Sustainable Development versus Extractivist Deforestation in Tropical, Subtropical, and Boreal Forest Ecosystems: Repercussions and Controversies about the Mother Tree and the Mycorrhizal Network Hypothesis
Abstract
:1. Introduction
- -
- Is it possible to address the controversies surrounding the ‘mother tree’ hypothesis, along with the lack of conclusive research results from its detractors, and reach a consensus on sustainable forest development?
- -
- Could genetic engineering techniques provide a deeper understanding of the intricate relationships between ‘mother trees’, mycorrhizal fungi, and younger trees within forest ecosystems?
- -
- How can we address the controversies surrounding cascading phenomena and the resilience of forest ecosystems while evaluating the effectiveness of public policies to mitigate extractive deforestation and promote sustainable forest management practices?
- -
- Stimulate greater commitment within the international scientific community to investigate the potential impacts of extractive deforestation based on the lack of knowledge of many of the reactions triggered by altering the ecosystem and its biodiversity.
- -
- Examine the phenomena of coopetition, cascade, and resilience within forest ecosystems, to encourage the generation of public policies that mitigate the potential effects of extractive deforestation and promote sustainable forest management practices.
- -
- A meticulous manual selection process was used to refine the collected resources, eliminating duplicates and irrelevant entries. Only one instance of identical documents found in different databases was retained. This process resulted in a final collection of 370 documents.
- -
- Selection based on title and keywords: The retained documents were subjected to a new phase of scrutiny. Their titles and keywords were subjected to a meticulous evaluation guided by an inclusive question: “Does the research contribute to reflect on the close relationship between the forest ecosystem based on Suzanne Simard’s hypothesis, mother trees, mycorrhizae, coopetition, and the unsustainable impact of the extractivist phenomenon on forests, the inability of public policies, institutionalism, and governance to safeguard the fragile balance of biodiversity?”
- -
- Evaluation through summaries: In this phase, the summaries of the remaining papers were reviewed against the same evaluative question as in the previous step.
- -
- Reading the full text and determining relevance: the full texts of the selected papers were diligently obtained and thoroughly studied. The evaluation question of the third step was reviewed to assess the alignment with the research objectives.
- During the comprehensive content analysis of the full text, we identified two fundamental areas influenced by the central research thrusts: the positive impact of mother trees on the larger interconnected forest ecosystem and the negative consequences of extractivism caused by indiscriminate deforestation. Keywords included “Deforestation”; “Extractivist practice”; “Biodiversity”; “Resilience”; “Suzanne Simard”; “Mother trees”; “Mycorrhizal networks”; “Mycorrhizal molecular research”; “Sustainable development”; “Importance of public policies”; “Institutions”; “Governance”; “Regulation of extractivism phenomena”; and “Corruption”. The formulation of queries for systematic literature review searches can be automated without the need for computer specialists or specialized software, as demonstrated by the use of Vectara. This method can lead to efficient searches and provide an overview of the types of studies recovered [72,73].
- Table 1 shows the frequency of each keyword reflected in the different databases used, with a total of 1472 occurrences.
- A high frequency indicates that the topic is widely discussed or emphasized in the literature. This indicates that a particular topic is of interest, concern, or research within the field. For instance, if the phrase “Impact of deforestation, extraction, and biodiversity” appears frequently, it implies that these issues are central concerns in the analyzed documents.
- A moderate count suggests that the topic is relevant, but not as dominant within the literature. It may be more specialized or focused on specific aspects of the broader field.
- A low frequency indicates that the topic is not a major focus within the literature. A low count may indicate that the topic is niche, emerging, or is not extensively covered in the literature. It could also suggest areas where further research is needed or topics that are less prioritized within the current scope of discussions.
