Bioaccumulation of Cr by the Buddleja Species and Schinus molle L. Grown with and Without Compost in a Sandy Soil Contaminated by Leather Industrial Effluents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Cultivation of Buddleja Species and Schinus molle L.
2.3. Evaluation of the Physicochemical Parameters of the Assessed Soil
2.4. Evaluation of the Total Chromium Concentration in Soil Samples
2.5. Evaluation of the Morphological Characteristics of Buddleja Species and Schinus molle L.
2.6. Determination of Total Chromium Bioaccumulation in Buddleja Species and Schinus molle L. Through Organic Matter Analysis and the Use of the Plant Bioaccumulation Percentage (%) Equation
2.7. Statistical Analysis
3. Results and Discussions
3.1. Physicochemical Properties of the Initial Soil Sample
3.2. Morphological Variations in the Evaluated Species
3.3. Total Chromium Concentration in Soils During and After Experimentation with Plant Species
3.4. Bioaccumulation Capacity of Total Chromium in the Evaluated Plant Species
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, M.J.; Salinas Morales, D. La contaminación proveniente de la industria curtiembre, una aproximación a la realidad ecuatoriana. Rev. Cient. UISRAEL 2022, 9, 69–80. [Google Scholar] [CrossRef]
- Rydin, S.; Delgado Sancho, L.; Canova, M.; Black, M.; Roudier, S.; Scalet, B. Best Available Techniques (BAT) Reference Document for the Tanning of Hides and Skins: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); Joint Research Centre, Institute for Prospective Technological Studies: Seville, Spain, 2013; Available online: https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/TAN_Published_def.pdf (accessed on 29 October 2024).
- GreenPeace. Cueros Tóxicos: Nuevas Evidencias de Contaminación de Curtiembres en la Cuenca Matanza-Riachuelo; GreenPeace: Buenos Aires, Argentina, 2012; Available online: https://www.dpn.gob.ar/documentos/20160517_30814_556734.pdf (accessed on 29 October 2024).
- Corporación Financiera Internacional (IFC) (Grupo del Banco Mundial). Guías Sobre Medio Ambiente, Salud y Seguridad para el Curtido y el Acabado del Cuero; Corporación Financiera Internacional: Washington, DC, USA, 2007; Available online: https://www.ifc.org/content/dam/ifc/doc/2000/2007-tanning-leather-finishing-ehs-guidelines-es.pdf (accessed on 30 October 2024).
- Otiniano García, M.; Tuesta Collantes, L.; Robles Castillo, H.; Luján Velásquez, M.; Chávez Castillo, M. Biorremediación de cromo VI de aguas residuales de curtiembres por Pseudomonas sp y su efecto sobre el ciclo celular de Allium cepa. Rev. Méd. Vallejiana/Vallejian Med. J. 2019, 4, 32–42. [Google Scholar] [CrossRef]
- Resolución Directorial. N° 0961-2019-OEFA/DFAI. (28 de junio de 2019) Informe Complementario de Evaluación Ambiental en el Ámbito del Parque Industrial de Rio Seco de Arequipa. OEFA: Lima, Peru, 2019. Available online: https://www.oefa.gob.pe/?wpfb_dl=37899 (accessed on 29 October 2024).
- Lazo, E. Evaluación de la Contaminación Ambiental Generada por Efluentes Industriales en el Proceso Productivo de una Curtiembre de Mediana Capacidad del Parque Industrial de Río Seco, Arequipa. Universidad Nacional de San Agustín: Arequipa, Peru, 2017. Available online: https://repositorio.unsa.edu.pe/bitstreams/d54fd65c-0130-48c5-bc37-523413ca5742/download (accessed on 29 October 2024).
- Abril, L. Análisis Comparativo de la Velocidad de Degradación de Cromo VI Aplicando Fitorremediación en Medios Físicos Diferentes: Suelo y Agua. Escuela Superior Politécnica de Chimborazo: Riobamba, Ecuador, 2016. Available online: http://dspace.espoch.edu.ec/bitstream/123456789/4892/1/236T0182.pdf (accessed on 29 October 2024).
