The Evaluation of a Long-Term Experiment on the Relationships between Weather, Nitrogen Fertilization, Preceding Crop, and Winter Wheat Grain Yield on Cambisol
Abstract
:1. Introduction
2. Results
2.1. Weather Development
2.2. The Relationship between Weather and Grain Yield
2.3. Grain Yield Development and the Effect of Fertilizer Treatment on Grain Yield
2.4. N Dose Optimization
2.5. Effect of the Preceding Crop
3. Discussion
3.1. Weather Development
3.2. The Relationship between Weather and Grain Yield
3.3. Grain Yield Development and the Effect of Fertilizer Treatment on Grain Yield
3.4. N Dose Optimization
3.5. Effect of the Preceding Crop
4. Materials and Methods
4.1. The Long-Term Trial Description
4.2. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galloway, J.N.; Leach, A.M.; Bleeker, A.; Erisman, J.W. A Chronology of Human Understanding of the Nitrogen Cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130120. [Google Scholar] [CrossRef] [PubMed]
- Topham, S.A. Chapter 1. The History of the Catalytic Synthesis of Ammonia. In Catalysis; De Gruyter: Berlin, Germany, 1985; Volume 7, pp. 1–50. [Google Scholar]
- Birkeland, K. On the Oxidation of Atmospheric Nitrogen in Electric Arcs. Trans. Faraday Soc. 1906, 2, 98. [Google Scholar] [CrossRef]
- Russel, D.A.; Williams, G.G. History of Chemical Fertilizer Development. Soil Sci. Soc. Am. J. 1977, 41, 260–265. [Google Scholar] [CrossRef]
- Silverstone, A.L.; Sun, T. Gibberellins and the Green Revolution. Trends Plant Sci. 2000, 5, 1–2. [Google Scholar] [CrossRef]
- Kronstad, W.E. Agricultural Development and Wheat Breeding in the 20th Century. In Wheat: Prospects for Global Improvement: Proceedings of the 5th International Wheat Conference, Ankara, Turkey, 10–14 June 1996; Springer: Berlin/Heidelberg, Germany, 1997; pp. 1–10. [Google Scholar] [CrossRef]
- Pujol-Andreu, J. Wheat Varieties and Technological Change in Europe, 19th and 20th Centuries: New Issues in Economic History. Hist. Agrar. 2011, 54, 71–103. [Google Scholar]
- Zhang, W.J.; Zhang, X.Y. A Forecast Analysis on Fertilizers Consumption Worldwide. Environ. Monit. Assess. 2007, 133, 427–434. [Google Scholar] [CrossRef]
- Jepsen, M.R.; Kuemmerle, T.; Müller, D.; Erb, K.; Verburg, P.H.; Haberl, H.; Vesterager, J.P.; Andrič, M.; Antrop, M.; Austrheim, G.; et al. Transitions in European Land-Management Regimes between 1800 and 2010. Land Use Policy 2015, 49, 53–64. [Google Scholar] [CrossRef]
- Chen, H.; Deng, A.; Zhang, W.; Li, W.; Qiao, Y.; Yang, T.; Zheng, C.; Cao, C.; Chen, F. Long-Term Inorganic plus Organic Fertilization Increases Yield and Yield Stability of Winter Wheat. Crop J. 2018, 6, 589–599. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, J.; Kattel, G. Historical Nitrogen Fertilizer Use in China from 1952 to 2018. Earth Syst. Sci. Data 2022, 14, 5179–5194. [Google Scholar] [CrossRef]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.X.; Huard, F. Why Are Wheat Yields Stagnating in Europe? A Comprehensive Data Analysis for France. Field Crops Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Ray, D.K.; Ramankutty, N.; Mueller, N.D.; West, P.C.; Foley, J.A. Recent Patterns of Crop Yield Growth and Stagnation. Nat. Commun. 2012, 3, 1293. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.Z.; Dang, T.H.; Sainju, U.M. Nitrogen Fertilization Effect on Soil Water and Wheat Yield in the Chinese Loess Plateau. Agron. J. 2013, 105, 143–149. [Google Scholar] [CrossRef]
