2007, 46, 1851–1859. [Google Scholar] [CrossRef]
- Kumar, D.; Klessig, D.F. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc. Natl. Acad. Sci. USA 2003, 100, 16101–16106. [Google Scholar] [CrossRef]
- Vlot, A.C.; Liu, P.P.; Cameron, R.K.; Park, S.W.; Yang, Y.; Kumar, D.; Zhou, F.; Padukkavidana, T.; Gustafsson, C.; Pichersky, E.; et al. Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J. 2008, 56, 445–456. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Y.; Huang, J.; Chen, Y.; Chen, C.; Lu, L.; Zhao, H.; Men, S.; Zhang, X. MES7 Modulates Seed Germination via Regulating Salicylic Acid Content in Arabidopsis. Plants 2021, 10, 903. [Google Scholar] [CrossRef]
- Jia, R.; Yu, L.; Chen, J.; Hu, L.; Cao, S.; Dong, X.; Ma, Q.; Wang, Y. Molecular evolution of methylesterase family genes and the BnMES34 is a positive regulator of Plasmodiophora brassicae stress response in Arabidopsis. Int. J. Biol. Macromol. 2024, 260, 129333. [Google Scholar] [CrossRef]
- Lima Silva, C.C.; Shimo, H.M.; de Felicio, R.; Mercaldi, G.F.; Rocco, S.A.; Benedetti, C.E. Structure-function relationship of a citrus salicylate methylesterase and role of salicylic acid in citrus canker resistance. Sci. Rep. 2019, 9, 3901. [Google Scholar] [CrossRef]
- Jia, R.; Xing, K.; Tian, L.; Dong, X.; Yu, L.; Shen, X.; Wang, Y. Analysis of Methylesterase Gene Family in Fragaria vesca Unveils Novel Insights into the Role of FvMES2 in Methyl Salicylate-Mediated Resistance against Strawberry Gray Mold. J. Agric. Food. Chem. 2024, 72, 11392–11404. [Google Scholar] [CrossRef]
- Lin, J.; Wang, W.; Mazarei, M.; Zhao, N.; Chen, X.; Pantalone, V.R.; Hewezi, T.; Stewart, C.N., Jr.; Chen, F. GmSABP2-1 encodes methyl salicylate esterase and functions in soybean defense against soybean cyst nematode. Plant Cell Rep. 2024, 43, 138. [Google Scholar] [CrossRef]
- Li, Q.; Wang, G.; Guan, C.; Yang, D.; Wang, Y.; Zhang, Y.; Ji, J.; Jin, C.; An, T. Overexpression of LcSABP, an Orthologous Gene for Salicylic Acid Binding Protein 2, Enhances Drought Stress Tolerance in Transgenic Tobacco. Front. Plant. Sci. 2019, 10, 200. [Google Scholar] [CrossRef]
- Zhao, N.; Guan, J.; Forouhar, F.; Tschaplinski, T.J.; Cheng, Z.M.; Tong, L.; Chen, F. Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns. Phytochemistry 2009, 70, 32–39. [Google Scholar] [CrossRef]
- Xue, R.; Feng, M.; Chen, J.; Ge, W.; Blair, M.W. A methyl esterase 1 (PvMES1) promotes the salicylic acid pathway and enhances Fusarium wilt resistance in common beans. Theor. Appl. Genet. 2021, 134, 2379–2398. [Google Scholar] [CrossRef]
- Frick, E.M.; Sapkota, M.; Pereira, L.; Wang, Y.; Hermanns, A.; Giovannoni, J.J.; van der Knaap, E.; Tieman, D.M.; Klee, H.J. A family of methyl esterases converts methyl salicylate to salicylic acid in ripening tomato fruit. Plant Physiol. 2023, 191, 110–124. [Google Scholar] [CrossRef]
- Manosalva, P.M.; Park, S.W.; Forouhar, F.; Tong, L.; Fry, W.E.; Klessig, D.F. Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Mol. Plant Microbe Interact. 2010, 23, 1151–1163. [Google Scholar] [CrossRef]
