Development of an NLR-ID Toolkit and Identification of Novel Disease-Resistance Genes in Soybean
Abstract
:1. Introduction
2. Results
2.1. Screening of Soybean NLR Proteins with Putative IDs
2.2. Analysis of the Antiviral Activity of 27 Gm-TNL-ID Genes against SMV/TMV
2.3. Examination of Broad-Spectrum Antiviral Resistance of 27 Gm-TNL-ID Genes
2.4. Effect of X Domain from Gm-TNL-ID Genes on Antiviral Resistance of SRC7TN
2.5. Screening of Interaction between the Gm-TNL-IDX Domain and SMV Component Proteins
2.6. Further Analysis of Antiviral Mechanism of SRZ4
3. Discussion
4. Materials and Methods
4.1. Whole Genome Sequence Analysis, Gene Screening, and Domain Prediction
4.2. Bioinformatic Analysis
4.3. Plant Materials, Gene Cloning, Vector Construction and Soybean cDNA Library
4.4. Transient Expression of Selected Genes in Nicotiana Benthamiana
4.5. Yeast-Two-Hybrid (Y2H) Assay
4.6. Bimolecular Fluorescence Complementation (BiFC) Assays and Determination of Protein Localization
4.7. Quantification and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Duxbury, Z.; Wu, C.H.; Ding, P.T. A comparative overview of the intracellular guardians of plants and animals: NLRs in innate immunity and beyond. Annu. Rev. Plant Biol. 2021, 72, 155–184. [Google Scholar] [CrossRef]
- Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef]
- Cui, H.T.; Tsuda, K.; Parker, J.E. Effector-triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol. 2015, 66, 487–511. [Google Scholar] [CrossRef]
- Yuan, M.H.; Jiang, Z.Y.; Bi, G.Z.; Nomura, K.; Liu, M.H.; Wang, Y.P.; Cai, B.Y.; Zhou, J.M.; He, S.Y.; Xin, X.F. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 2021, 592, 105–109. [Google Scholar] [CrossRef]
- Kourelis, J.; Sakai, T.; Adachi, H.; Kamoun, S. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLOS Biol. 2021, 19, e3001124. [Google Scholar] [CrossRef]
- Leipe, D.D.; Koonin, E.V.; Aravind, L. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: Multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J. Mol. Biol. 2004, 343, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Cesari, S.; Bernoux, M.; Moncuquet, P.; Kroj, T.; Dodds, P.N. A novel conserved mechanism for plant NLR protein pairs: The “integrated decoy” hypothesis. Front. Plant Sci. 2014, 5, 606. [Google Scholar] [CrossRef]
- Grund, E.; Tremousaygue, D.; Deslandes, L. Plant NLRs with integrated domains: Unity makes strength. Plant Physiol. 2019, 179, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Marchal, C.; Michalopoulou, V.A.; Zou, Z.; Cevik, V.; Sarris, P.F. Show me your ID: NLR immune receptors with integrated domains in plants. Essays Biochem. 2022, 66, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Narusaka, M.; Shirasu, K.; Noutoshi, Y.; Kubo, Y.; Shiraishi, T.; Iwabuchi, M.; Narusaka, Y. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J. 2009, 60, 218–226. [Google Scholar] [CrossRef]
- Okuyama, Y.; Kanzaki, H.; Abe, A.; Yoshida, K.; Tamiru, M.; Saitoh, H.; Fujibe, T.; Matsumura, H.; Shenton, M.; Galam, D.C.; et al. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J. 2011, 66, 467–479. [Google Scholar] [CrossRef]
- Sinapidou, E.; Williams, K.; Nott, L.; Bahkt, S.; Tor, M.; Crute, I.; Bittner-Eddy, P.; Beynon, J. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J. 2004, 38, 898–909. [Google Scholar] [CrossRef]
- Le Roux, C.; Huet, G.; Jauneau, A.; Camborde, L.; Trémousaygue, D.; Kraut, A.; Zhou, B.; Levaillant, M.; Adachi, H.; Yoshioka, H.; et al. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 2015, 161, 1074–1088. [Google Scholar] [CrossRef] [PubMed]