- Mandic, V.; Krnjaja, V.; Tomic, Z.; Bijelic, Z.; Simic, A.; Muslic, D.R.; Gogic, M. Nitrogen Fertilizer Influence on Wheat Yield and Use Efficiency under Different Environmental Conditions. Chil. J. Agric. Res. 2015, 75, 92–97. [Google Scholar] [CrossRef]
- Litke, L.; Gaile, Z.; Ruža, A. Effect of Nitrogen Fertilization on Winter Wheat Yield and Yield Quality. Agron. Res. 2018, 16, 500–509. [Google Scholar] [CrossRef]
- Skudra, I.; Ruza, A. Effect of Nitrogen and Sulphur Fertilization on Chlorophyll Content in Winter Wheat. Rural Sustain. Res. 2017, 37, 29–37. [Google Scholar] [CrossRef]
- Rasmussen, I.S.; Dresbøll, D.B.; Thorup-Kristensen, K. Winter Wheat Cultivars and Nitrogen (N) Fertilization-Effects on Root Growth, N Uptake Efficiency and N Use Efficiency. Eur. J. Agron. 2015, 68, 38–49. [Google Scholar] [CrossRef]
- Savci, S. Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef]
- Vašák, F.; Černý, J.; Buráňová, Š.; Kulhánek, M.; Balík, J. Soil PH Changes in Long-Term Field Experiments with Different Fertilizing Systems. Soil Water Res. 2015, 10, 19–23. [Google Scholar] [CrossRef]
- Hendricks, G.S.; Shukla, S.; Roka, F.M.; Sishodia, R.P.; Obreza, T.A.; Hochmuth, G.J.; Colee, J. Economic and Environmental Consequences of Overfertilization under Extreme Weather Conditions. J. Soil Water Conserv. 2019, 74, 160–171. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Yi, Y.; Ding, J.; Zhu, M.; Li, C.; Guo, W.; Feng, C.; Zhu, X. Effect of Nitrogen Levels and Nitrogen Ratios on Lodging Resistance and Yield Potential of Winter Wheat (Triticum aestivum L.). PLoS ONE 2017, 12, e0187543. [Google Scholar] [CrossRef]
- Khan, A.; Ahmad, A.; Ali, W.; Hussain, S.; Ajayo, B.S.; Raza, M.A.; Kamran, M.; Te, X.; al Amin, N.; Ali, S.; et al. Optimization of Plant Density and Nitrogen Regimes to Mitigate Lodging Risk in Wheat. Agron. J. 2020, 112, 2535–2551. [Google Scholar] [CrossRef]
- Hochmuth, G.; Hanlon, E.; Overman, A. Fertilizer Experimentation, Data Analyses, and Interpretation for Developing Fertilization Recommendations—Examples with Vegetable Crop Research 2017. Available online: https://edis.ifas.ufl.edu/publication/SS548 (accessed on 16 November 2023).
- Kong, L.; Xie, Y.; Hu, L.; Si, J.; Wang, Z. Excessive Nitrogen Application Dampens Antioxidant Capacity and Grain Filling in Wheat as Revealed by Metabolic and Physiological Analyses. Sci. Rep. 2017, 7, 43363. [Google Scholar] [CrossRef]
- Cherkasov, G.N.; Sokoroev, N.S.; Voronin, A.N.; Trapeznikov, S.V. Effect of Weather Conditions on Soil Fertility, Crop Yield, and Fertilizer Efficiency in the Central Chernozem Zone. Russ. Agric. Sci. 2010, 36, 353–355. [Google Scholar] [CrossRef]
- Linina, A.; Ruza, A. The Influence of Cultivar, Weather Conditions and Nitrogen Fertilizer on Winter Wheat Grain Yield. Agron. Res. 2018, 16, 147–156. [Google Scholar] [CrossRef]
- Lawes, J.B.; Gilbert, J.H. Our Climate and Our Wheat Crops. J. R. Agric. Soc. Engl. 1880, 16, 173–210. [Google Scholar]
- Shaw, W.N. Seasons in the British Isles from 1878. J. R. Stat. Soc. 1905, 68, 247. [Google Scholar] [CrossRef]