- Koo, Y.J.; Yoon, E.S.; Seo, J.S.; Kim, J.-K.; Choi, Y.D. Characterization of a methyl jasmonate specific esterase in Arabidopsis. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 27–33. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L.; Baldwin, I.T. Methyl jasmonate-elicited herbivore resistance: Does MeJA function as a signal without being hydrolyzed to JA? Planta 2008, 227, 1161–1168. [Google Scholar] [CrossRef]
- Zhao, N.; Lin, H.; Lan, S.; Jia, Q.; Chen, X.; Guo, H.; Chen, F. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response. Plant Physiol. Biochem. 2016, 102, 125–132. [Google Scholar] [CrossRef]
- Volk, J.; Sarafeddinov, A.; Unver, T.; Marx, S.; Tretzel, J.; Zotzel, J.; Warzecha, H. Two novel methylesterases from Olea europaea contribute to the catabolism of oleoside-type secoiridoid esters. Planta 2019, 250, 2083–2097. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, F.; Liu, L.; Li, W.; Pichersky, E.; Wang, G. MeNA, Controlled by Reversible Methylation of Nicotinate, Is an NAD Precursor that Undergoes Long-Distance Transport in Arabidopsis. Mol. Plant 2018, 11, 1264–1277. [Google Scholar] [CrossRef]
- Christ, B.; Schelbert, S.; Aubry, S.; Sussenbacher, I.; Muller, T.; Krautler, B.; Hortensteiner, S. MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis. Plant Physiol. 2012, 158, 628–641. [Google Scholar] [CrossRef]
- Fridman, E.; Wang, J.; Iijima, Y.; Froehlich, J.E.; Gang, D.R.; Ohlrogge, J.; Pichersky, E. Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell 2005, 17, 1252–1267. [Google Scholar] [CrossRef]
- Park, S.W.; Kaimoyo, E.; Kumar, D.; Mosher, S.; Klessig, D.F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 2007, 318, 113–116. [Google Scholar] [CrossRef]
- Creelman, R.A.; Mullet, J.E. Biosynthesis and Action of Jasmonates in Plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1997, 48, 355–381. [Google Scholar] [CrossRef]
- Teale, W.D.; Paponov, I.A.; Palme, K. Auxin in action: Signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 2006, 7, 847–859. [Google Scholar] [CrossRef]
- Suzuki, Y.; Amano, T.; Shioi, Y. Characterization and cloning of the chlorophyll-degrading enzyme pheophorbidase from cotyledons of radish. Plant Physiol. 2006, 140, 716–725. [Google Scholar] [CrossRef]
- Auldridge, M.E.; Guo, Y.; Austin, M.B.; Ramsey, J.; Fridman, E.; Pichersky, E.; Noel, J.P. Emergent decarboxylase activity and attenuation of alpha/beta-hydrolase activity during the evolution of methylketone biosynthesis in tomato. Plant Cell 2012, 24, 1596–1607. [Google Scholar] [CrossRef]
- White, R.F. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 1979, 99, 410–412. [Google Scholar] [CrossRef]
- Rasmussen, J.B.; Hammerschmidt, R.; Zook, M.N. Systemic Induction of Salicylic Acid Accumulation in Cucumber after Inoculation with Pseudomonas syringae pv syringae. Plant Physiol. 1991, 97, 1342–1347. [Google Scholar] [CrossRef]
- Gaffney, T.; Friedrich, L.; Vernooij, B.; Negrotto, D.; Nye, G.; Uknes, S.; Ward, E.; Kessmann, H.; Ryals, J. Requirement of salicylic Acid for the induction of systemic acquired resistance. Science 1993, 261, 754–756. [Google Scholar] [CrossRef]
