Somatic Embryogenesis from the Leaf-Derived Calli of In Vitro Shoot-Regenerated Plantlets of Rosa hybrida ‘Carola’
Abstract
:1. Introduction
2. Results
2.1. Establishment of the Micropropagation System
2.2. The Induction of Calli
2.3. The Induction of Somatic Embryos
2.4. The Proliferation of Somatic Embryos
2.5. The Conversion of Somatic Embryos
3. Discussion
4. Materials and Methods
4.1. Micropropagation of the Sterile Plantlets
4.2. Callus Induction
4.3. Somatic Embryogenesis
4.4. Proliferation of Somatic Embryos
4.5. Germination of Somatic Embryos
4.6. Rooting and Hardening-Off Culture
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raymond, O.; Gouzy, J.; Just, J.; Badouin, H.; Verdenaud, M.; Lemainque, A.; Vergne, P.; Moja, S.; Choisne, N.; Pont, C.; et al. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 2018, 50, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Bendahmane, M.; Dubois, A.; Raymond, O.; Bris, M.L. Genetics and genomics of flower initiation and development in roses. J. Exp. Bot. 2013, 64, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Dohm, A.; Ludwig, C.; Nehring, K.; Debener, T. Somatic embryogenesis in roses. Acta Hortic. 2001, 547, 341–347. [Google Scholar] [CrossRef]
- Zakizadeh, H.; Debener, T.; Sriskandarajah, S.; Frello, S.; Serek, M. Regeneration of miniature potted rose (Rosa hybrida L.) via somatic embryogenesis. Eur. J. Hortic. Sci. 2008, 73, 111–117. [Google Scholar]
- Bao, Y.; Liu, G.F.; Shi, X.P.; Xing, W.; Ning, G.G.; Liu, J.; Bao, M.Z. Primary and repetitive secondary somatic embryogenesis in Rosa hybrida ‘Samantha’. Plant Cell Tiss. Org. Cult. 2012, 109, 411–418. [Google Scholar] [CrossRef]
- Liu, G.; Yuan, Y.; Jiang, H.; Bao, Y.; Ning, G.; Zhao, L.; Zhou, X.; Zhou, H.; Gao, J.; Ma, N. Agrobacterium tumefaciens-mediated transformation of modern rose (Rosa hybrida) using leaf-derived embryogenic callus. Hortic. Plant J. 2021, 7, 359–366. [Google Scholar] [CrossRef]
- Harmon, D.D.; Chen, H.; Byrne, D.; Liu, W.; Ranney, T.G. Cytogenetics, ploidy, and genome sizes of rose (Rosa spp.) cultivars and breeding lines. Ornam. Plant Res. 2023, 3, 10. [Google Scholar] [CrossRef]
- Kim, S.W.; Oh, S.C.; In, D.S.; Liu, J.R. Plant regeneration of rose (Rosa hybridia) from embryogenic cell-derived protoplasts. Plant Cell Tiss. Org. Cult. 2003, 73, 15–19. [Google Scholar] [CrossRef]
- Tian, C.; Chen, Y.; Zhao, X.; Zhao, L. Plant regeneration through protocorm-like bodies induced from rhizoids using leaf explants of Rosa spp. Plant Cell Rep. 2008, 27, 823–831. [Google Scholar] [CrossRef]
- Steward, F. Growth and development of cultured cells. III. interpretations of the growth from free cells to carrot plants. Am. J. Bot. 1958, 45, 709–713. [Google Scholar] [CrossRef]
- Reinert, J. Über die Kontrolle der Morphogenese und die Induktion von Adventivembryonen an Gewebekulturen aus Karotten. Planta 1959, 53, 318–333. [Google Scholar] [CrossRef]