- Hooker, R.H. Correlation of the Weather and Crops. J. R. Stat. Soc. 1907, 70, 1–51. [Google Scholar] [CrossRef]
- Walter, A. The Sugar Industry of Mauritius: A Study in Correlation Including a Scheme of Insurance of the Cane Crop against Damage Caused by Cyclones. Nature 1911, 87, 344. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Robertson, G.P.; Thelen, K.D.; Harwood, R.R. Management, Topographical, and Weather Effects on Spatial Variability of Crop Grain Yields. Agron. J. 2005, 97, 514–523. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Agroclimatology and Wheat Production: Coping with Climate Change. Front. Plant Sci. 2018, 9, 263551. [Google Scholar] [CrossRef]
- Addy, J.W.G.; Ellis, R.H.; Macdonald, A.J.; Semenov, M.A.; Mead, A. Investigating the Effects of Inter-Annual Weather Variation (1968–2016) on the Functional Response of Cereal Grain Yield to Applied Nitrogen, Using Data from the Rothamsted Long-Term Experiments. Agric. For. Meteorol. 2020, 284, 107898. [Google Scholar] [CrossRef] [PubMed]
- Thai, T.H.; Bellingrath-Kimura, S.D.; Hoffmann, C.; Barkusky, D. Effect of Long-Term Fertiliser Regimes and Weather on Spring Barley Yields in Sandy Soil in North-East Germany. Arch. Agron. Soil Sci. 2020, 66, 1812–1826. [Google Scholar] [CrossRef]
- Werndl, C. On Defining Climate and Climate Change. Br. J. Philos. Sci. 2016, 67, 337–364. [Google Scholar] [CrossRef]
- Pielke, R.A. What Is Climate Change? Energy Environ. 2004, 15, 515–520. [Google Scholar] [CrossRef]
- Zahradníček, P.; Brázdil, R.; Štěpánek, P.; Trnka, M. Reflections of Global Warming in Trends of Temperature Characteristics in the Czech Republic, 1961–2019. Int. J. Climatol. 2021, 41, 1211–1229. [Google Scholar] [CrossRef]
- Hemmerle, H.; Bayer, P. Climate Change Yields Groundwater Warming in Bavaria, Germany. Front. Earth Sci. 2020, 8, 575894. [Google Scholar] [CrossRef]
- Benz, S.A.; Bayer, P.; Winkler, G.; Blum, P. Recent Trends of Groundwater Temperatures in Austria. Hydrol. Earth Syst. Sci. 2018, 22, 3143–3154. [Google Scholar] [CrossRef]
- Ribes, A.; Corre, L.; Gibelin, A.L.; Dubuisson, B. Issues in Estimating Observed Change at the Local Scale—A Case Study: The Recent Warming over France. Int. J. Climatol. 2016, 36, 3794–3806. [Google Scholar] [CrossRef]
- Twardosz, R.; Walanus, A.; Guzik, I. Warming in Europe: Recent Trends in Annual and Seasonal Temperatures. Pure Appl. Geophys. 2021, 178, 4021–4032. [Google Scholar] [CrossRef]
- Brown, P.J.; DeGaetano, A.T. A Paradox of Cooling Winter Soil Surface Temperatures in a Warming Northeastern United States. Agric. For. Meteorol. 2011, 151, 947–956. [Google Scholar] [CrossRef]
- Griffiths, G.M.; Chambers, L.E.; Haylock, M.R.; Manton, M.J.; Nicholls, N.; Baek, H.J.; Choi, Y.; Della-Marta, P.M.; Gosai, A.; Iga, N.; et al. Change in Mean Temperature as a Predictor of Extreme Temperature Change in the Asia-Pacific Region. Int. J. Climatol. 2005, 25, 1301–1330. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Szwed, M. Variability of Precipitation in Poland under Climate Change. Theor. Appl. Climatol. 2019, 135, 1003–1015. [Google Scholar] [CrossRef]
- Easterling, D.R.; Kunkel, K.E.; Arnold, J.R.; Knutson, T.R.; LeGrande, A.N.; Leung, L.R.; Vose, R.S.; Waliser, D.E.; Wehner, M. Precipitation Change in the United States. Fourth Natl. Clim. Assess. 2017, 1, 207–230. [Google Scholar] [CrossRef]