- Shulaev, V.; Silverman, P.; Raskin, I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 1997, 385, 718–721. [Google Scholar] [CrossRef]
- Tieman, D.; Zeigler, M.; Schmelz, E.; Taylor, M.G.; Rushing, S.; Jones, J.B.; Klee, H.J. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J. 2010, 62, 113–123. [Google Scholar] [CrossRef]
- Zhao, N.; Guan, J.; Ferrer, J.L.; Engle, N.; Chern, M.; Ronald, P.; Tschaplinski, T.J.; Chen, F. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. Plant Physiol. Biochem. 2010, 48, 279–287. [Google Scholar] [CrossRef]
- Soares, J.M.; Weber, K.C.; Qiu, W.; Mahmoud, L.M.; Grosser, J.W.; Dutt, M. Overexpression of the salicylic acid binding protein 2 (SABP2) from tobacco enhances tolerance against Huanglongbing in transgenic citrus. Plant Cell Rep. 2022, 41, 2305–2320. [Google Scholar] [CrossRef]
- Koo, Y.J.; Kim, M.A.; Kim, E.H.; Song, J.T.; Jung, C.; Moon, J.K.; Kim, J.H.; Seo, H.S.; Song, S.I.; Kim, J.K.; et al. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol. Biol. 2007, 64, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhao, K.; Liu, Y.; Du, M.; Zheng, L.; Wang, S.; Xu, L.; Peng, A.; He, Y.; Long, Q.; et al. Overexpression of Salicylic Acid Carboxyl Methyltransferase (CsSAMT1) Enhances Tolerance to Huanglongbing Disease in Wanjincheng Orange (Citrus sinensis (L.) Osbeck). Int. J. Mol. Sci. 2021, 22, 2803. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Mazarei, M.; Zhao, N.; Zhu, J.J.; Zhuang, X.; Liu, W.; Pantalone, V.R.; Arelli, P.R.; Stewart, C.N., Jr.; Chen, F. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotechnol. J. 2013, 11, 1135–1145. [Google Scholar] [CrossRef]
- Wu, Z.; Han, S.; Zhou, H.; Tuang, Z.K.; Wang, Y.; Jin, Y.; Shi, H.; Yang, W. Cold stress activates disease resistance in Arabidopsis thaliana through a salicylic acid dependent pathway. Plant Cell Environ. 2019, 42, 2645–2663. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, W.; Zhang, Y.; Zhang, X.; Lang, D.; Zhang, X. The roles of methyl jasmonate to stress in plants. Funct. Plant Biol. 2019, 46, 197–212. [Google Scholar] [CrossRef]
- Linkies, A.; Leubner-Metzger, G. Beyond gibberellins and abscisic acid: How ethylene and jasmonates control seed germination. Plant Cell Rep. 2012, 31, 253–270. [Google Scholar] [CrossRef]
- Seo, H.S.; Song, J.T.; Cheong, J.J.; Lee, Y.H.; Lee, Y.W.; Hwang, I.; Lee, J.S.; Choi, Y.D. Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA 2001, 98, 4788–4793. [Google Scholar] [CrossRef]
- Tamogami, S.; Noge, K.; Abe, M.; Agrawal, G.K.; Rakwal, R. Methyl jasmonate is transported to distal leaves via vascular process metabolizing itself into JA-Ile and triggering VOCs emission as defensive metabolites. Plant Signal. Behav. 2012, 7, 1378–1381. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, I.T.; Halitschke, R.; Paschold, A.; von Dahl, C.C.; Preston, C.A. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 2006, 311, 812–815. [Google Scholar] [CrossRef]