2. Theoretical Framework
2.1. Tropical, Subtropical, and Boreal Forests and Importance for Biodiversity
2.2. Forest Degradation versus Extractive Deforestation and Impact on Biodiversity
2.3. The Importance of Natural Capital versus Extractivism-Leading to Deforestation
2.4. Resilience in Tropical, Subtropical, and Boreal Forest Ecosystems
2.5. The ‘Mother Tree’ Is the Center of the Resilience of the Ecosystem
2.6. The Underground Kingdom of Mycorrhizal Networks Responsible for Forest Biodiversity
Molecular Studies on Mycorrhizal Fungi in Forests
2.7. Cascading Ecological Effects
2.8. Importance of Public Policies, Institutions, and Governance in the Regulation of Extractivism for a More Sustainable Development
2.8.1. Poor Public Policies, Governance, and Institutional Frameworks
2.8.2. Exploitative Extractivist Practices by Multinational Corporations and Biodiversity Loss
3. Discussion
4. Conclusions
5. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dar, J.A.; Subashree, K.; Bhat, N.A.; Sundarapandian, S.; Xu, M.; Saikia, P.; Khan, M.L. Role of Major Forest Biomes in Climate Change Mitigation: An Eco-biological Perspective. In Socio-Economic and Eco-Biological Dimensions in Resource Use and Conservation: Strategies for Sustainability; Springer International Publishing: Berlin, Germany, 2020; pp. 483–526. [Google Scholar]
- Watson, J.E.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Lindenmayer, D. The Exceptional Value of Intact Forest Ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Birdsey, R.; Pan, Y. Trends in management of the world’s forests and impacts on carbon stocks. For. Ecol. Manag. 2015, 355, 83–90. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Xia, J.; He, N.; Li, M.; Niu, S. Soil and Vegetation Carbon Turnover Times from Tropical to Boreal Forests. Funct. Ecol. 2018, 32, 71–82. [Google Scholar] [CrossRef]
- Chagnon, C.W.; Hagolani-Albov, S.E.; Hokkanen, S. Extractivism at Your Fingertips. In Our Extractive Age; Routledge: London, UK, 2021; pp. 176–188. [Google Scholar]
- Warnecke-Berger, H.; Burchardt, H.J.; Ouaissa, R. Natural Resources, Raw Materials, and Extractivism: The Dark Side of Sustainability. Extr. Policy Brief. 2022, 1, 1–8. [Google Scholar]
- Zhang, J.; Zhang, J. Soil Environmental Deterioration and Ecological Rehabilitation. In Study of Ecological Engineering of Human Settlements; Springer: Singapore, 2020; pp. 41–82. [Google Scholar]
- Wiekenkamp, I.; Huisman, J.A.; Bogena, H.R.; Vereecken, H. Effects of Deforestation on Water Flow in the Vadose Zone. Water 2019, 12, 35. [Google Scholar] [CrossRef]
- Arora, B.; Dwivedi, D.; Faybishenko, B.; Jana, R.B.; Wainwright, H.M. Understanding and Predicting Vadose Zone Processes. Rev. Mineral. Geochem. 2019, 85, 303–328. [Google Scholar] [CrossRef]
- Kyere-Boateng, R.; Marek, M.V. Analysis of the Social-Ecological Causes of Deforestation and Forest Degradation in Ghana: Application of the DPSIR Framework. Forests 2021, 12, 409. [Google Scholar] [CrossRef]
- Simard, S.W.; Roach, W.J.; Beauregard, J.; Burkart, J.; Cook, D.; Law, D.; Murphy-Steed, A.; Schacter, T.; Zickmantel, A.; Armstrong, G.; et al. Partial Retention of Legacy Trees Protect Mycorrhizal Inoculum Potential, Biodiversity, and Soil Resources While Promoting Natural Regeneration of Interior Douglas-Fir. Front. For. Glob. Change 2021, 3, 620436. [Google Scholar] [CrossRef]
- McCutcheon, J.P.; Lekberg, Y. Symbiosis: Fungi as Shrewd Trade Negotiators. Curr. Biol. 2019, 29, R570–R572. [Google Scholar] [CrossRef]
