Overexpression of Phosphoserine Aminotransferase (PSAT)-Enhanced Cadmium Resistance and Accumulation in Duckweed (Lemna turionifera 5511)
Abstract
:1. Introduction
2. Results
2.1. Construction and Identification of PSAT Transgenic Duckweed
2.2. Over-Expression of PSAT1 Improved Cd Tolerance, Photosynthetic Relative Genes Expression, and Chlorophyll Content during Cd Stress
2.3. An Enhanced Antioxidant Capacity in PSAT Duckweed under Cd Stress
2.4. The Expression of Genes Related to Glu Metabolism Pathway in PSAT Duckweed under Cd Stress
2.5. The Changes in Metabolism Analysis of Pathway Enrichment and Amino Acid Content in PSAT Duckweed during Cd Treatment
2.6. Cd Absorption Was Improved in PSAT Duckweed
3. Discussion
3.1. Overexpression of PSAT Improved Cd Resistance by Protecting Root and Enhancing Photosynthesis
3.2. PSAT Promoted Glutamate Metabolism and Cd Accumulation
3.3. Overexpression of PSAT Promoted the Antioxidant System Capacity under Cd Stress
4. Materials and Methods
4.1. Duckweed Culture
4.2. Transgenic and Plant Tissue Culture
4.3. Binary Vector Construction and Agrobacterium Transformation
4.4. Determination of Chlorophyll Content
4.5. Determination of Cd Content in Medium
4.6. Cd2+ Flux Determination
4.7. Evans Blue Dyeing
4.8. Antioxidant Activity
4.9. Flow Cytometric Analysis of Cd Content in Roots
4.10. RNA Sequencing and Analysis
4.11. Untargeted Metabolom Analysis
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cobbett, C.S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 2000, 123, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yao, J.; Sun, J.; Shi, L.; Chen, Y.; Sun, J. The Ca(2+) signaling, Glu, and GABA responds to Cd stress in duckweed. Aquat. Toxicol. 2020, 218, 105352. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ren, Q.; Ma, X.; Wang, M.; Sun, J.; Wang, S.; Wu, X.; Chen, X.; Wang, C.; Li, Q.; et al. New insight into the effect of riluzole on cadmium tolerance and accumulation in duckweed (Lemna turionifera). Ecotoxicol. Env. Saf. 2022, 241, 113783. [Google Scholar] [CrossRef]
- Qiu, X.-M.; Sun, Y.-Y.; Ye, X.-Y.; Li, Z.-G. Signaling role of glutamate in plants. Front. Plant Sci. 2020, 10, 1743. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Wang, C.; Zhang, C.; Huang, Y.; Wang, P.; Liu, Z. Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland. Env. Pollut. 2020, 262, 114236. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Deng, Q.; Zhao, Y.; Chen, G.; Geng, A.; Wang, X. l-Glutamate Seed Priming Enhances 2-Acetyl-1-pyrroline Formation in Fragrant Rice Seedlings in Response to Arsenite Stress. J. Agric. Food Chem. 2023, 71, 18443–18453. [Google Scholar] [CrossRef]
- Jiang, M.; Jiang, J.; Li, S.; Li, M.; Tan, Y.; Song, S.; Shu, Q.; Huang, J. Glutamate alleviates cadmium toxicity in rice via suppressing cadmium uptake and translocation. J. Hazard. Mater. 2020, 384, 121319. [Google Scholar] [CrossRef]
- Vega Rasgado, L.A.; Ceballos Reyes, G.; Vega-Díaz, F. Anticonvulsant drugs, brain glutamate dehydrogenase activity and oxygen consumption. ISRN Pharmacol. 2012, 2012, 295853. [Google Scholar] [CrossRef]
- Tabuchi, M.; Abiko, T.; Yamaya, T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J. Exp. Bot. 2007, 58, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, D.; Tsuchida, H.; Miyao, M.; Ohsumi, C. Glutamate: Glyoxylate aminotransferase modulates amino acid content during photorespiration. Plant Physiol. 2006, 142, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Sekula, B.; Ruszkowski, M.; Dauter, Z. Structural Analysis of Phosphoserine Aminotransferase (Isoform 1) From Arabidopsis thaliana- the Enzyme Involved in the Phosphorylated Pathway of Serine Biosynthesis. Front. Plant Sci. 2018, 9, 876. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.L.; Saito, K. Molecular biology of the plastidic phosphorylated serine biosynthetic pathway in Arabidopsis thaliana. Amino Acids 2001, 20, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Ros, R.; Muñoz-Bertomeu, J.; Krueger, S. Serine in plants: Biosynthesis, metabolism, and functions. Trends Plant Sci. 2014, 19, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Romney, D.K.; Murciano-Calles, J.; Wehrmüller, J.E.; Arnold, F.H. Unlocking Reactivity of TrpB: A General Biocatalytic Platform for Synthesis of Tryptophan Analogues. J. Am. Chem. Soc. 2017, 139, 10769–10776. [Google Scholar] [CrossRef]