- Findling, S.; Fekete, A.; Warzecha, H.; Krischke, M.; Brandt, H.; Blume, E.; Mueller, M.J.; Berger, S. Manipulation of methyl jasmonate esterase activity renders tomato more susceptible to Sclerotinia sclerotiorum. Funct. Plant. Biol. 2014, 41, 133–143. [Google Scholar] [CrossRef]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef]
- Ljun, K.; Hull, A.K.; Kowalczyk, M.; Marchant, A.; Celenza, J.; Cohen, J.D.; Sandberg, G. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol. Biol. 2002, 49, 249–272. [Google Scholar] [CrossRef]
- Zimmerman, P.; Hitchcock, A. Comparative effectiveness of acids, esters and salts as growth substances and methods of evaluating them. Contr. Boyce Thompson Inst. 1937, 8, 337–350. [Google Scholar]
- Noctor, G.; Queval, G.; Gakiere, B. NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J. Exp. Bot. 2006, 57, 1603–1620. [Google Scholar] [CrossRef]
- Lin, H. Nicotinamide adenine dinucleotide: Beyond a redox coenzyme. Org. Biomol. Chem. 2007, 5, 2541–2554. [Google Scholar] [CrossRef]
- Wang, G.; Pichersky, E. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J. 2007, 49, 1020–1029. [Google Scholar] [CrossRef]
- Li, W.; Zhang, F.; Wu, R.; Jia, L.; Li, G.; Guo, Y.; Liu, C.; Wang, G. A Novel N-Methyltransferase in Arabidopsis Appears to Feed a Conserved Pathway for Nicotinate Detoxification among Land Plants and Is Associated with Lignin Biosynthesis. Plant Physiol. 2017, 174, 1492–1504. [Google Scholar] [CrossRef]
- Hortensteiner, S.; Krautler, B. Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 2011, 1807, 977–988. [Google Scholar] [CrossRef]
- Mühlecker, W.; Ongania, K.H.; Kräutler, B.; Matile, P.; Hörtensteiner, S. Tracking Down Chlorophyll Breakdown in Plants: Elucidation of the Constitution of a “Fluorescent” Chlorophyll Catabolite. Angew Chem. Int. Ed. 2003, 36, 401–404. [Google Scholar] [CrossRef]
- Obayashi, K.; Nagasawa, K.; Mandel, W.J.; Vyden, J.K.; Parmley, W.W. Cardiovascular effects of ajmaline. Am. Heart J. 1976, 92, 487–496. [Google Scholar] [CrossRef]
- Ruiz-May, E.; Galaz-Avalos, R.M.; Loyola-Vargas, V.M. Differential secretion and accumulation of terpene indole alkaloids in hairy roots of Catharanthus roseus treated with methyl jasmonate. Mol. Biotechnol. 2009, 41, 278–285. [Google Scholar] [CrossRef]
- Namjoshi, O.A.; Cook, J.M. Sarpagine and Related Alkaloids. Alkaloids Chem. Biol. 2016, 76, 63–169. [Google Scholar] [CrossRef]
- Matsuura, H.N.; Fett-Neto, A.G. Plant alkaloids: Main features, toxicity, and mechanisms of action. In Plant Toxins; Springer Science & Business Media: Dordrecht, The Netherlands, 2015; Volume 2, pp. 1–15. [Google Scholar]
- Amiot, M.J.; Fleuriet, A.; Macheix, J.J. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 1986, 34, 823–826. [Google Scholar] [CrossRef]
- Le Tutour, B.; Guedon, D. Antioxidative activities of Olea europaea leaves and related phenolic compounds. Phytochemistry 1992, 31, 1173–1178. [Google Scholar] [CrossRef]