- Brázdil, R.; Trnka, M.; Dobrovolný, P.; Chromá, K.; Hlavinka, P.; Žalud, Z. Variability of Droughts in the Czech Republic, 1881–2006. Theor. Appl. Climatol. 2009, 97, 297–315. [Google Scholar] [CrossRef]
- Luo, Q.; O’Leary, G.; Cleverly, J.; Eamus, D. Effectiveness of Time of Sowing and Cultivar Choice for Managing Climate Change: Wheat Crop Phenology and Water Use Efficiency. Int. J. Biometeorol. 2018, 62, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Bindi, M.; Olesen, J.E. The Responses of Agriculture in Europe to Climate Change. Reg. Environ. Chang. 2011, 11, 151–158. [Google Scholar] [CrossRef]
- Pechanec, V.; Machar, I.; Kilianova, H.; Vlckova, V.; Bucek, A.; Plasek, V. Prediction of Climate Change Impacts on Sustainable Agricultural Management in the Czech Republic. Fresenius Environ. Bull. 2017, 26, 7580–7586. [Google Scholar]
- Eitzinger, J.; Trnka, M.; Semerádová, D.; Thaler, S.; Svobodová, E.; Hlavinka, P.; Šiška, B.; Takáč, J.; Malatinská, L.; Nováková, M.; et al. Regional Climate Change Impacts on Agricultural Crop Production in Central and Eastern Europe—Hotspots, Regional Differences and Common Trends. J. Agric. Sci. 2013, 151, 787–812. [Google Scholar] [CrossRef]
- Žalud, Z.; Trnka, M.; Dubrovský, M.; Hlavinka, P.; Semerádová, D.; Kocmánková, E. Climate Change Impacts on Selected Aspects of the Czech Agricultural Production. Plant Prot. Sci. 2009, 45, S11–S19. [Google Scholar] [CrossRef]
- Macholdt, J.; Piepho, H.P.; Honermeier, B.; Perryman, S.; Macdonald, A.; Poulton, P. The Effects of Cropping Sequence, Fertilization and Straw Management on the Yield Stability of Winter Wheat (1986–2017) in the Broadbalk Wheat Experiment, Rothamsted, UK. J. Agric. Sci. 2020, 158, 65–79. [Google Scholar] [CrossRef]
- Sieling, K.; Christen, O. Crop Rotation Effects on Yield of Oilseed Rape, Wheat and Barley and Residual Effects on the Subsequent Wheat. Arch. Agron. Soil Sci. 2015, 61, 1531–1549. [Google Scholar] [CrossRef]
- Friberg, H.; Persson, P.; Jensen, D.F.; Bergkvist, G. Preceding Crop and Tillage System Affect Winter Survival of Wheat and the Fungal Communities on Young Wheat Roots and in Soil. FEMS Microbiol. Lett. 2019, 366, fnz189. [Google Scholar] [CrossRef] [PubMed]
- Gawęda, D.; Haliniarz, M. Grain Yield and Quality of Winter Wheat Depending on Previous Crop and Tillage System. Agric. 2021, 11, 133. [Google Scholar] [CrossRef]
- Angus, J.F.; Kirkegaard, J.A.; Hunt, J.R.; Ryan, M.H.; Ohlander, L.; Peoples, M.B. Break Crops and Rotations for Wheat. Crop Pasture Sci. 2015, 66, 523–552. [Google Scholar] [CrossRef]
- Fisher, R.A. III. The Influence of Rainfall on the Yield of Wheat at Rothamsted. Philos. Trans. R. Soc. London. Ser. B Contain. Pap. Biol. Character 1925, 213, 89–142. [Google Scholar] [CrossRef]
- Matuszko, D.; Weglarczyk, S. Relationship between Sunshine Duration and Air Temperature and Contemporary Global Warming. Int. J. Climatol. 2015, 35, 3640–3653. [Google Scholar] [CrossRef]
- Labudová, L.; Faško, P.; Ivanáková, G. Changes in Climate and Changing Climate Regions in Slovakia. Morav. Geogr. Rep. 2015, 23, 70–81. [Google Scholar] [CrossRef]