- Li, Z.T.; Kim, K.H.; Dhekney, S.A.; Jasinski, J.R.; Creech, M.R.; Gray, D.J. An optimized procedure for plant recovery from somatic embryos significantly facilitates the genetic improvement of Vitis. Hortic. Res. 2014, 1, 14027. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Liu, Y.; Jeong, B.R. Enhanced Somatic Embryo Induction of a Tree Peony, Paeonia ostii ‘Fengdan’, by a Combination of 6-benzylaminopurine (BA) and 1-naphthylacetic Acid (NAA). Plants 2019, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Sun, Y.; Sun, H. Current status and future perspectives of somatic embryogenesis in Lilium. Plant Cell Tiss. Org. Cult. 2020, 143, 229–240. [Google Scholar] [CrossRef]
- Ali, S.; Raza, S.; Shahzad, S.; Batool, T.S.; Abdullah, A.; Hameed, N.; Manzoor, A. Regeneration of chrysanthemum (Chrysanthemum morifolium) via somatic embryogenesis and screening of clones for agronomic traits. Plant Cell Tiss. Org. Cult. 2023, 153, 657–667. [Google Scholar] [CrossRef]
- Zeng, J.; Deng, Y.; Iqbal, S.; Zhang, J.; Wu, K.; Ma, G.; Li, L.; Dai, G.; Deng, R.; Fang, L.; et al. Direct Somatic Embryogenesis and Related Gene Expression Networks in Leaf Explants of Hippeastrum ‘Bangkok Rose’. Hortic. Plant J. 2024, 10, 556–572. [Google Scholar] [CrossRef]
- Finer, J.J. Direct Somatic Embryogenesis. In Plant Cell, Tissue and Organ Culture: Fundamental Methods; Gamborg, O.L., Phillips, G.C., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 2, pp. 91–102. [Google Scholar]
- Azadi, P.; Kermani, M.J.; Samiei, L. Somatic Embryogenesis in Rosa hybrida. In Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants, 2nd ed.; Jain, S.M., Gupta, P.K., Eds.; Springer: Cham, Switzerland, 2018; Volume 85, pp. 161–169. [Google Scholar]
- Luis, Z.G.; Scherwinski-Pereira, J.E. An improved protocol for somatic embryogenesis and plant regeneration in macaw palm (Acrocomia aculeata) from mature zygotic embryos. Plant Cell Tiss. Org. Cult. 2014, 118, 485–496. [Google Scholar] [CrossRef]
- Kulus, D. Application of Cryogenic Technologies and Somatic Embryogenesis in the Storage and Protection of Valuable Genetic Resources of Ornamental Plants. In Somatic Embryogenesis in Ornamentals and Its Applications; Mujib, A., Ed.; Springer: New Delhi, India, 2016; pp. 1–25. [Google Scholar]
- Hill, G. Morphogenesis of shoot primordia in cultured stem tissue of a garden rose. Nature 1967, 216, 596–597. [Google Scholar] [CrossRef]
- Valles, M.; Boxus, P. Regeneration from Rosa callus. Acta Hortic. 1987, 212, 691–696. [Google Scholar] [CrossRef]
- Cai, Y.; Tang, L.; Chen, H.; Li, Y.; Liu, R.; Chen, J. Somatic embryogenesis in Rosa chinensis cv. ‘Old Blush’. Plant Cell Tiss. Org. Cult. 2022, 149, 645–656. [Google Scholar] [CrossRef]
- Kunitake, H.; Imamizo, H.; Mii, M. Somatic embryogenesis and plant regeneration from immature seed-derived calli of rugosa rose (Rosa rugosa Thunb.). Plant Sci. 1993, 90, 187–194. [Google Scholar] [CrossRef]
- Kim, S.W.; Oh, M.J.; Liu, J.R. Somatic embryogenesis and plant regeneration in zygotic embryo explant cultures of rugosa rose. Plant Biotechnol. Rep. 2009, 3, 199–203. [Google Scholar] [CrossRef]
- Xing, W.; Bao, Y.; Luo, P.; Bao, M.Z.; Ning, G.G. An efficient system to produce transgenic plants via cyclic leave-originated secondary somatic embryogenesis in Rosa rugosa. Acta Physiol. Plant 2014, 36, 2013–2023. [Google Scholar] [CrossRef]