- Konno, K.; Hirayama, C.; Yasui, H.; Nakamura, M. Enzymatic activation of oleuropein: A protein crosslinker used as a chemical defense in the privet tree. Proc. Natl. Acad. Sci. USA 1999, 96, 9159–9164. [Google Scholar] [CrossRef]
- Williams, W.G.; Kennedy, G.G.; Yamamoto, R.T.; Thacker, J.D.; Bordner, J. 2-Tridecanone: A Naturally Occurring Insecticide from the Wild Tomato Lycopersicon hirsutum f. glabratum. Science 1980, 207, 888–889. [Google Scholar] [CrossRef]
- Kennedy, G.G. Tomato, pests, parasitoids, and predators: Tritrophic interactions involving the genus Lycopersicon. Annu. Rev. Entomol. 2003, 48, 51–72. [Google Scholar] [CrossRef]
- Yu, G.; Pichersky, E. Heterologous expression of methylketone synthase1 and methylketone synthase2 leads to production of methylketones and myristic acid in transgenic plants. Plant Physiol. 2014, 164, 612–622. [Google Scholar] [CrossRef]
- Zhang, C.; Chaiprasongsuk, M.; Chanderbali, A.S.; Chen, X.; Fu, J.; Soltis, D.E.; Chen, F. Origin and evolution of a gibberellin-deactivating enzyme GAMT. Plant Direct. 2020, 4, e00287. [Google Scholar] [CrossRef]
- Chaiprasongsuk, M.; Zhang, C.; Qian, P.; Chen, X.; Li, G.; Trigiano, R.N.; Guo, H.; Chen, F. Biochemical characterization in Norway spruce (Picea abies) of SABATH methyltransferases that methylate phytohormones. Phytochemistry 2018, 149, 146–154. [Google Scholar] [CrossRef]
- Zhao, N.; Ferrer, J.L.; Moon, H.S.; Kapteyn, J.; Zhuang, X.; Hasebe, M.; Stewart, C.N., Jr.; Gang, D.R.; Chen, F. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes S-methylation of thiols and has a role in detoxification. Phytochemistry 2012, 81, 31–41. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Crandall-Stotler, B.; Qian, P.; Kollner, T.G.; Guo, H.; Chen, F. Biosynthesis of methyl (E)-cinnamate in the liverwort Conocephalum salebrosum and evolution of cinnamic acid methyltransferase. Phytochemistry 2019, 164, 50–59. [Google Scholar] [CrossRef]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Simpson, M.G. Evolution and diversity of green and land plants. In Plant Systematics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 55–74. [Google Scholar]
- O’Brien, P.J.; Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 1999, 6, R91–R105. [Google Scholar] [CrossRef]
- Marchot, P.; Chatonnet, A. Enzymatic activity and protein interactions in alpha/beta hydrolase fold proteins: Moonlighting versus promiscuity. Protein Pept. Lett. 2012, 19, 132–143. [Google Scholar] [CrossRef]
- Li, C.; Hassler, M.; Bugg, T.D. Catalytic promiscuity in the alpha/beta-hydrolase superfamily: Hydroxamic acid formation, C--C bond formation, ester and thioester hydrolysis in the C–C hydrolase family. Chembiochem 2008, 9, 71–76. [Google Scholar] [CrossRef]
- Devamani, T.; Rauwerdink, A.M.; Lunzer, M.; Jones, B.J.; Mooney, J.L.; Tan, M.A.; Zhang, Z.J.; Xu, J.H.; Dean, A.M.; Kazlauskas, R.J. Catalytic Promiscuity of Ancestral Esterases and Hydroxynitrile Lyases. J. Am. Chem. Soc. 2016, 138, 1046–1056. [Google Scholar] [CrossRef]