- Al-Ghussain, L. Global Warming: Review on Driving Forces and Mitigation. Environ. Prog. Sustain. Energy 2019, 38, 13–21. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing Climate Both Increases and Decreases European River Floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Stillman, J.H. Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology 2019, 34, 86–100. [Google Scholar] [CrossRef]
- Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, Climate Change and Sustainability: The Case of EU-28. Ecol. Indic. 2019, 105, 525–543. [Google Scholar] [CrossRef]
- Forzieri, G.; Bianchi, A.; Silva, F.B.E.; Marin Herrera, M.A.; Leblois, A.; Lavalle, C.; Aerts, J.C.J.H.; Feyen, L. Escalating Impacts of Climate Extremes on Critical Infrastructures in Europe. Glob. Environ. Chang. 2018, 48, 97–107. [Google Scholar] [CrossRef]
- Rossati, A. Global Warming and Its Health Impact. Int. J. Occup. Environ. Med. 2017, 8, 7–20. [Google Scholar] [CrossRef]
- Dore, M.H.I. Climate Change and Changes in Global Precipitation Patterns: What Do We Know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef]
- Supit, I.; van Diepen, C.A.; de Wit, A.J.W.; Kabat, P.; Baruth, B.; Ludwig, F. Recent Changes in the Climatic Yield Potential of Various Crops in Europe. Agric. Syst. 2010, 103, 683–694. [Google Scholar] [CrossRef]
- Asseng, S.; Foster, I.; Turner, N.C. The Impact of Temperature Variability on Wheat Yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J.; Farda, A. Climate Change Scenarios of Heat Waves in Central Europe and Their Uncertainties. Theor. Appl. Climatol. 2018, 131, 1043–1054. [Google Scholar] [CrossRef]
- Landau, S.; Mitchell, R.A.C.; Barnett, V.; Colls, J.J.; Craigon, J.; Payne, R.W. A Parsimonious, Multiple-Regression Model of Wheat Yield Response to Environment. Agric. For. Meteorol. 2000, 101, 151–166. [Google Scholar] [CrossRef]
- Kunzová, E.; Hejcman, M. Yield Development of Winter Wheat over 50 Years of Nitrogen, Phosphorus and Potassium Application on Greyic Phaeozem in the Czech Republic. Eur. J. Agron. 2010, 33, 166–174. [Google Scholar] [CrossRef]
- Hejcman, M.; Kunzová, E.; Šrek, P. Sustainability of Winter Wheat Production over 50 Years of Crop Rotation and N, P and K Fertilizer Application on Illimerized Luvisol in the Czech Republic. Field Crops Res. 2012, 139, 30–38. [Google Scholar] [CrossRef]
- Berzsenyi, Z.; Győrffy, B.; Lap, D. Effect of Crop Rotation and Fertilisation on Maize and Wheat Yields and Yield Stability in a Long-Term Experiment. Eur. J. Agron. 2000, 13, 225–244. [Google Scholar] [CrossRef]
- Macholdt, J.; Piepho, H.P.; Honermeier, B. Mineral NPK and Manure Fertilisation Affecting the Yield Stability of Winter Wheat: Results from a Long-Term Field Experiment. Eur. J. Agron. 2019, 102, 14–22. [Google Scholar] [CrossRef]
- Hao, M.-D.; Fan, J.; Wang, Q.-J.; Dang, T.-H.; Guo, S.-L.; Wang, J.-J. Wheat Grain Yield and Yield Stability in a Long-Term Fertilization Experiment on the Loess Plateau. Pedosphere 2007, 17, 257–264. [Google Scholar] [CrossRef]
- Girma, K.; Holtz, S.L.; Arnall, D.B.; Tubaña, B.S.; Raun, W.R. The Magruder Plots: Untangling the Puzzle. Agron. J. 2007, 99, 1191–1198. [Google Scholar] [CrossRef]
- Poulton, P.R. Rothamsted Research Guide to the Classical and Other Long-Term Experiments, Datasets and Sample Archive; Rothamsted Research, Harpenden, UK, 2012.