- Paredes, J. Evaluación de la aplicabilidad de especies forestales de la serranía peruana en fitorremediación de relaves mineros. Rev. ECIPerú 2015, 11, 42–46. Available online: https://revistas.eciperu.net/index.php/ECIPERU/article/view/46/47 (accessed on 29 October 2024).
- Azabache Leyton, A.A.; De La Paz Rodríguez, J.; Argomedo Vásquez, B.L.; Galván Orcón, I.S. Organic amendments and phytoremediation of Cd and Pb by lettuce (Lactuca sativa L.) in a contaminated agricultural soil. Agroind. Sci. 2021, 11, 287–294. [Google Scholar] [CrossRef]
- Ministerio del Ambiente (MINAM). Guía para el Muestreo de Suelos; MINAM: Lima, Perú, 2013; Available online: https://www.minam.gob.pe/calidadambiental/wp-content/uploads/sites/22/2013/10/GUIA-PARA-EL-MUESTREO-DE-SUELOS-final.pdf (accessed on 30 October 2024).
- Almirón, J.; Arosquipa-Pachari, K.R.; Huillcañahui-Taco, C.; Huarsaya-Huillca, J.A.; Mamani-Quispe, J.; Ortiz-Valdivia, Y.; Velasco, F.; Tupayachy-Quispe, D. Evaluation of the Bioaccumulation Capacity of Buddleja species in Soils Contaminated with Total Chromium in Tannery Effluents in Arequipa (Peru). Sustainability 2023, 15, 6641. [Google Scholar] [CrossRef]
- Días, Y. Fitoextracción de Cromo en Plantas de Chenopodium murale, Baccharis salicifolia, Eleocharis montevidensis y Tessaria integrifolia y su Relacion con la Respuesta Fisiológica y Bioquímica. Ph.D. Thesis, Universidad Nacional de San Agustín, Arequipa, Perú, 2019. Available online: https://alicia.concytec.gob.pe/vufind/Record/UNSA_f57eee7e78aedfe7616b8a55fbf42451 (accessed on 30 October 2024).
- Han, F.X.; Sridhar, B.B.M.; Monts, D.L.; Su, Y. Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol. 2004, 162, 489–499. [Google Scholar] [CrossRef]
- Kabata, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Waranusantigul, P.; Kruatrachue, M.; Pokethitiyook, P.; Auesukaree, C. Evaluation of Pb Phytoremediation Potential in Buddleja asiatica and B. paniculate. Water Air Soil Pollut. 2008, 193, 79–90. [Google Scholar] [CrossRef]
- Salas, M.; Manzanares, E.; León, C.; Vega, H. Especies vegetales autóctonas tolerantes e hiperacumuladoras de vertederos de relaves mineros. Asian J. Exp. Sci. 2009, 23, 27–32. Available online: http://ajesjournal.com/PDFs/09-1/4.%20Tolerant%20and%20hyperaccumulators.pdf (accessed on 30 October 2024).
- Aguilar-Rodríguez, S.; Terrazas, T. Anatomía de la madera de Buddleja L. (Buddlejaceae): Análisis fenético. Madera Bosques 2016, 7, 63–85. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, B.; Zhu, L.; Zhou, Z. Evaluation of the metal(loid)s phytoextraction potential of wild plants grown in three antimony mines in southern China. Int. J. Phytoremediat. 2021, 23, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, S.; Zhang, H.; Kong, Q.; Li, Q.; Yao, X. Remediation materials for the immobilization of hexavalent chromium in contaminated soil: Preparation, applications, and mechanisms. Environ. Res. 2023, 237, 116918. [Google Scholar] [CrossRef] [PubMed]
- Tintaya, R. Capacidad Fitorremediadora de la Especie Helianthus annuus Mediante la Incorporación de Enmiendas a Suelos Contaminados por Metales Pesados (Plomo, Cromo) de Industrias Metalmecánicas. Bachelor’s Thesis, Universidad Peruana Unión, Lima, Peru, 2018. Available online: https://repositorio.upeu.edu.pe/items/cae481db-617f-417f-8ce2-c8c3e2eac17b (accessed on 30 October 2024).