- Padhi, S.K.; Fujii, R.; Legatt, G.A.; Fossum, S.L.; Berchtold, R.; Kazlauskas, R.J. Switching from an esterase to a hydroxynitrile lyase mechanism requires only two amino acid substitutions. Chem. Biol. 2010, 17, 863–871. [Google Scholar] [CrossRef]
- Andexer, J.; von Langermann, J.; Mell, A.; Bocola, M.; Kragl, U.; Eggert, T.; Pohl, M. An R-selective hydroxynitrile lyase from Arabidopsis thaliana with an alpha/beta-hydrolase fold. Angew Chem. Int. Edit. Engl. 2007, 46, 8679–8681. [Google Scholar] [CrossRef]
- Peng, Y.; Sun, T.; Zhang, Y. Perception of Salicylic Acid in Physcomitrella patens. Front. Plant Sci. 2017, 8, 2145. [Google Scholar] [CrossRef]
- Monte, I.; Franco-Zorrilla, J.M.; Garcia-Casado, G.; Zamarreno, A.M.; Garcia-Mina, J.M.; Nishihama, R.; Kohchi, T.; Solano, R. A Single JAZ Repressor Controls the Jasmonate Pathway in Marchantia polymorpha. Mol. Plant 2019, 12, 185–198. [Google Scholar] [CrossRef]
- Dave, A.; Graham, I.A. Oxylipin Signaling: A Distinct Role for the Jasmonic Acid Precursor cis-(+)-12-Oxo-Phytodienoic Acid (cis-OPDA). Front. Plant. Sci. 2012, 3, 42. [Google Scholar] [CrossRef]
- Ponce De Leon, I.; Schmelz, E.A.; Gaggero, C.; Castro, A.; Alvarez, A.; Montesano, M. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection. Mol. Plant Pathol. 2012, 13, 960–974. [Google Scholar] [CrossRef]
- Luo, W.; Komatsu, S.; Abe, T.; Matsuura, H.; Takahashi, K. Comparative Proteomic Analysis of Wild-Type Physcomitrella patens and an OPDA-Deficient Physcomitrella patens Mutant with Disrupted PpAOS1 and PpAOS2 Genes after Wounding. Int. J. Mol. Sci. 2020, 21, 1417. [Google Scholar] [CrossRef]
- Ester Sztein, A.; Cohen, J.D.; de la Fuente, I.G.; Cooke, T.J. Auxin metabolism in mosses and liverworts. Am. J. Bot. 1999, 86, 1544–1555. [Google Scholar] [CrossRef]
- Casanova-Saez, R.; Mateo-Bonmati, E.; Ljung, K. Auxin Metabolism in Plants. Cold Spring Harb. Perspect. Biol. 2021, 13, a039867. [Google Scholar] [CrossRef]
- Ishizaki, K. Evolution of land plants: Insights from molecular studies on basal lineages. Biosci. Biotechnol. Biochem. 2017, 81, 73–80. [Google Scholar] [CrossRef]
- Maeda, H.A.; Fernie, A.R. Evolutionary History of Plant Metabolism. Annu. Rev. Plant. Biol. 2021, 72, 185–216. [Google Scholar] [CrossRef]
- Li, H.; Pu, H. Crystal structure of methylesterase family member 16 (MES16) from Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2016, 474, 226–231. [Google Scholar] [CrossRef]
- Yang, L.; Hill, M.; Wang, M.; Panjikar, S.; Stockigt, J. Structural basis and enzymatic mechanism of the biosynthesis of C9- from C10-monoterpenoid indole alkaloids. Angew Chem. Int. Ed. Engl. 2009, 48, 5211–5213. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Tang, H.; Yu, X. Phylogenetic and AlphaFold predicted structure analyses provide insights for A1 aspartic protease family classification in Arabidopsis. Front. Plant Sci. 2023, 14, 1072168. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Sun, G.; Xiao, J.; He, X.; Jiang, H.; Zhang, Z.; Zhang, Q.; Li, K.; Zhang, S.; Shi, X.; et al. AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance. Mol. Plant 2024, 17, 1344–1368. [Google Scholar] [CrossRef]