- Lithourgidis, A.S.; Damalas, C.A.; Gagianas, A.A. Long-Term Yield Patterns for Continuous Winter Wheat Cropping in Northern Greece. Eur. J. Agron. 2006, 25, 208–214. [Google Scholar] [CrossRef]
- Hermann, T.; Táth, G. Evaluating the Effect of Nutrient Levels of Major Soil Types on the Productivity of Wheatlands in Hungary. Commun. Soil Sci. Plant Anal. 2011, 42, 1497–1509. [Google Scholar] [CrossRef]
- Zumr, D. Agricultural Land Degradation in the Czech Republic. Handb. Environ. Chem. 2023, 121, 35–58. [Google Scholar] [CrossRef]
- Černý, J.; Balík, J.; Kulhánek, M.; Časová, K.; Nedvěd, V. Mineral and Organic Fertilization Efficiency in Long-Term Stationary Experiments. Plant Soil Environ. 2010, 56, 28–36. [Google Scholar] [CrossRef]
- Buráňová, Š.; Černý, J.; Kulhanek, M.; Vašák, F.; Balik, J. Influence of Mineral and Organic Fertilizers on Yield and Nitrogen Efficiency of Winter Wheat. Int. J. Plant Prod. 2015, 9, 257–272. [Google Scholar]
- Hlisnikovský, L.; Menšík, L.; Barłóg, P.; Kunzová, E. How Weather and Fertilization Affected Grain Yield and Stability of Winter Wheat in a Long-Term Trial in the South Moravian Region, Czech Republic. Agronomy 2023, 13, 2293. [Google Scholar] [CrossRef]
- Lumpkin, T.A. Advances in Wheat Genetics: From Genome to Field; Springer: Berlin/Heidelberg, Germany, 2015; pp. 13–20. [Google Scholar] [CrossRef]
- Jobson, E.M.; Johnston, R.E.; Oiestad, A.J.; Martin, J.M.; Giroux, M.J. The Impact of the Wheat Rht-B1b Semi-Dwarfing Allele on Photosynthesis and Seed Development under Field Conditions. Front. Plant Sci. 2019, 10, 388208. [Google Scholar] [CrossRef]
- Hedden, P. The Genes of the Green Revolution. Trends Genet. 2003, 19, 5–9. [Google Scholar] [CrossRef]
- Schauberger, B.; Ben-Ari, T.; Makowski, D.; Kato, T.; Kato, H.; Ciais, P. Yield Trends, Variability and Stagnation Analysis of Major Crops in France over More than a Century. Sci. Rep. 2018, 8, 16865. [Google Scholar] [CrossRef]
- Lin, M.; Huybers, P. Reckoning Wheat Yield Trends. Environ. Res. Lett. 2012, 7, 024016. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Menšík, L.; Kunzová, E. Development and the Effect of Weather and Mineral Fertilization on Grain Yield and Stability of Winter Wheat Following Alfalfa—Analysis of Long-Term Field Trial. Plants 2023, 12, 1392. [Google Scholar] [CrossRef]
- Sieling, K.; Stahl, C.; Winkelmann, C.; Christen, O. Growth and Yield of Winter Wheat in the First 3 Years of a Monoculture under Varying N Fertilization in NW Germany. Eur. J. Agron. 2005, 22, 71–84. [Google Scholar] [CrossRef]
- St. Luce, M.; Grant, C.A.; Zebarth, B.J.; Ziadi, N.; O’Donovan, J.T.; Blackshaw, R.E.; Harker, K.N.; Johnson, E.N.; Gan, Y.; Lafond, G.P.; et al. Legumes Can Reduce Economic Optimum Nitrogen Rates and Increase Yields in a Wheat-Canola Cropping Sequence in Western Canada. Field Crops Res. 2015, 179, 12–25. [Google Scholar] [CrossRef]
- Götze, P.; Rücknagel, J.; Wensch-Dorendorf, M.; Märländer, B.; Christen, O. Crop Rotation Effects on Yield, Technological Quality and Yield Stability of Sugar Beet after 45 Trial Years. Eur. J. Agron. 2017, 82, 50–59. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Vigil, M.F. Wheat Yield and Yield Stability of Eight Dryland Crop Rotations. Agron. J. 2018, 110, 594–601. [Google Scholar] [CrossRef]