- Simard, S.; Perry, D.; Jones, M.; Myrold, D.D.; Durall, D.M.; Molina, R. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 1997, 388, 579–582. [Google Scholar] [CrossRef]
- Rhodes, S. Current Commentary the whispering world of plants: ‘The Wood Wide Web’. Sci. Progress 2017, 100, 331–337. [Google Scholar] [CrossRef]
- Wipf, D.; Krajinski, F.; van Tuinen, D.; Recorbet, G.; Courty, P.E. Trading on the arbuscular mycorrhiza mar-ket: From arbuscules to common mycorrhizal networks. New Phytol. 2019, 223, 1127–1142. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, J.T.; Cockle, K.; Altamirano, T.; Van der Hoek, Y.; Simard, S.W.; Bonacic, C.; Martin, K. Nurturing resilient forest biodiversity: Nest webs as complex adaptive systems. Ecol. Soc. 2020, 25, 27. [Google Scholar] [CrossRef]
- Song, Y.; Simard, S.; Carroll, A.; Mohn, W.W.; Zeng, R.S. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci. Rep. 2015, 5, 8495. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Berner, L.T.; Law, B.E.; Birdsey, R.A.; Moomaw, W.R. Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Pacific Northwest. Front. For. Glob. Change 2020, 3, 594274. [Google Scholar] [CrossRef]
- Jansa, J.; Forczek, S.T.; Rozmoš, M.; Püschel, D.; Bukovská, P.; Hršelová, H. Arbuscular mycor-rhiza and soil organic nitrogen: Network of players and interactions. Chem. Bio-Log. Technol. Agric. 2019, 6, 10. [Google Scholar] [CrossRef]
- Korani, W.; Mouhoub, M.; Spiteri, R.J. Mother Tree Optimization. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2206–2213. [Google Scholar]
- Van Der Heijden, M.G.; De Bruin, S.; Luckerhoff, L.; Van Logtestijn, R.S.; Schlaeppi, K. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J. 2015, 10, 389–399. [Google Scholar] [CrossRef]
- Modi, D.; Simard, S.; Bérubé, J.; Lavkulich, L.; Hamelin, R.; Grayston, S.J. Long-Term Effects of Stump Removal and Tree Species Composition on the Diversity and Structure of Soil Fungal Communities. FEMS Microbiol. Ecol. 2020, 96, fiaa061. [Google Scholar] [CrossRef] [PubMed]
- Almario, J.; Fabiańska, I.; Saridis, G.; Bucher, M. Unearthing the plant-microbe quid pro quo in root associations with beneficial fungi. New Phytol. 2022, 234, 1967–1976. [Google Scholar] [CrossRef]
- Hawkins, B.; Jones, M.; Kranabetter, J. Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New For. 2015, 46, 747–771. [Google Scholar] [CrossRef]
- Griggs, K. Finding the Mother Tree: Discovering the Wisdom of the Forest. Nat. Areas J. 2022, 42, 161–162. [Google Scholar] [CrossRef]
- Henriksson, N.; Marshall, J.; Högberg, M.N.; Högberg, P.; Polle, A.; Franklin, O.; Näsholm, T. Re-examining the Evidence for the Mother Tree Hypothesis–Resource Sharing Among Trees via Ectomycorrhizal Networks. New Phytol. 2023, 239, 19–28. [Google Scholar] [CrossRef]
- Deng, M.; Hu, S.; Guo, L.; Jiang, L.; Huang, Y.; Schmid, B.; Liu, C.; Chang, P.; Li, S.; Liu, X.; et al. Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest. Sci. Adv. 2023, 9, eadd4468. [Google Scholar] [CrossRef]
- Simard, S.W.; Beiler, K.J.; Bingham, M.A.; Deslippe, J.R.; Philip, L.J.; Teste, F.P. Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biol. Rev. 2012, 26, 39–60. [Google Scholar] [CrossRef]
- Deslippe, J.R.; Hart-mann, M.; Grayston, S.J.; Simard, S.W.; Mohn, W.W. Stable isotope probing impli-cates a species of Cortinarius in carbon transfer through ectomycorrhizal fungal myce-lial networks in Arctic tundra. New Phytol. 2016, 210, 383–390. [Google Scholar] [CrossRef]
- Figueiredo, A.; Boy, J.; Guggenberger, G. Common mycorrhizae network: A review of the theories and mechanisms behind underground interactions. Front. Fungal Biol. 2021, 2, 735299. [Google Scholar] [CrossRef]