- Castillón, J.; Kamo, K. Maturation and conversion of somatic embryos of three genetically diverse rose cultivars. HortScience 2002, 37, 973–977. [Google Scholar] [CrossRef]
- Visessuwan, R.; Kawai, T.; Mii, M. Plant regeneration systems from leaf segment culture through embryogenic callus formation of Rosa hybrida and R. canina. Jpn. J. Breed. 1997, 47, 217–222. [Google Scholar] [CrossRef]
- de Wit, J.C.; Esendam, H.F.; Honkanen, J.J.; Tuominen, U. Somatic embryogenesis and regeneration of flowering plants in rose. Plant Cell Rep. 1990, 9, 456–458. [Google Scholar] [CrossRef]
- Arene, L.; Pellegrino, C.; Gudin, S. A comparison of the somaclonal variation level of Rosa hybrida L. cv Meirutral plants regenerated from callus or direct induction from different vegetative and embryonic tissues. Euphytica 1993, 71, 83–90. [Google Scholar] [CrossRef]
- Hsia, C.-n.; Korban, S.S. Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell Tiss. Org. Cult. 1996, 44, 1–6. [Google Scholar] [CrossRef]
- van der Salm, T.P.M.; van der Toorn, C.J.G.; ten Cate Hänisch, C.H.; Dons, H.J.M. Somatic embryogenesis and shoot regeneration from excised adventitious roots of the rootstock Rosa hybrida L. ‘Moneyway’. Plant Cell Rep. 1996, 15, 522–526. [Google Scholar] [CrossRef]
- Kintzios, S.; Manos, C.; Makri, O. Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep. 1999, 18, 467–472. [Google Scholar] [CrossRef]
- Li, X.Q.; Krasnyanski, S.F.; Korban, S.S. Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J. Plant Physiol. 2002, 159, 313–319. [Google Scholar] [CrossRef]
- Estabrooks, T.; Browne, R.; Dong, Z. 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar “Livin’ Easy” (Rosa sp.). Plant Cell Rep. 2007, 26, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Harmon, D.D.; Touchell, D.H.; Ranney, T.G.; Da, K.; Liu, W. Tissue culture and regeneration of three rose cultivars. HortScience 2022, 57, 1430–1435. [Google Scholar] [CrossRef]
- Yokoya, K.; Walker, S.; Sarasan, V. Regeneration of rose plants from cell and tissue cultures. Acta Hortic. 1995, 424, 333–338. [Google Scholar] [CrossRef]
- Chen, J.R.; Wu, L.; Hu, B.W.; Yi, X.; Liu, R.; Deng, Z.N.; Xiong, X.Y. The Influence of plant growth regulators and light quality on somatic embryogenesis in China rose (Rosa chinensis Jacq.). J. Plant Growth Regul. 2014, 33, 295–304. [Google Scholar] [CrossRef]
- Latifa, H.; Voisine, L.; Pierre, S.; Cesbron, D.; Ogé, L.; Lecerf, M.; Cailleux, S.; Bosselut, J.; Séverine, F.; Foucher, F.; et al. Improvement of in vitro donor plant competence to increase de novo shoot organogenesis in rose genotypes. Sci. Hortic-Amst. 2019, 252, 85–95. [Google Scholar]
- Yaseen, M.; Ahmad, T.; Sablok, G.; Standardi, A.; Hafiz, I.A. Review: Role of carbon sources for in vitro plant growth and development. Mol. Biol. Rep. 2013, 40, 2837–2849. [Google Scholar] [CrossRef]
- Harb, A.; Krishnan, A.; Ambavaram, M.M.R.; Pereira, A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol. 2010, 154, 1254–1271. [Google Scholar] [CrossRef]
- Rout, G.; Debata, B.; Das, P. Somatic embryogenesis in callus cultures of Rosa hybrida L. cv. Landora. Plant Cell Tiss. Org. Cult. 1991, 27, 65–69. [Google Scholar] [CrossRef]