- Wang, L.; Li, S.; Sun, L.; Tong, Y.; Yang, L.; Zhu, Y.; Wang, Y. Over-Expression of Phosphoserine Aminotransferase-Encoding Gene (AtPSAT1) Prompts Starch Accumulation in L. turionifera under Nitrogen Starvation. Int. J. Mol. Sci. 2022, 23, 11563. [Google Scholar] [CrossRef]
- Toyota, M.; Spencer, D.; Sawai-Toyota, S.; Jiaqi, W.; Zhang, T.; Koo, A.J.; Howe, G.A.; Gilroy, S. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 2018, 361, 1112–1115. [Google Scholar] [CrossRef]
- Chu, Q.; Li, Y.; Hua, Z.; Wang, Y.; Yu, X.; Jia, R.; Chen, W.; Zheng, X. Tetrastigma hemsleyanum Vine Flavone Ameliorates Glutamic Acid-Induced Neurotoxicity via MAPK Pathways. Oxid. Med. Cell Longev. 2020, 2020, 7509612. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Chang, Y.-J.; Lin, C.-T.; Lee, M.-C.; Wu, C.-W.; Lai, Y.-H. Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolata. Int. Biodeterior. Biodegrad. 2013, 85, 709–714. [Google Scholar] [CrossRef]
- Gratão, P.L.; Monteiro, C.C.; Rossi, M.L.; Martinelli, A.P.; Peres, L.E.; Medici, L.O.; Lea, P.J.; Azevedo, R.A. Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ. Exp. Bot. 2009, 67, 387–394. [Google Scholar] [CrossRef]
- Chen, F.; Wang, F.; Zhang, G.; Wu, F. Identification of barley varieties tolerant to cadmium toxicity. Biol. Trace Elem. Res. 2008, 121, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Luo, S.; Chen, J.; Xiao, X.; Chen, L.; Zeng, G.; Liu, C.; He, Y. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere 2012, 89, 743–750. [Google Scholar] [CrossRef]
- Küpper, H.; Parameswaran, A.; Leitenmaier, B.; Trtílek, M.; Šetlík, I. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol. 2007, 175, 655–674. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Ge, A.; Xu, S.; You, Z.; Ning, S.; Zhao, Y.; Pang, D. PSAT1 is regulated by ATF4 and enhances cell proliferation via the GSK3β/β-catenin/cyclin D1 signaling pathway in ER-negative breast cancer. J. Exp. Clin. Cancer Res. 2017, 36, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, S.; Dougherty, S.; Kruer, T.; Hasan, N.; Biyik-Sit, R.; Reynolds, L.; Clem, B.F. Selective loss of phosphoserine aminotransferase 1 (PSAT1) suppresses migration, invasion, and experimental metastasis in triple negative breast cancer. Clin. Exp. Metastasis 2020, 37, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Vié, N.; Copois, V.; Bascoul-Mollevi, C.; Denis, V.; Bec, N.; Robert, B.; Fraslon, C.; Conseiller, E.; Molina, F.; Larroque, C. Overexpression of phosphoserine aminotransferase PSAT1 stimulates cell growth and increases chemoresistance of colon cancer cells. Mol. Cancer 2008, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dixit, V.; Pandey, V.; Shyam, R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J. Exp. Bot. 2001, 52, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Lux, A.; Martinka, M.; Vaculík, M.; White, P.J. Root responses to cadmium in the rhizosphere: A review. J. Exp. Bot. 2011, 62, 21–37. [Google Scholar] [CrossRef]
- Foyer, C.H.; Lopez-Delgado, H.; Dat, J.F.; Scott, I.M. Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant. 1997, 100, 241–254. [Google Scholar] [CrossRef]
- Foyer, C.H.; Souriau, N.; Perret, S.; Lelandais, M.; Kunert, K.-J.; Pruvost, C.; Jouanin, L. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 1995, 109, 1047–1057. [Google Scholar] [CrossRef]
- Wang, Y.; Kandeler, R. Promotion of flowering by a tumor promoter. J. Plant Physiol. 1994, 144, 710–713. [Google Scholar] [CrossRef]
- Yang, L.; Han, Y.; Wu, D.; Yong, W.; Liu, M.; Wang, S.; Liu, W.; Lu, M.; Wei, Y.; Sun, J. Salt and cadmium stress tolerance caused by overexpression of the Glycine Max Na+/H+ Antiporter (GmNHX1) gene in duckweed (Lemna turionifera 5511). Aquat. Toxicol. 2017, 192, 127–135. [Google Scholar] [CrossRef]