- Castro-Delgado, A.L.; Elizondo-Mesén, S.; Valladares-Cruz, Y.; Rivera-Méndez, W. Wood Wide Web: Communication through the Mycorrhizal Network. Rev. Tecnol. Marcha 2020, 334, 114–125. [Google Scholar]
- Basiru, S.; Mhand, A.; Hijri, M. Disentangling arbuscular mycorrhizal fungi and bacteria at the soil-root interface. Mycorrhiza 2023, 33, 119–137. [Google Scholar] [CrossRef]
- Cao, B.F.; Jiang, H.X.; Liu, L.; Lu, Y.G.; Wang, M.S. Research progress on mechanism of arbuscular common mycorrhizal networks in plant-plant interactions. J. Appl. Ecol. 2021, 32, 3385–3396. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, Y.N.; Shu, B.; Wu, Q.S. Deciphering Molecular Mechanisms Regarding Enhanced Drought Tolerance in Plants by Arbuscular Mycorrhizal Fungi. Sci. Hortic. 2023, 308, 111591. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M. Mycorrhizal Types Differ in Ecophysiology and Alter Plant Nutrition and Soil Processes. Biol. Rev. 2019, 94, 1857–1880. [Google Scholar] [CrossRef] [PubMed]
- Limaho, H.S.; Sugiarto; Pramono, R.; Christiawan, R. The Need for Global Green Marketing for the Palm Oil Industry in Indonesia. Sustainability 2022, 14, 8621. [Google Scholar] [CrossRef]
- Kaempf, D. Coopetition in the Context of the Sustainability Goals: A Systematic Overview. Reg. Bus. Stud. 2022, 14, 47–61. [Google Scholar] [CrossRef]
- Cygler, J.; Sroka, W.; Solesvik, M.; Dębkowska, K. Benefits and Drawbacks of Coopetition: The Roles of Scope and Durability in Coopetitive Relationships. Sustainability 2018, 10, 2688. [Google Scholar] [CrossRef]
- Palit, K.; Rath, S.; Chatterjee, S.; Das, S. Microbial Diversity and Ecological Interactions of Microorganisms in the Mangrove Ecosystem: Threats, Vulnerability, and Adaptations. Environ. Sci. Pollut. Res. 2022, 29, 32467–32512. [Google Scholar] [CrossRef] [PubMed]
- Landi, P.; Minoarivelo, H.O.; Brännström, Å.; Hui, C.; Dieckmann, U. Complexity and Stability of Ecological Networks: A Review of the Theory. Popul. Ecol. 2018, 60, 319–345. [Google Scholar] [CrossRef]
- Powell, J.R.; Rillig, M.C. Biodiversity of Arbuscular Mycorrhizal Fungi and Ecosystem Function. New Phytol. 2018, 220, 1059–1075. [Google Scholar] [CrossRef]
- Saeidi, R. Quantitative and Qualitative Study to Identify the Latent Interactive Pattern Between Ecosystems. Int. J. Mech. Eng. 2022, 7, 1095–1103. [Google Scholar]
- Sommerfeld, A.; Senf, C.; Buma, B.; D’Amato, A.W.; Després, T.; Díaz-Hormazábal, I.; Seidl, R. Patterns and Drivers of Recent Disturbances Across the Temperate Forest Biome. Nat. Commun. 2018, 9, 4355. [Google Scholar] [CrossRef]
- Seidl, R.; Albrich, K.; Erb, K.; Formayer, H.; Leidinger, D.; Leitinger, G.; Rammer, W. What Drives the Future Supply of Regulating Ecosystem Services in a Mountain Forest Landscape? For. Ecol. Manag. 2019, 445, 37–47. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Mapping the Forest Disturbance Regimes of Europe. Nat. Sustain. 2021, 4, 63–70. [Google Scholar] [CrossRef]
- Davis, T.S.; Meddens, A.J.; Stevens-Rumann, C.S.; Jansen, V.S.; Sibold, J.S.; Battaglia, M.A. Monitoring Resistance and Resilience Using Carbon Trajectories: Analysis of Forest Management–Disturbance Interactions. Ecol. Appl. 2022, 32, e2704. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Turner, M.G. Post-disturbance Reorganization of Forest Ecosystems in a Changing World. Proc. Natl. Acad. Sci. USA 2022, 119, e2202190119. [Google Scholar] [CrossRef] [PubMed]
- Staal, A.; Fetzer, I.; Wang-Erlandsson, L.; Bosmans, J.H.; Dekker, S.C.; van Nes, E.H.; Tuinenburg, O.A. Hysteresis of Tropical Forests in the 21st Century. Nat. Commun. 2020, 11, 4978. [Google Scholar] [CrossRef] [PubMed]