- Roberts, D.R. Abscisic acid and mannitol promote early development, maturation and storage protein accumulation in somatic embryos of interior spruce. Physiol. Plant. 1991, 83, 247–254. [Google Scholar] [CrossRef]
- Tian, L.N.; Brown, D.C.W. Improvement of soybean somatic embryo development and maturation by abscisic acid treatment. Can. J. Plant Sci. 2000, 80, 271–276. [Google Scholar] [CrossRef]
- Jiménez, V.M. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul. 2005, 47, 91–110. [Google Scholar] [CrossRef]
- Sarasan, V.; Roberts, A.V.; Rout, G.R. Methyl laurate and 6-benzyladenine promote the germination of somatic embryos of a hybrid rose. Plant Cell Rep. 2001, 20, 183–186. [Google Scholar] [CrossRef]
- Martin, C. Plant breeding in vitro. Endeavour 1985, 9, 81–86. [Google Scholar] [CrossRef]
- Lloyd, D.; Roberts, A.V.; Short, K.C. The induction in vitro of adventitious shoots in Rosa. Euphytica 1988, 37, 31–36. [Google Scholar] [CrossRef]
- Pati, P.K.; Rath, S.P.; Sharma, M.; Sood, A.; Ahuja, P.S. In vitro propagation of rose—A review. Biotechnol. Adv. 2006, 24, 94–114. [Google Scholar] [CrossRef]
- Mahmoud, I.M.A.; Hassanein, A.M.A. Essential factors for in vitro regeneration of rose and a protocol for plant regeneration from leaves. Hortic. Sci. 2018, 45, 83–91. [Google Scholar] [CrossRef]
- Rezanejad, F.; Abdirad, S.; Abarian, M. Comparison of shoot and root regeneration of miniature potted rose (Rosa x hybrida L.) and Damask rose (R. damascena Mill.) in microculture system. Acta Agric. Slov. 2023, 119, 1–10. [Google Scholar] [CrossRef]
- Xing, W.; Bao, M.; Qin, H.; Ning, G. Micropropagation of Rosa rugosa through axillary shoot proliferation. Acta Biol. Cracov. Ser. Bot. 2010, 52, 69–75. [Google Scholar] [CrossRef]
- Sheikh-Assadi, M.; Tari, N.G.; Naderi, R.; Fattahi, R. Exploring the impact of seasonal sampling, media phase, concentration and type of hormone on the micropropagation of dog rose (Rosa canina L.). J. Ornam. Plants 2023, 13, 267–282. [Google Scholar]
- Pati, P.K.; Sharma, M.; Sood, A.; Ahuja, P.S. Direct shoot regeneration from leaf explants of Rosa damascena Mill. In Vitro Cell. Dev. Biol.-Plant 2004, 40, 192–195. [Google Scholar] [CrossRef]
- Al-Ali, A.M.; Dewir, Y.H.; Al-Obeed, R.S. Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization. Agronomy 2024, 14, 1120. [Google Scholar] [CrossRef]
- Vergne, P.; Maene, M.; Gabant, G.; Chauvet, A.; Debener, T.; Bendahmane, M. Somatic embryogenesis and transformation of the diploid Rosa chinensis cv Old Blush. Plant Cell Tiss. Org. Cult. 2010, 100, 73–81. [Google Scholar] [CrossRef]
- Marchant, R.; Davey, M.R.; Lucas, J.A.; Power, J.B. Somatic embryogenesis and plant regeneration in Floribunda rose (Rosa hybrida L) cvs. Trumpeter and Glad Tidings. Plant Sci. 1996, 120, 95–105. [Google Scholar] [CrossRef]
- Fehér, A. Somatic Embryogenesis—Stress-Induced Remodeling of Plant Cell Fate. Biochim. Biophys. Acta Gene Regul. Mech. 2015, 1849, 385–402. [Google Scholar] [CrossRef]
- Noriega, C.; Söndahl, M.R. Somatic embryogenesis in hybrid tea roses. Nat. Biotechnol. 1991, 9, 991–993. [Google Scholar] [CrossRef]