- Sarris, P.F.; Duxbury, Z.; Huh, S.U.; Ma, Y.; Segonzac, C.; Sklenar, J.; Derbyshire, P.; Cevik, V.; Rallapalli, G.; Saucet, S.B.; et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 2015, 161, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Cesari, S.; Kanzaki, H.; Fujiwara, T.; Bernoux, M.; Chalvon, V.; Kawano, Y.; Shimamoto, K.; Dodds, P.; Terauchi, R.; Kroj, T. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J. 2014, 33, 1941–1959. [Google Scholar] [CrossRef] [PubMed]
- Cesari, S.; Thilliez, G.; Ribot, C.; Chalvon, V.; Michel, C.; Jauneau, A.; Rivas, S.; Alaux, L.; Kanzaki, H.; Okuyama, Y.; et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 2013, 25, 1463–1481. [Google Scholar] [CrossRef] [PubMed]
- Saucet, S.B.; Ma, Y.; Sarris, P.F.; Furzer, O.J.; Sohn, K.H.; Jones, J.D.G. Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4. Nat. Commun. 2015, 6, 6338. [Google Scholar] [CrossRef] [PubMed]
- Brotman, Y.; Normantovich, M.; Goldenberg, Z.; Zvirin, Z.; Kovalski, I.; Stovbun, N.; Doniger, T.; Bolger, A.M.; Troadec, C.; Bendahmane, A.; et al. Dual resistance of melon to Fusarium oxysporum races 0 and 2 and to Papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. Mol. Plant 2013, 6, 235–238. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, N.H.; Cevik, V.; Jacob, P.; Wan, L.; Furzer, O.J.; Dangl, J.L. Allelic variation in the Arabidopsis TNL CHS3/CSA1 immune receptor pair reveals two functional cell-death regulatory modes. Cell Host Microbe 2022, 30, 1701–1716. [Google Scholar] [CrossRef]
- Ashikawa, I.; Hayashi, N.; Yamane, H.; Kanamori, H.; Wu, J.Z.; Matsumoto, T.; Ono, K.; Yano, M. Two adjacent nucleotide-binding site–leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 2008, 180, 2267–2276. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Song, M.Y.; Seo, Y.S.; Kim, H.K.; Ko, S.; Cao, P.J.; Suh, J.P.; Yi, G.W.; Roh, J.H.; Lee, S.; et al. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil–nucleotide-binding–leucine-rich repeat genes. Genetics 2009, 181, 1627–1638. [Google Scholar] [CrossRef]
- Shimizu, M.; Hirabuchi, A.; Sugihara, Y.; Abe, A.; Takeda, T.; Kobayashi, M.; Hiraka, Y.; Kanzaki, E.; Oikawa, K.; Saitoh, H.; et al. A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2116896119. [Google Scholar] [CrossRef]
- Vo, K.T.X.; Lee, S.K.; Halane, M.K.; Song, M.Y.; Hoang, T.V.; Kim, C.Y.; Park, S.Y.; Jeon, J.; Kim, S.T.; Sohn, K.H.; et al. Pi5 and Pii paired NLRs are functionally exchangeable and confer similar disease resistance specificity. Mol. Cells 2019, 42, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Loutre, C.; Wicker, T.; Travella, S.; Galli, P.; Scofield, S.; Fahima, T.; Feuillet, C.; Keller, B. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J. 2009, 60, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Richards, J.; Gross, T.; Druka, A.; Kleinhofs, A.; Steffenson, B.; Acevedo, M.; Brueggeman, R. The rpg4-mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor. Mol. Plant-Microbe Interact. 2013, 26, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Mermigka, G.; Michalopoulou, V.A.; Amartolou, A.; Mentzelopoulou, A.; Astropekaki, N.; Sarris, P.F. Assassination tango: An NLR/NLR-ID immune receptors pair of rapeseed co-operates inside the nucleus to activate cell death. Plant J. 2023, 113, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Mucyn, T.S.; Clemente, A.; Andriotis, V.M.E.; Balmuth, A.L.; Oldroyd, G.E.D.; Staskawicz, B.J.; Rathjen, J.P. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 2006, 18, 2792–2806. [Google Scholar] [CrossRef]