- Chhabra, G.; Chaudhary, D.; Sainger, M.; Jaiwal, P.K. Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiol. Mol. Biol. Plants 2011, 17, 129–136. [Google Scholar] [CrossRef]
- Yang, L.; Han, H.; Liu, M.; Zuo, Z.; Zhou, K.; Lü, J.; Zhu, Y.; Bai, Y.; Wang, Y. Overexpression of the Arabidopsis photorespiratory pathway gene, serine: Glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor). Plant Cell Tissue Organ Cult. (PCTOC) 2013, 113, 407–416. [Google Scholar] [CrossRef]
- Lichtenthaler, H.; Wellburn, A.R. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem. Soc. Trans. 1985, 11, 591–592. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
Description | Gene_id | WT Readcount | WT_Cd_ Readcount | PSAT_ Readcount | PSAT_Cd_ Readcount |
---|---|---|---|---|---|
photosystem II oxygen-evolving enhancer protein 1 (psbO) | Cluster-10487.13290 | 63,495.69 | 6548.87 | 53,162.82 | 9763.02 |
photosystem II oxygen-evolving enhancer protein 2 (psbP) | Cluster-10487.13349 | 71,702.28 | 4429.11 | 56,594.10 | 6301.73 |
photosystem II oxygen-evolving enhancer protein 3 (psbQ) | Cluster-10487.13567 | 34,069.38 | 4052.00 | 26,869.70 | 6230.79 |
photosystem II 22kDa protein (psbS) | Cluster-10487.12967 | 47,665.68 | 8263.34 | 40,112.19 | 16,756.60 |
photosystem II Psb27 protein (psb27) | Cluster-10487.12473 | 8163.18 | 660.61 | 6610.15 | 1066.84 |
photosystem I P700 chlorophyll a apoprotein A2 (psaB) | Cluster-10487.11012 | 327.32 | 91.44 | 379.35 | 192.81 |
photosystem I subunit II (psaD) | Cluster-10487.13383 | 24,208.90 | 1333.68 | 21,347.69 | 2571.46 |
photosystem I subunit III (psaF) | Cluster-10487.13871 | 40,494.00 | 1441.59 | 34,514.82 | 2883.82 |
photosystem I subunit V (psaG) | Cluster-10487.14019 | 20,411.66 | 1174.12 | 16,809.05 | 2253.86 |
photosystem I subunit X (psaK) | Cluster-10487.13026 | 58,235.24 | 3143.84 | 52,249.92 | 4969.48 |
photosystem I subunit XI (psaL) | Cluster-10487.12136 | 25,777.67 | 153.51 | 1351.28 | 396.65 |
photosystem I subunit PsaN (psaN) | Cluster-10487.13217 | 11,538.31 | 282.10 | 9799.61 | 523.40 |
photosystem I subunit PsaO (psaO) | Cluster-10487.13357 | 50,900.95 | 2350.57 | 42,577.72 | 4372.08 |
PlastocyaninPetE | Cluster-10487.11211 | 870.30 | 132.36 | 677.34 | 334.52 |
Ferredoxin—NADP+ reductase (PetH) | Cluster-10487.13830 | 25,777.67 | 3549.37 | 21,423.32 | 5857.56 |
F-type H+−ransporting ATPase subunit alpha (alpha) | Cluster-10487.17966 | 202.99 | 42.64 | 250.32 | 149.68 |
F-type H+−transporting ATPase subunit gamma | Cluster-10487.13124 | 34,408.50 | 5090.39 | 28,765.28 | 7295.34 |
F-type H+−transporting ATPase subunit delta | Cluster-10487.13237 | 11,239.41 | 1307.13 | 11,155.56 | 1891.45 |
F-type H+−transporting ATPase subunit b | Cluster-10487.12864 | 9853.74 | 895.69 | 9421.21 | 1537.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Jiang, Y.; Qu, Z.; Yang, Y.; Wang, W.; He, Y.; Yu, Y.; Luo, X.; Liu, Y.; Han, W.; et al. Overexpression of Phosphoserine Aminotransferase (PSAT)-Enhanced Cadmium Resistance and Accumulation in Duckweed (Lemna turionifera 5511). Plants 2024, 13, 627. https://doi.org/10.3390/plants13050627
Ma X, Jiang Y, Qu Z, Yang Y, Wang W, He Y, Yu Y, Luo X, Liu Y, Han W, et al. Overexpression of Phosphoserine Aminotransferase (PSAT)-Enhanced Cadmium Resistance and Accumulation in Duckweed (Lemna turionifera 5511). Plants. 2024; 13(5):627. https://doi.org/10.3390/plants13050627
Chicago/Turabian StyleMa, Xu, Yumeng Jiang, Ziyang Qu, Yunwen Yang, Wenqiao Wang, Yuman He, Yiqi Yu, Ximeng Luo, Yuanyuan Liu, Wenqian Han, and et al. 2024. "Overexpression of Phosphoserine Aminotransferase (PSAT)-Enhanced Cadmium Resistance and Accumulation in Duckweed (Lemna turionifera 5511)" Plants 13, no. 5: 627. https://doi.org/10.3390/plants13050627
APA StyleMa, X., Jiang, Y., Qu, Z., Yang, Y., Wang, W., He, Y., Yu, Y., Luo, X., Liu, Y., Han, W., Di, Q., Yang, L., & Wang, Y. (2024). Overexpression of Phosphoserine Aminotransferase (PSAT)-Enhanced Cadmium Resistance and Accumulation in Duckweed (Lemna turionifera 5511). Plants, 13(5), 627. https://doi.org/10.3390/plants13050627