- Kim, C.K.; Oh, J.Y.; Chung, J.D.; Burrell, A.M.; Byrne, D.H. Somatic embryogenesis and plant regeneration from in-vitro-grown leaf explants of rose. Hortscience 2004, 39, 1378–1380. [Google Scholar] [CrossRef]
- Pour, M.Z.; Azadi, P.; Majd, A.; Kermani, M.J.; Irian, S. Effect of stress factors on somatic embryogenesis of rose. Int. J. Biosci. 2015, 6, 255–265. [Google Scholar]
- Shen, Y.; Xing, W.; Ding, M.; Bao, M.; Ning, G. Somatic Embryogenesis and Agrobacterium-Mediated Genetic Transformation in Rosa Species. In Somatic Embryogenesis in Ornamentals and Its Applications; Mujib, A., Ed.; Springer: New Delhi, India, 2016; pp. 169–185. [Google Scholar]
- Kim, S.W.; Oh, M.J.; Liu, J.R. Plant regeneration from the root-derived embryonic tissues of Rosa hybrida L. cv. Charming via a combined pathway of somatic embryogenesis and organogenesis. Plant Biotechnol. Rep. 2009, 3, 341–345. [Google Scholar] [CrossRef]
- Agarwal, S.; Kanwar, K.; Sharma, D.R. Factors affecting secondary somatic embryogenesis and embryo maturation in Morus alba L. Sci. Hortic-Amst. 2004, 102, 359–368. [Google Scholar] [CrossRef]
- Roberts, A.V.; Yokoya, K.; Walker, S.; Mottley, J. Somatic embryogenesis in Rosa spp. In Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Newton, R.J., Eds.; Springer: Dordrecht, The Netherlands, 1995; Volume 2, pp. 277–289. [Google Scholar]
- Chen, C.; Hu, Y.; Ikeuchi, M.; Jiao, Y.; Prasad, K.; Su, Y.H.; Xiao, J.; Xu, L.; Yang, W.; Zhao, Z.; et al. Plant regeneration in the new era: From molecular mechanisms to biotechnology applications. Sci. China Life Sci. 2024, 67, 1338–1367. [Google Scholar] [CrossRef] [PubMed]
- Khanday, I.; Santos-Medellín, C.; Sundaresan, V. Somatic embryo initiation by rice BABY BOOM1 involves activation of zygote-expressed auxin biosynthesis genes. New Phytol. 2023, 238, 673–687. [Google Scholar] [CrossRef] [PubMed]
- Lowe, K.; Wu, E.; Wang, N.; Hoerster, G.; Hastings, C.; Cho, M.J.; Scelonge, C.; Lenderts, B.; Chamberlin, M.; Cushatt, J.; et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 2016, 28, 1998–2015. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.X.; Shang, G.D.; Wu, L.Y.; Xu, Z.G.; Zhao, X.Y.; Wang, J.W. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev. Cell 2020, 54, 742–757.e8. [Google Scholar] [CrossRef]
- Wójcikowska, B.; Jaskóła, K.; Gąsiorek, P.; Meus, M.; Nowak, K.; Gaj, M.D. LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 2013, 238, 425–440. [Google Scholar] [CrossRef]
- Ding, C.; Kang, X.; Hu, X.; Wu, R.; Yuan, M.; Weng, S.; Du, L. Study on physiological and biochemical characteristics being used for identification of different plantlet regeneration approaches from somatic embryo of Rosa Hybrida ‘J. F. Kennedy’. Plant Cell Tiss. Org. Cult. 2024, 159, 56. [Google Scholar] [CrossRef]
Medium | NAA (mg·L−1) | ZT (mg·L−1) | KT (mg·L−1) | 6-BA (mg·L−1) | Induction Rate of Callus (%) |
---|---|---|---|---|---|
A1 | 2.0 | 0 | 0 | 0 | 100 |
A2 | 2.0 | 1.0 | 0 | 0 | 100 |
A3 | 2.0 | 0 | 1.0 | 0 | 100 |
A4 | 2.0 | 0 | 0 | 1.0 | 100 |
Medium | TDZ (mg·L−1) | NAA (mg·L−1) | GA3 (mg·L−1) | Induction Rate of Somatic Embryos (%) |
---|---|---|---|---|
B1 | 1.0 | 0.1 | 0 | 0 |
B2 | 2.0 | 0.1 | 0 | 6.67 ± 0.07 a |