- Marchal, C.; Zhang, J.P.; Zhang, P.; Fenwick, P.; Steuernagel, B.; Adamski, N.M.; Boyd, L.; McIntosh, R.; Wulff, B.B.H.; Berry, S.; et al. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat. Plants 2018, 4, 662–668. [Google Scholar] [CrossRef]
- Chen, X.J.; Zhu, M.; Jiang, L.; Zhao, W.Y.; Li, J.; Wu, J.Y.; Li, C.; Bai, B.H.; Lu, G.; Chen, H.Y.; et al. A multilayered regulatory mechanism for the autoinhibition and activation of a plant CC-NB-LRR resistance protein with an extra N-terminal domain. New Phytol. 2016, 212, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zou, S.; Li, Y.; Lin, F.; Tang, D. An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nat. Commun. 2020, 11, 1353. [Google Scholar] [CrossRef]
- Landry, D.; Mila, I.; Sabbagh, C.R.R.; Zaffuto, M.; Pouzet, C.; Tremousaygue, D.; Dabos, P.; Deslandes, L.; Peeters, N. An NLR integrated domain toolkit to identify plant pathogen effector targets. Plant J. 2023, 115, 1443–1457. [Google Scholar] [CrossRef] [PubMed]
- Kroj, T.; Chanclud, E.; Michel-Romiti, C.; Grand, X.; Morel, J.B. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol. 2016, 210, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Sarris, P.F.; Cevik, V.; Dagdas, G.; Jones, J.D.; Krasileva, K.V. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol. 2016, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.C.; Yu, Y.; Copetti, D.; Zwickl, D.J.; Zhang, L.; Zhang, C.J.; Chougule, K.; Gao, D.Y.; Iwata, A.; Goicoechea, J.L.; et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat. Genet. 2018, 50, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.; Zhang, M.; Feng, F.; Tian, Z.X. Toward a “Green Revolution” for soybean. Mol. Plant 2020, 13, 688–697. [Google Scholar] [CrossRef]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.X.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.J.; Thelen, J.J.; Cheng, J.L.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.M.; Xu, X.; Liu, X.; Chen, W.B.; Yang, G.H.; Wong, F.L.; Li, M.W.; He, W.M.; Qin, N.; Wang, B.; et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 2010, 42, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Zhou, G.; Ma, J.; Jiang, W.; Jin, L.G.; Zhang, Z.; Guo, Y.; Zhang, J.; Sui, Y.; Zheng, L.; et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 2014, 32, 1045–1052. [Google Scholar] [CrossRef]
- Zhou, Z.K.; Jiang, Y.; Wang, Z.; Gou, Z.H.; Lyu, J.; Li, W.Y.; Yu, Y.J.; Shu, L.P.; Zhao, Y.J.; Ma, Y.M.; et al. Erratum: Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 2016, 34, 441. [Google Scholar] [CrossRef]
- Fang, C.; Ma, Y.M.; Wu, S.W.; Liu, Z.; Wang, Z.; Yang, R.; Hu, G.H.; Zhou, Z.K.; Yu, H.; Zhang, M.; et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol. 2017, 18, 161. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Chung, C.Y.L.; Li, M.W.; Wong, F.L.; Wang, X.; Liu, A.; Wang, Z.L.; Leung, A.K.Y.; Wong, T.H.; Tong, S.W.; et al. A reference-grade wild soybean genome. Nat. Commun. 2019, 10, 1216. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Du, H.L.; Li, P.C.; Shen, Y.T.; Peng, H.; Liu, S.L.; Zhou, G.A.; Zhang, H.K.; Liu, Z.; Shi, M.; et al. Pan-genome of wild and cultivated soybeans. Cell 2020, 182, 162–176.e13. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, I.; Buss, G.R.; Chen, P.Y.; Tolin, S.A. Genetic and phenotypic analysis of soybean mosaic virus resistance in PI 88788 soybean. Phytopathology 2004, 94, 687–692. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Lin, J.; Zheng, G.J.; Zhang, M.C.; Zhi, H.J. Recombinant soybean mosaic virus is prevalent in Chinese soybean fields. Arch. Virol. 2014, 159, 1793–1796. [Google Scholar] [CrossRef]