- Albrich, K.; Rammer, W.; Seidl, R. Climate Change Causes Critical Transitions and Irreversible Alterations of Mountain Forests. Glob. Change Biol. 2020, 26, 4013–4027. [Google Scholar] [CrossRef] [PubMed]
- Prăvălie, R. Major Perturbations in the Earth’s Forest Ecosystems. Possible Implications for Global Warming. Earth-Sci. Rev. 2018, 185, 544–571. [Google Scholar] [CrossRef]
- Liu, J.; Coomes, D.A.; Gibson, L.; Hu, G.; Liu, J.; Luo, Y.; Yu, M. Forest Fragmentation in China and Its Effect on Biodiversity. Biol. Rev. 2019, 94, 1636–1657. [Google Scholar] [CrossRef] [PubMed]
- Turvey, S.T.; Crees, J.J. Extinction in the Anthropocene. Curr. Biol. 2019, 29, R982–R986. [Google Scholar] [CrossRef] [PubMed]
- Ayram, C.A.C.; Etter, A.; Díaz-Timoté, J.; Buriticá, S.R.; Ramírez, W.; Corzo, G. Spatiotemporal Evaluation of the Human Footprint in Colombia: Four Decades of Anthropic Impact in Highly Biodiverse Ecosystems. Ecol. Indic. 2020, 117, 106630. [Google Scholar] [CrossRef]
- Chazdon, R.L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation; University of Chicago Press: Chicago, IL, USA, 2019. [Google Scholar]
- McLauchlan, K.K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Watts, A.C. Fire as a Fundamental Ecological Process: Research Advances and Frontiers. J. Ecol. 2020, 108, 2047–2069. [Google Scholar] [CrossRef]
- Cumming, G.S.; Allen, C.R. Protected Areas as Social-Ecological Systems: Perspectives from Resilience and Social-Ecological Systems Theory. Ecol. Appl. 2017, 27, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Bas, T.G.; Gagnon, J.; Gagnon, P.; Contreras, A. Analysis of Agro Alternatives to Boost Cameroon’s Socio-Environmental Resilience, Sustainable Development, and Conservation of Native Forests. Sustainability 2022, 14, 8507. [Google Scholar] [CrossRef]
- Adams, D.; Adams, K.; Ullah, S.; Ullah, F. Globalisation, Governance, Accountability and the Natural Resource ‘Curse’: Implications for Socio-Economic Growth of Oil-Rich Developing Countries. Resour. Policy 2019, 61, 128–140. [Google Scholar] [CrossRef]
- Brancalion, P.H.; De Almeida, D.R.; Vidal, E.; Molin, P.G.; Sontag, V.E.; Souza, S.E.; Schulze, M.D. Fake Legal Logging in the Brazilian Amazon. Sci. Adv. 2018, 4, eaat1192. [Google Scholar] [CrossRef] [PubMed]
- Duguma, L.A.; Atela, J.; Minang, P.A.; Ayana, A.N.; Gizachew, B.; Nzyoka, J.M.; Bernard, F. Deforestation and Forest Degradation as an Environmental Behavior: Unpacking Realities Shaping Community Actions. Land 2019, 8, 26. [Google Scholar] [CrossRef]
- Kahler, J.S.; Rivera, J.W.; Steele, Z.T. Advancing Applied Research in Conservation Criminology through the Evaluation of Corruption Prevention, Enhancing Compliance, and Reducing Recidivism. Front. Conserv. Sci. 2021, 2, 698755. [Google Scholar] [CrossRef]
- Ehrnström-Fuentes, M. Confronting Extractivism–The Role of Local Struggles in the (Un) Making of Place. Crit. Perspect. Int. Bus. 2022, 18, 50–73. [Google Scholar] [CrossRef]
- Wynn, G. Forests, Frontiers, and Extractivism. Environ. Hist. 2023, 28, 640–655. [Google Scholar] [CrossRef]
- Andrade, D. Neoliberal Extractivism: Brazil in the Twenty-First Century. J. Peasant. Stud. 2022, 49, 793–816. [Google Scholar] [CrossRef]
- Grégoire, E.R.; Hatcher, P. Global Extractivism and Inequality. In The Routledge Handbook of Global Development; Routledge: London, UK, 2022; pp. 341–350. [Google Scholar]
- Chagnon, C.W.; Durante, F.; Gills, B.K. From Extractivism to Global Extractivism: The Evolution of an Organizing Concept. J. Peasant. Stud. 2022, 49, 760–792. [Google Scholar] [CrossRef]