- Munive, R.; Loli, O.; Azabache, A.; Gamarra, G. Phytoremediation with corn (Zea mays L.) and Stevia compost on soils degraded by contamination with heavy metals. Sci. Agropecu. 2018, 9, 551–560. [Google Scholar] [CrossRef]
- Rondón, R. Schinus molle L. Como Fitorremediadora en la Bioacumulación de Plomo; Editora UnC: Mafra, Brazil, 2021. [Google Scholar]
Parameter | Result | Unit |
---|---|---|
Concentration of Total Chromium | 2323 | mg/kg |
Ph | 7.30 | pH |
Conductivity | 3.29 | mmho/cm |
Texture | Clay 4.8 | % |
Sand 79.2 | % | |
Silt 16.0 | % | |
Organic Matter | 0.17 | % |
Textural Class | Loamy Sand | --- |
Moisture | 16.97 | % |
Field Capacity | 9.20 | % |
Wilting Point | 1.88 | % |
Irrigation Lamina | 1.02 | L |
ANOVA | ||||||
---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | Sig. | ||
pH | Between Groups | 0.130 | 3 | 0.043 | 0.777 | 0.539 |
Within Groups | 0.447 | 8 | 0.056 | |||
Total | 0.577 | 11 | ||||
Conductivity | Between Groups | 46.936 | 3 | 15.645 | 106.179 | <0.001 |
Within Groups | 1.179 | 8 | 0.147 | |||
Total | 48.115 | 11 |
Group | Point Estimation | Mean Square | F | |
---|---|---|---|---|
pH | Eta-squared | 0.226 | 0.000 | 0.451 |
Epsilon-squared | −0.065 | −0.375 | 0.245 | |
Omega–squared fixed effect | −0.059 | −0.333 | 0.229 | |
Omega–squared random effect | −0.019 | −0.091 | 0.090 | |
Conductivity | Eta-squared | 0.976 | 0.870 | 0.983 |
Epsilon-squared | 0.966 | 0.821 | 0.977 | |
Omega–squared fixed effect | 0.963 | 0.808 | 0.975 | |
Omega–squared random effect | 0.898 | 0.584 | 0.929 |
Subgroup | 0 Days (cm) | 60 Days (cm) | 120 Days (cm) | 180 Days (cm) |
---|---|---|---|---|
BCa | 62.80 ± 4.22 | 73.75 ± 3.66 | 84.80 ± 5.27 | 95.53 ± 5.17 |
BCb | 55.53 ± 7.50 | 66.75 ± 6.91 | 76.60 ± 6.57 | 87.33 ± 6.64 |
BCc | 48.58 ± 3.88 | 57.35 ± 3.90 | 66.50 ± 3.88 | 77.63 ± 2.99 |
BSa | 52.68 ± 2.70 | 63.05 ± 2.03 | 68.08 ± 2.30 | 74.30 ± 2.35 |
BSb | 54.70 ± 1.02 | 59.33 ± 1.03 | 64.93 ± 1.18 | 72.33 ± 0.89 |
BSc | 54.68 ± 1.18 | 57.40 ± 1.32 | 60.53 ± 1.53 | 63.13 ± 1.39 |
BBCg * | 55.9 | 58 | 61.1 | 63.5 |
BBTh * | 50 | 61.2 | 78.1 | 85 |
SCa | 37.25 ± 1.80 | 67.00 ± 2.35 | 98.75 ± 5.41 | 129.50 ± 8.63 |
SCb | 31.5 ± 2.66 | 53.50 ± 2.75 | 77.50 ± 3.33 | 100.50 ± 4.19 |
SCc | 36.75 ± 0.63 | 68.00 ± 3.81 | 101.25 ± 7.42 | 133.50 ± 11.05 |
SSa | 30.00 ± 4.64 | 40.25 ± 4.03 | 52.50 ± 3.57 | 63.75 ± 3.33 |
SSb | 36.00 ± 2.35 | 44.50 ± 2.47 | 55.00 ± 2.92 | 64.50 ± 3.57 |
SSc | 38.63 ± 2.21 | 47.00 ± 2.68 | 57.38 ± 4.09 | 66.75 ± 5.79 |
SBCg * | 26 | 59 | 94 | 128 |
SBTh * | 35 | 90 | 147 | 203 |