- Gao, L.; Wu, Y.Y.; An, J.; Huang, W.X.; Liu, X.L.; Xue, Y.G.; Luan, X.Y.; Lin, F.; Sun, L.J. Pathogenicity and genome-wide sequence analysis reveals relationships between soybean mosaic virus strains. Arch. Virol. 2022, 167, 517–529. [Google Scholar] [CrossRef]
- Yan, T.; Zhou, Z.K.; Wang, R.; Bao, D.R.; Li, S.S.; Li, A.G.; Yu, R.N.; Wuriyanghan, H. A cluster of atypical resistance genes in soybean confers broad-spectrum antiviral activity. Plant Physiol. 2022, 188, 1277–1293. [Google Scholar] [CrossRef]
- Bao, W.H.; Yan, T.; Deng, X.Y.; Wuriyanghan, H. Synthesis of full-length cDNA infectious clones of soybean mosaic virus and functional identification of a key amino acid in the silencing suppressor Hc-Pro. Viruses 2020, 12, 886. [Google Scholar] [CrossRef]
- Whitham, S.; Dinesh-Kumar, S.P.; Choi, D.; Hehl, R.; Corr, C.; Baker, B. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 1994, 78, 1101–1115. [Google Scholar] [CrossRef]
- Lindbo, J.A. TRBO: A high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol. 2007, 145, 1232–1240. [Google Scholar] [CrossRef]
- Xun, H.W.; Yang, X.D.; He, H.L.; Wang, M.; Guo, P.; Wang, Y.; Pang, J.S.; Dong, Y.S.; Feng, X.Z.; Wang, S.C.; et al. Over-expression of GmKR3, a TIR-NBS-LRR type R gene, confers resistance to multiple viruses in soybean. Plant Mol. Biol. 2019, 99, 95–111. [Google Scholar] [CrossRef] [PubMed]
- He, C.Y.; Tian, A.G.; Zhang, J.S.; Zhang, Z.Y.; Gai, J.Y.; Chen, S.Y. Isolation and characterization of a full-length resistance gene homolog from soybean. Theor. Appl. Genet. 2003, 106, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.X.; Yan, Q.; Gan, S.P.; Xue, D.; Dou, D.L.; Guo, N.; Xing, H. Overexpression of gma-miR1510a/b suppresses the expression of a NB-LRR domain gene and reduces resistance to Phytophthora sojae. Gene 2017, 621, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Kou, Y.J.; Wang, S.P. Broad-spectrum and durability: Understanding of quantitative disease resistance. Curr. Opin. Plant Biol. 2010, 13, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Q.; Zhu, Y.J.; Shi, H.B.; Qiu, J.H.; Ding, X.H.; Kou, Y.J. Recent progress in rice broad-spectrum disease resistance. Int. J. Mol. Sci. 2021, 22, 11658. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.T.; Yin, J.L.; Wang, T.; Xue, S.; Li, B.W.; Zong, T.X.; Yang, Y.H.; Liu, H.; Liu, M.Z.; Xu, K.; et al. RSC3K of soybean cv. Kefeng No.1 confers resistance to soybean mosaic virus by interacting with the viral protein P3. J. Integr. Plant Biol. 2022, 65, 838–853. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Lapin, D.; Liu, L.; Sun, Y.; Song, W.; Zhang, X.X.; Logemann, E.; Yu, D.L.; Wang, J.; Jirschitzka, J.; et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 2020, 370, eabe3069. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Z.; Hu, M.J.; Wang, J.; Qi, J.F.; Han, Z.F.; Wang, G.X.; Qi, Y.J.; Wang, H.W.; Zhou, J.M.; Chai, J.J. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 2019, 364, eaav5870. [Google Scholar] [CrossRef]
- Andersen, E.J.; Nepal, M.P.; Purintun, J.M.; Nelson, D.; Mermigka, G.; Sarris, P.F. Wheat disease resistance genes and their diversification through integrated domain fusions. Front. Genet. 2020, 11, 898. [Google Scholar] [CrossRef]
- Zhang, B.M.; Liu, M.T.; Wang, Y.C.; Yuan, W.Y.; Zhang, H.T. Plant NLRs: Evolving with pathogen effectors and engineerable to improve resistance. Front. Microbiol. 2022, 13, 1018504. [Google Scholar] [CrossRef]