B3 | 3.0 | 0.1 | 0 | 0 |
B4 | 4.0 | 0.1 | 0 | 0 |
B5 | 1.0 | 0.5 | 0 | 3.33 ± 0.03 b |
B6 | 2.0 | 0.5 | 0 | 0 |
B7 | 3.0 | 0.5 | 0 | 0 |
B8 | 4.0 | 0.5 | 0 | 0 |
B9 | 1.0 | 0.5 | 1.0 | 10.00 ± 0.1 a |
B10 | 2.0 | 0.5 | 1.0 | 0 |
B11 | 3.0 | 0.5 | 1.0 | 0 |
B12 | 4.0 | 0.5 | 1.0 | 0 |
Medium | ZT (mg·L−1) | NAA (mg·L−1) | Induction Rate of Somatic Embryos (%) |
---|---|---|---|
C1 | 1.0 | 0.1 | 0 |
C2 | 2.0 | 0.1 | 13.33 |
C3 | 3.0 | 0.1 | 0 |
C4 | 4.0 | 0.1 | 0 |
C5 | 1.0 | 0.5 | 0 |
C6 | 2.0 | 0.5 | 0 |
C7 | 3.0 | 0.5 | 0 |
C8 | 4.0 | 0.5 | 0 |
Medium | Glucose (mg·L−1) | TDZ (mg·L−1) | ZT (mg·L−1) | NAA (mg·L−1) | GA3 (mg·L−1) | Proliferation Coefficient | Ratio of Somatic Embryos (%) | Growth State of Somatic Embryos |
---|---|---|---|---|---|---|---|---|
D1 | 30 | 1.5 | 0 | 0.2 | 0.1 | 2.34 ± 0.13 c | 60 | Grew weakly with abnormal embryos occur |
D2 | 60 | 1.5 | 0 | 0.2 | 0.1 | 3.65 ± 1.56 b | 85 | Grew vigorously with good gloss |
D3 | 30 | 0 | 1.5 | 0.2 | 0.1 | 2.87 ± 0.78 c | 72 | Grew vigorously with good gloss |
D4 | 60 | 0 | 1.5 | 0.2 | 0.1 | 4.02 ± 0.24 a | 90 | Grew vigorously with good gloss |
Medium | TDZ (mg·L−1) | 6-BA (mg·L−1) | KT (mg·L−1) | GA3 (mg·L−1) | ABA (mg·L−1) | Germination Rate of Somatic Embryos (%) | Number of Regenerated Plantlets per Somatic Embryo |
---|---|---|---|---|---|---|---|
E1 | 1.5 | 0.5 | 0 | 0 | 0 | 17.72 ± 0.10 a | 0.80 ± 0.37 |
E2 | 1.5 | 0.5 | 0 | 1.0 | 0 | 0 | 0 |
E3 | 1.5 | 0.5 | 0 | 0 | 1.0 | 0 | 0 |
E4 | 1.5 | 0 | 0.5 | 0 | 0 | 0 | 0 |
Medium | 6-BA (mg·L−1) | NAA (mg·L−1) | IBA (mg·L−1) | 2,4-D (mg·L−1) | Germination Rate of Somatic Embryos (%) | Number of Regenerated Plantlets per Somatic Embryo |
---|---|---|---|---|---|---|
F1 | 0.5 | 0 | 0 | 0 | 0 | 0 |
F2 | 1.0 | 0 | 0 | 0 | 6.90 ± 0.05 b | 0.5 ± 0.5 b |
F3 | 1.0 | 0.01 | 0 | 0 | 10.34 ± 0.07 b | 0 |
F4 | 1.0 | 0 | 0.01 | 0 | 43.33 ± 0.24 a | 1.31 ± 0.17 a |
F5 | 1.0 | 0 | 0 | 0.01 | 31.03 ± 0.08 a | 0.89 ± 0.20 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, M.; Liu, J.; Zhao, Y.; Wang, X.; Li, L.; Wang, S.; Jia, R.; Zhao, X.; Kou, Y.; Su, K.; et al. Somatic Embryogenesis from the Leaf-Derived Calli of In Vitro Shoot-Regenerated Plantlets of Rosa hybrida ‘Carola’. Plants 2024, 13, 3553. https://doi.org/10.3390/plants13243553
Duan M, Liu J, Zhao Y, Wang X, Li L, Wang S, Jia R, Zhao X, Kou Y, Su K, et al. Somatic Embryogenesis from the Leaf-Derived Calli of In Vitro Shoot-Regenerated Plantlets of Rosa hybrida ‘Carola’. Plants. 2024; 13(24):3553. https://doi.org/10.3390/plants13243553
Chicago/Turabian StyleDuan, Mingao, Juan Liu, Yining Zhao, Xiaofei Wang, Longzhen Li, Shiyi Wang, Ruidong Jia, Xin Zhao, Yaping Kou, Kairui Su, and et al. 2024. "Somatic Embryogenesis from the Leaf-Derived Calli of In Vitro Shoot-Regenerated Plantlets of Rosa hybrida ‘Carola’" Plants 13, no. 24: 3553. https://doi.org/10.3390/plants13243553
APA StyleDuan, M., Liu, J., Zhao, Y., Wang, X., Li, L., Wang, S., Jia, R., Zhao, X., Kou, Y., Su, K., Ge, H., & Yang, S. (2024). Somatic Embryogenesis from the Leaf-Derived Calli of In Vitro Shoot-Regenerated Plantlets of Rosa hybrida ‘Carola’. Plants, 13(24), 3553. https://doi.org/10.3390/plants13243553