- Pinto, G.P.; Corbella, M.; Demkiv, A.O.; Kamerlin, S.C.L. Exploiting enzyme evolution for computational protein design. Trends. Biochem. Sci. 2022, 47, 375–389. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Species | Major Substrate a | Reference |
---|---|---|---|
AtMES1 | Arabidopsis thaliana | MeSA | Vlot et al. 2008 [22] |
AtMES7 | Arabidopsis thaliana | MeSA | Gao et al. 2021 [23] |
AtMES9 | Arabidopsis thaliana | MeSA | Vlot et al. 2008 [22] |
BnMES34 | Brassica napus | MeSA | Jia et al. 2024a [24] |
CsMES1 | Citrus sinensis | MeSA | Lima Silva et al. 2019 [25] |
FvMES2 | Fragaria vesca | MeSA | Jia et al. 2024b [26] |
GmSABP2-1 | Glycine max | MeSA | Lin et al. 2024 [27] |
LcSABP | Lycium chinense | MeSA | Li et al. 2019 [28] |
PtSABP2-1 | Populus trichocarpa | MeSA | Zhao et al. 2009 [29] |
PtSABP2-2 | Populus trichocarpa | MeSA | Zhao et al. 2009 [29] |
PvMES1 | Phaseolus vulgaris | MeSA | Xue et al. 2021 [30] |
NtSABP2 | Nicotiana tabacum | MeSA | Forouhar et al. 2005 [12] |
SlMES1 | Solanum lycopersicum | MeSA | Frick et al. 2023 [31] |
SlMES2 | Solanum lycopersicum | MeSA | Frick et al. 2023 [31] |
SlMES3 | Solanum lycopersicum | MeSA | Frick et al. 2023 [31] |
SlMES4 | Solanum lycopersicum | MeSA | Frick et al. 2023 [31] |
StMES1 | Solanum tuberosum | MeSA | Manosalva et al. 2010 [32] |
PpMES2 | Prunus persica | MeSA/MeJA | Cao et al. 2019 [18] |
AtMES10 | Arabidopsis thaliana | MeJA | Koo et al. 2013 [33] |
PpMES1 | Prunus persica | MeJA | Cao et al. 2019 [18] |
SlMJE1 | Solanum lycopersicum | MeJA | Stuhlfelder et al. 2004 [11] |
NaMJE | Nicotiana attenuata | MeJA | Wu et al. 2008 [34] |
VvMES5 | Vitis vinifera | MeJA | Zhao et al. 2016 [35] |
OeMES1 | Olea europaea | MeJA, MeIAA | Volk et al. 2019 [36] |
OeMES2 | Olea europaea | MeJA, MeIAA | Volk et al. 2019 [36] |
AtMES17 | Arabidopsis thaliana | MeIAA | Yang et al. 2008 [9] |
AtMES2 | Arabidopsis thaliana | MeNA | Wu et al. 2018 [37] |
AtMES16 | Arabidopsis thaliana | FCCs | Crist et al. 2012 [38] |
ShMKS1 | Solanum habrochaites | 3-keto acids | Fridman et al. 2005 [39] |
PNAE | Rauvolfia serpentina | PNA | Dogru et al. 2000 [10] |
EAME1 | Olea europaea | Secoiridoids | Volk et al. 2019 [36] |
EAME2 | Olea europaea | Secoiridoids | Volk et al. 2019 [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaffin, T.A.; Wang, W.; Chen, J.-G.; Chen, F. Function and Evolution of the Plant MES Family of Methylesterases. Plants 2024, 13, 3364. https://doi.org/10.3390/plants13233364
Chaffin TA, Wang W, Chen J-G, Chen F. Function and Evolution of the Plant MES Family of Methylesterases. Plants. 2024; 13(23):3364. https://doi.org/10.3390/plants13233364
Chicago/Turabian StyleChaffin, Timothy A., Weijiao Wang, Jin-Gui Chen, and Feng Chen. 2024. "Function and Evolution of the Plant MES Family of Methylesterases" Plants 13, no. 23: 3364. https://doi.org/10.3390/plants13233364
APA StyleChaffin, T. A., Wang, W., Chen, J.-G., & Chen, F. (2024). Function and Evolution of the Plant MES Family of Methylesterases. Plants, 13(23), 3364. https://doi.org/10.3390/plants13233364