- Michelmore, R.W.; Christopoulou, M.; Caldwell, K.S. Impacts of resistance gene genetics, function, and evolution on a durable future. Annu. Rev. Phytopathol. 2013, 51, 291–319. [Google Scholar] [CrossRef]
- Ji, Z.Y.; Ji, C.H.; Liu, B.; Zou, L.F.; Chen, G.Y.; Yang, B. Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nat. Commun. 2016, 7, 13435. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, S.; Yamanouchi, U.; Katayose, Y.; Toki, S.; Wang, Z.X.; Kono, I.; Kurata, N.; Yano, M.; Iwata, N.; Sasaki, T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. USA 1998, 95, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Faris, J.D.; Zhang, Z.C.; Lu, H.J.; Lu, S.W.; Reddy, L.; Cloutier, S.; Fellers, J.P.; Meinhardt, S.W.; Rasmussen, J.B.; Xu, S.S.; et al. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. USA 2010, 107, 13544–13549. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.X.; Wang, W.Q.; Zhang, T.; Gong, Z.; Zhao, H.Y.; Han, G.Z. Out of water: The origin and early diversification of plant R-genes. Plant Physiol. 2018, 177, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Lukasik, E.; Takken, F.L.W. STANDing strong, resistance proteins instigators of plant defence. Curr. Opin. Plant Biol. 2009, 12, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Feehan, J.M.; Castel, B.; Bentham, A.R.; Jones, J.D.G. Plant NLRs get by with a little help from their friends. Curr. Opin. Plant Biol. 2020, 56, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Baxter, K.; Lee, J.; Minakhin, L.; Severinov, K.; Hinton, D.M. Mutational analysis of σ70 region 4 needed for appropriation by the bacteriophage T4 transcription factors AsiA and MotA. J. Mol. Biol. 2006, 363, 931–944. [Google Scholar] [CrossRef] [PubMed]
- Finnin, M.S.; Cicero, M.P.; Davies, C.; Porter, S.J.; White, S.W.; Kreuzer, K.N. The activation domain of the MotA transcription factor from bacteriophage T4. EMBO J. 1997, 16, 1992–2003. [Google Scholar] [CrossRef]
- Guo, L.W.; Cesari, S.; de Guillen, K.; Chalvon, V.; Mammri, L.; Ma, M.Q.; Meusnier, I.; Bonnot, F.; Padilla, A.; Peng, Y.L.; et al. Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proc. Natl. Acad. Sci. USA 2018, 115, 11637–11642. [Google Scholar] [CrossRef]
- Bialas, A.; Langner, T.; Harant, A.; Contreras, M.P.; Stevenson, C.E.; Lawson, D.M.; Sklenar, J.; Kellner, R.; Moscou, M.J.; Terauchi, R.; et al. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. Elife 2021, 10, e66961. [Google Scholar] [CrossRef]
- Longya, A.; Chaipanya, C.; Franceschetti, M.; Maidment, J.H.R.; Banfield, M.J.; Jantasuriyarat, C. Gene duplication and mutation in the emergence of a novel aggressive allele of the AVR-Pik effector in the rice blast fungus. Mol. Plant-Microbe Interact. 2019, 32, 740–749. [Google Scholar] [CrossRef]
- Sugihara, Y.; Abe, Y.; Takagi, H.; Abe, A.; Shimizu, M.; Ito, K.; Kanzaki, E.; Oikawa, K.; Kourelis, J.; Langner, T.; et al. Disentangling the complex gene interaction networks between rice and the blast fungus identifies a new pathogen effector. PLoS Biol. 2023, 21, e3001945. [Google Scholar] [CrossRef]
- Xiao, G.; Wang, W.J.; Liu, M.X.; Li, Y.; Liu, J.B.; Franceschetti, M.; Yi, Z.F.; Zhu, X.Y.; Zhang, Z.G.; Lu, G.D.; et al. The Piks allele of the NLR immune receptor Pik breaks the recognition of AvrPik effectors of rice blast fungus. J. Integr. Plant Biol. 2023, 65, 810–824. [Google Scholar] [CrossRef] [PubMed]