Test of Between-Subjects Effects | |||||
---|---|---|---|---|---|
Dependent Variable: Size | |||||
Source | Type III of Sum of Squares | df | Mean Square | F | Sig. |
Corrected Model | 85,367.209 a | 15 | 5691.153 | 55.485 | <0.001 |
Intersection | 816,134.481 | 1 | 816,134.481 | 7956.836 | <0.001 |
Species | 373.804 | 1 | 373.804 | 3.644 | 0.058 |
Between Groups | 16,633.992 | 1 | 16,633.992 | 162.172 | <0.001 |
Treatment | 44,551.164 | 3 | 14,850.388 | 144.783 | <0.001 |
Time | 4436.169 | 1 | 4436.169 | 43.250 | <0.001 |
Species*Treatment | 8173.746 | 3 | 2724.582 | 26.563 | <0.001 |
Species*Time | 8466.061 | 3 | 2822.020 | 27.513 | <0.001 |
Species*Treatment*Time | 2732.354 | 3 | 910.785 | 8.880 | <0.001 |
Error | 18,052.359 | 176 | 102.570 | ||
Total | 919,554.130 | 192 | |||
Corrected Total | 103,419.649 | 191 |
Species | Without Compost | With Compost | ||
---|---|---|---|---|
Subgroup | Concentration (mg/kg) | Subgroup | Concentration (mg/kg) | |
Buddleja | BSa1 | 2217 | BCa1 | 2187 |
BSa2 | 1600 | BCa2 | 1700 | |
BSa3 | 1408 | BCa3 | 1093 | |
BSb1 | 2315 | BCb1 | 1923 | |
BSb2 | 1676 | BCb2 | 1600 | |
BSb3 | 1389 | BCb3 | 1113 | |
BSc1 | 1530 | BCc1 | 2055 | |
BSc2 | 1000 | BCc2 | 1038 | |
BSc3 | 785 | BCc3 | 968 | |
Schinus molle L. | SSa1 | 1909 | SCa1 | 2268 |
SSa2 | 1823 | SCa2 | 1853 | |
SSa3 | 1441 | SCa3 | 1155 | |
SSb1 | 1951 | SCb1 | 2271 | |
SSb2 | 1599 | SCb2 | 1980 | |
SSb3 | 1239 | SCb3 | 1526 | |
SSc1 | 1770 | SCc1 | 1730 | |
SSc2 | 1434 | SCc2 | 1866 | |
SSc3 | 1244 | SCc3 | 1338 |
Report | ||||||
---|---|---|---|---|---|---|
Concentration | ||||||
Species | Average | N | Standard Deviation | Standard Mean Error | Asymmetry | |
Buddleja species Without Compost | 1546.6667 | 9 | 497.82025 | 165.94008 | 0.189 | |
Buddleja species With Compost | 1519.6667 | 9 | 476.61934 | 158.87311 | 0.146 | |
Schinus molle L. Without Compost | 1601.1111 | 9 | 275.49839 | 91.83280 | −0.108 | |
Schinus molle L. With Compost | 1776.3333 | 9 | 384.84315 | 128.28105 | −0.255 | |
Total | 1610.9444 | 36 | 412.35137 | 68.72523 | −0.060 | |
ANOVA | ||||||
Sum of Squares | df | Mean Square | F | Sig. | ||
Concentration*Species | Between Groups | 359,221.000 | 3 | 119,740.333 | 0.685 | 0.568 |
Within Groups | 5,591,956.889 | 32 | 174,748.653 | |||
Total | 5,951,177.889 | 35 | ||||
Measure Association | ||||||
Eta | Eta-squared | |||||
Concentration*Species | 0.246 | 0.060 |
Species | Group | Concentration (mg/kg) | * Concentration Average (mg/kg) |
---|---|---|---|
Buddleja species | BSa3 | 877.44 | 882.71 ± 3.5 |
BSb3 | 889.3 | ||
BSc3 | 881.4 | ||