- Preissel, S.; Reckling, M.; Schläfke, N.; Zander, P. Magnitude and Farm-Economic Value of Grain Legume Pre-Crop Benefits in Europe: A Review. Field Crops Res. 2015, 175, 64–79. [Google Scholar] [CrossRef]
- Kebede, E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The Effect of Application of Organic Manures and Mineral Fertilizers on the State of Soil Organic Matter and Nutrients in the Long-Term Field Experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T.; Lindström, K.; Nemecek, T.; Topp, C.F.E.; Vanhatalo, A.; et al. Grain Legume Production and Use in European Agricultural Systems. Adv. Agron. 2017, 144, 235–303. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- Conover, W.; Iman, R. Multiple-Comparisons Procedures. Informal Report; Los Alamos National Lab.(LANL): Los Alamos, NM, USA, 1979. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975; ISBN 9780852641996. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
Fertilizer Treatment (kg ha−1) | Grain Yield (1979–2018) | Grain Yield (2019–2022) |
---|---|---|
Control | 2.9 ± 1.2 A | 4.2 ± 1.2 A |
PK | 3.5 ± 1.4 B | 5.3 ± 1.4 AB |
N1PK | 4.6 ± 1.4 C | 6.5 ± 1.7 BC |
N2PK | 5.7 ± 1.5 D | 7.3 ± 1.4 CD |
N3PK | 6.6 ± 1.5 E | 8.2 ± 1.2 D |
Variety | Grain Yield (t ha−1) | Minimum | Maximum |
---|---|---|---|
Slávia | 4.3 ± 1.2 B | 2.0 | 6.4 |
Hana | 4.4 ± 2.1 B | 1.1 | 8.8 |
Vega | 3.9 ± 1.6 AB | 1.3 | 7.1 |
Brea | 3.3 ± 1.3 A | 1.6 | 6.1 |
Contra | 5.8 ± 1.6 C | 3.2 | 9.0 |
Mulan | 6.2 ± 1.9 C | 2.6 | 10.1 |
Julie (2015–2018) | 4.7 ± 2.0 B | 1.9 | 8.9 |
Julie (2019–2022) | 6.3 ± 2.0 C | 2.3 | 9.7 |
Preceding Crop | Grain Yield (t ha−1) |
---|---|
Cereals | 4.1 ± 1.8 A |
Oil plants | 4.7 ± 2.0 B |
Legumes | 5.4 ± 1.8 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlisnikovský, L.; Menšík, L.; Roman, M.; Kunzová, E. The Evaluation of a Long-Term Experiment on the Relationships between Weather, Nitrogen Fertilization, Preceding Crop, and Winter Wheat Grain Yield on Cambisol. Plants 2024, 13, 802. https://doi.org/10.3390/plants13060802
Hlisnikovský L, Menšík L, Roman M, Kunzová E. The Evaluation of a Long-Term Experiment on the Relationships between Weather, Nitrogen Fertilization, Preceding Crop, and Winter Wheat Grain Yield on Cambisol. Plants. 2024; 13(6):802. https://doi.org/10.3390/plants13060802
Chicago/Turabian StyleHlisnikovský, Lukáš, Ladislav Menšík, Muhammad Roman, and Eva Kunzová. 2024. "The Evaluation of a Long-Term Experiment on the Relationships between Weather, Nitrogen Fertilization, Preceding Crop, and Winter Wheat Grain Yield on Cambisol" Plants 13, no. 6: 802. https://doi.org/10.3390/plants13060802
APA StyleHlisnikovský, L., Menšík, L., Roman, M., & Kunzová, E. (2024). The Evaluation of a Long-Term Experiment on the Relationships between Weather, Nitrogen Fertilization, Preceding Crop, and Winter Wheat Grain Yield on Cambisol. Plants, 13(6), 802. https://doi.org/10.3390/plants13060802