- De la Concepcion, J.C.; Maidment, J.H.R.; Longya, A.; Xiao, G.; Franceschetti, M.; Banfield, M.J. The allelic rice immune receptor Pikh confers extended resistance to strains of the blast fungus through a single polymorphism in the effector binding interface. PLoS Pathog. 2021, 17, e1009368. [Google Scholar] [CrossRef] [PubMed]
- Kanzaki, H.; Yoshida, K.; Saitoh, H.; Fujisaki, K.; Hirabuchi, A.; Alaux, L.; Fournier, E.; Tharreau, D.; Terauchi, R. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 2012, 72, 894–907. [Google Scholar] [CrossRef] [PubMed]
- Mustafin, R.N.; Khusnutdinova, E.K. The role of reverse transcriptase in the origin of life. Biochemistry 2019, 84, 870–883. [Google Scholar] [CrossRef]
- Li, S.L.; Manik, M.K.; Shi, Y.; Kobe, B.; Ve, T. Toll/interleukin-1 receptor domains in bacterial and plant immunity. Curr. Opin. Microbiol. 2023, 74, 102316. [Google Scholar] [CrossRef]
- Locci, F.; Wang, J.L.; Parker, J.E. TIR-domain enzymatic activities at the heart of plant immunity. Curr. Opin. Plant Biol. 2023, 74, 102373. [Google Scholar] [CrossRef]
- Monteiro, F.; Nishimura, M.T. Structural, functional, and genomic diversity of plant NLR proteins: An evolved resource for rational engineering of plant immunity. Annu. Rev. Phytopathol. 2018, 56, 243–267. [Google Scholar] [CrossRef] [PubMed]
- Outram, M.A.; Figueroa, M.; Sperschneider, J.; Williams, S.J.; Dodds, P.N. Seeing is believing: Exploiting advances in structural biology to understand and engineer plant immunity. Curr. Opin. Plant Biol. 2022, 67, 102210. [Google Scholar] [CrossRef]
- Cesari, S.; Xi, Y.; Declerck, N.; Chalvon, V.; Mammri, L.; Pugniere, M.; Henriquet, C.; de Guillen, K.; Chochois, V.; Padilla, A.; et al. New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain. Nat. Commun. 2022, 13, 1524. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, X.; Yuan, G.; Wang, D.; Zheng, Y.; Ma, M.; Guo, L.; Bhadauria, V.; Peng, Y.-L.; Liu, J. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors. Proc. Natl. Acad. Sci. USA 2021, 118, e2110751118. [Google Scholar] [CrossRef] [PubMed]
- Bentham, A.R.; De la Concepcion, J.C.; Benjumea, J.V.; Kourelis, J.; Jones, S.; Mendel, M.; Stubbs, J.; Stevenson, C.E.M.; Maidment, J.H.R.; Youles, M.; et al. Allelic compatibility in plant immune receptors facilitates engineering of new effector recognition specificities. Plant Cell 2023, 35, 3809–3827. [Google Scholar] [CrossRef] [PubMed]
- De la Concepcion, J.C.; Franceschetti, M.; MacLean, D.; Terauchi, R.; Kamoun, S.; Banfield, M.J. Protein engineering expands the effector recognition profile of a rice NLR immune receptor. eLife 2019, 8, e47713. [Google Scholar] [CrossRef]
- Maidment, J.H.R.; Shimizu, M.; Bentham, A.R.; Vera, S.; Franceschetti, M.; Longya, A.; Stevenson, C.E.M.; De la Concepcion, J.C.; Białas, A.; Kamoun, S.; et al. Effector target-guided engineering of an integrated domain expands the disease resistance profile of a rice NLR immune receptor. eLife 2023, 12, e81123. [Google Scholar] [CrossRef]
Gene ID | Integrated Domain | Domain Description |
---|---|---|
GLYMA_03G054100 | AAA_16 | AAA ATPase domain |
GLYMA_12G240100; GLYMA_15G152400 | AAA_22 | AAA domain |
GLYMA_06G310000 | AnfG_VnfG | Vanadium/alternative nitrogenase delta subunit |
GLYMA_16G087100 | ATPase_2 | ATPase domain predominantly from Archaea |
GLYMA_06G261400 | B_lectin | D-mannose binding lectin |
GLYMA_16G214200; GLYMA_16G214300 | BSP | basic secretory protein |
GLYMA_01G112200 | bVLRF1 | bacteroidetes VLRF1 release factor |
GLYMA_12G138400; GLYMA_12G138500 | DUF1863 | MTH538 TIR-like domain (DUF1863) |