BCa3 | 897.7 | 906.21 ± 4.6 | |
BCb3 | 913.7 | ||
BCc3 | 907.23 | ||
Schinus molle L. | SSa3 | 735.44 | 739.56 ± 7.3 |
SSb3 | 729.44 | ||
SSc3 | 753.8 | ||
SCa3 | 795.6 | 789.68 ± 3.8 | |
SCb3 | 782.55 | ||
SCc3 | 790.9 |
Report | ||||||
---|---|---|---|---|---|---|
Concentration | ||||||
Species Average | Average | N | Standard Deviation | |||
Buddleja species Without Compost | 882.7133 | 3 | 6.03809 | |||
Buddleja species With Compost | 906.2100 | 3 | 8.04862 | |||
Schinus molle L. Without Compost | 739.5600 | 3 | 12.69186 | |||
Schinus molle L. With Compost | 789.6833 | 3 | 6.60953 | |||
Total | 829.5417 | 12 | 71.21284 | |||
ANOVA | ||||||
Sum of Squares | df | Mean Square | F | Sig. | ||
Concentration*Species | Between Groups | 55,171.940 | 3 | 18,390.647 | 240.394 | <0.001 |
Within Groups | 612.016 | 8 | 76.502 | |||
Total | 55,783.955 | 11 | ||||
Measure Association | ||||||
Eta | Eta-squared | |||||
Concentration*Species | 0.994 | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huarsaya-Huillca, J.; Callo-Sánchez, S.; Aguilar-Ccuno, C.; Rodríguez-Salazar, O.; Tupayachy-Quispe, D.; Romero-Mariscal, G.; Hachire-Patiño, Z.; Almirón, J. Bioaccumulation of Cr by the Buddleja Species and Schinus molle L. Grown with and Without Compost in a Sandy Soil Contaminated by Leather Industrial Effluents. Plants 2024, 13, 3469. https://doi.org/10.3390/plants13243469
Huarsaya-Huillca J, Callo-Sánchez S, Aguilar-Ccuno C, Rodríguez-Salazar O, Tupayachy-Quispe D, Romero-Mariscal G, Hachire-Patiño Z, Almirón J. Bioaccumulation of Cr by the Buddleja Species and Schinus molle L. Grown with and Without Compost in a Sandy Soil Contaminated by Leather Industrial Effluents. Plants. 2024; 13(24):3469. https://doi.org/10.3390/plants13243469
Chicago/Turabian StyleHuarsaya-Huillca, Jamilet, Sheyla Callo-Sánchez, Camila Aguilar-Ccuno, Oswaldo Rodríguez-Salazar, Danny Tupayachy-Quispe, Giuliana Romero-Mariscal, Zulema Hachire-Patiño, and Jonathan Almirón. 2024. "Bioaccumulation of Cr by the Buddleja Species and Schinus molle L. Grown with and Without Compost in a Sandy Soil Contaminated by Leather Industrial Effluents" Plants 13, no. 24: 3469. https://doi.org/10.3390/plants13243469
APA StyleHuarsaya-Huillca, J., Callo-Sánchez, S., Aguilar-Ccuno, C., Rodríguez-Salazar, O., Tupayachy-Quispe, D., Romero-Mariscal, G., Hachire-Patiño, Z., & Almirón, J. (2024). Bioaccumulation of Cr by the Buddleja Species and Schinus molle L. Grown with and Without Compost in a Sandy Soil Contaminated by Leather Industrial Effluents. Plants, 13(24), 3469. https://doi.org/10.3390/plants13243469