GLYMA_03G087500 | DUF2207 | Predicted membrane protein (DUF2207) |
GLYMA_09G056400 | DUF3557 | Domain of unknown function (DUF3557) |
GLYMA_06G265400 | DUF3760 | Protein of unknown function (DUF3760) |
GLYMA_06G265000 | DUF4277 | Domain of unknown function (DUF4277) |
GLYMA_13G194700 | DUF4571 | Domain of unknown function (DUF4571) |
GLYMA_13G078200 | FBD | FBD |
GLYMA_15G152200 | FNIP | FNIP Repeat |
GLYMA_14G151100; GLYMA_16G085400 | NACHT | NACHT domain |
GLYMA_01G032400 | HAUS-augmin3 | HAUS augmin-like complex subunit 3 |
GLYMA_03G052800 | Hirudin | Hirudin |
GLYMA_03G077400 | NfeD | NfeD-like C-terminal, partner-binding |
GLYMA_07G037000; GLYMA_16G006400 | NTPase_1 | NTPase |
GLYMA_03G047900 | Phage_rep_org_N | N-terminal phage replisome organiser |
GLYMA_16G085700 | Pox_RNA_Pol_19 | Poxvirus DNA-directed RNA polymerase 19 kDa subunit |
GLYMA_07G123000 | RICTOR_M | Rapamycin-insensitive companion of mTOR, middle domain |
GLYMA_03G075300 | RNA_helicase | RNA helicase |
GLYMA_05G165800 | WRKY | WRKY DNA -binding domain |
GLYMA_06G285500 | Zinc_ribbon_13 | Nucleic-acid-binding protein containing Zn-ribbon domain |
GLYMA_12G221600 | DUF4062 | Domain of unknown function (DUF4062) |
GLYMA_02G023800 | DUF5410 | Family of unknown function (DUF5410) |
GLYMA_16G214500; GLYMA_16G214800 | EF-hand_7 | EF-hand domain pair |
GLYMA_02G023900 | PRD | PRD domain |
GLYMA_06G146200 | Rap1_C | TRF2-interacting telomeric protein/Rap1-C terminal domain |
GLYMA_06G268500 | Rio2_N | Rio2, N-terminal |
GLYMA_02G023700; GLYMA_02G024000 | Ubiq_cyt_C_chap | Ubiquinol-cytochrome C chaperone |
GLYMA_16G210600; GLYMA_16G210800; GLYMA_16G127900; GLYMA_09G161400; GLYMA_08G301200 | zf-RVT, RVT3 | zinc-binding in reverse transcriptase |
GLYMA_16G135500; GLYMA_16G136200; GLYMA_16G135200; GLYMA_16G137300; GLYMA_16G136000; GLYMA_16G147400; GLYMA_19G054700; GLYMA_19G054900; GLYMA_16G159600; GLYMA_19G022700; GLYMA_16G213700; GLYMA_06G267300; GLYMA_06G268600 | MotA_activ | Transcription factor MotA, activation domain |
Gene Names | Gene ID | Integrated Domain | Length (aa) | Interaction Protein |
---|---|---|---|---|
Gm-TNL-ID3 | GLYMA_03G087500 | DUF2207 | 639 | CP, P3, 6K2 |
Gm-TNL-ID13 | GLYMA_09G161400 | zf-RVT | 957 | 6K2 |
Gm-TNL-ID16 | GLYMA_06G285500 | Zinc ribbon 13 | 665 | P1, NIb |
Gm-TNL-ID25 | GLYMA_06G267300 | MotA activ | 195 | NIb, HC-Pro, |
Gm-TNL-ID29 | GLYMA_19G054900 | MotA activ | 704 | 6K2, NIb |
Gm-TNL-ID30 | GLYMA_19G054700 | MotA activ | 656 | HC-Pro |
Gm-TNL-ID35 | GLYMA_16G135500 | MotA activ | 633 | P1, P3, 6K2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, W.; Shi, G.; Chu, H.; Du, W.; Zhou, Z.; Wuriyanghan, H. Development of an NLR-ID Toolkit and Identification of Novel Disease-Resistance Genes in Soybean. Plants 2024, 13, 668. https://doi.org/10.3390/plants13050668
Shao W, Shi G, Chu H, Du W, Zhou Z, Wuriyanghan H. Development of an NLR-ID Toolkit and Identification of Novel Disease-Resistance Genes in Soybean. Plants. 2024; 13(5):668. https://doi.org/10.3390/plants13050668
Chicago/Turabian StyleShao, Wei, Gongfu Shi, Han Chu, Wenjia Du, Zikai Zhou, and Hada Wuriyanghan. 2024. "Development of an NLR-ID Toolkit and Identification of Novel Disease-Resistance Genes in Soybean" Plants 13, no. 5: 668. https://doi.org/10.3390/plants13050668
APA StyleShao, W., Shi, G., Chu, H., Du, W., Zhou, Z., & Wuriyanghan, H. (2024). Development of an NLR-ID Toolkit and Identification of Novel Disease-Resistance Genes in Soybean. Plants, 13(5), 668. https://doi.org/10.3390/plants13050668