- Walker, R.T.; Simmons, C.; Arima, E.; Galvan-Miyoshi, Y.; Antunes, A.; Waylen, M.; Irigaray, M. Avoiding Amazonian Catastrophes: Prospects for Conservation in the 21st Century. One Earth 2019, 1, 202–215. [Google Scholar] [CrossRef]
- Orihuela, J.C.; Cavero, C.P.; Contreras, C. Extractivism of the Poor: Natural Resource Commodification and Its Discontents. Extr. Ind. Soc. 2022, 9, 100986. [Google Scholar] [CrossRef]
- Nygren, A.; Kröger, M.; Gills, B. Global Extractivisms and Transformative Alternatives. J. Peasant. Stud. 2022, 49, 734–759. [Google Scholar] [CrossRef]
- Gudynas, E. Extractivisms: Tendencies and Consequences. In Reframing Latin American Development; Routledge: London, UK, 2018; pp. 61–76. [Google Scholar]
- Barros, M.V.; Salvador, R.; do Prado, G.F.; de Francisco, A.C.; Piekarski, C.M. Circular Economy as a Driver to Sustainable Businesses. Clean. Environ. Syst. 2021, 2, 100006. [Google Scholar] [CrossRef]
- Gusenbauer, M.; Haddaway, N.R. Which Academic Search Systems Are Suitable for Systematic Reviews or Meta-Analyses? Evaluating Retrieval Qualities of Google Scholar, PubMed, and 26 Other Resources. Res. Synth. Methods 2020, 11, 181–217. [Google Scholar] [CrossRef]
- Scells, H.; Zuccon, G.; Koopman, B.; Clark, J. Automatic Boolean Query Formulation for Systematic Review Literature Search. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 1071–1081. [Google Scholar]
- Scells, H.; Zuccon, G.; Koopman, B. A Comparison of Automatic Boolean Query Formulation for Systematic Reviews. Inf. Retr. J. 2021, 24, 3–28. [Google Scholar] [CrossRef]
- Bas, T.G.; Fariña, R.; Gallardo, F.; Vilches, M. Economic–Financial Assessment of Seawater Desalination Plants in Northern Chile to Reduce Hydric Scarcity and a Proposal for the Environmental and Sustainable Use of Brine Waste by Cultivating the Microalga Dunaliella salina to Produce β-Carotene. Processes 2023, 11, 1668. [Google Scholar] [CrossRef]
- Lashkari, F.; Ensan, F.; Bagheri, E.; Ghorbani, A.A. Efficient Indexing for Semantic Search. Expert. Syst. Appl. 2017, 73, 92–114. [Google Scholar] [CrossRef]
- Ali, A. Forest Stand Structure and Functioning: Current Knowledge and Future Challenges. Ecol. Indic. 2019, 98, 665–677. [Google Scholar] [CrossRef]
- Ameray, A.; Bergeron, Y.; Valeria, O.; Montoro Girona, M.; Cavard, X. Forest Carbon Management: A Review of Silvicultural Practices and Management Strategies Across Boreal, Temperate and Tropical Forests. Curr. For. Rep. 2021, 7, 245–266. [Google Scholar] [CrossRef]
- Derrien, D.; Barré, P.; Basile-Doelsch, I.; Cécillon, L.; Chabbi, A.; Crème, A.; Fontaine, S.; Henneron, L.; Janot, N.; Lashermes, G.; et al. Current controversies on mechanisms controlling soil carbon storage: Implications for interactions with practitioners and policy-makers: A review. Agron. Sustain. Dev. 2023, 43, 21. [Google Scholar] [CrossRef]
- Abbas, S.; Wong, M.S.; Wu, J.; Shahzad, N.; Muhammad Irteza, S. Approaches of Satellite Remote Sensing for the Assessment of Above-ground Biomass Across Tropical Forests: Pan-tropical to National Scales. Remote Sens. 2020, 12, 3351. [Google Scholar] [CrossRef]
- Liu, X.; Trogisch, S.; He, J.S.; Niklaus, P.A.; Bruelheide, H.; Tang, Z.; Ma, K. Tree Species Richness Increases Ecosystem Carbon Storage in Subtropical Forests. Proc. R. Soc. B 2018, 285, 20181240. [Google Scholar] [CrossRef] [PubMed]
- Webster, C.R.; Dickinson, Y.L.; Burton, J.I.; Frelich, L.E.; Jenkins, M.A.; Kern, C.C.; Willis, J.L. Promoting and Maintaining Diversity in Contemporary Hardwood Forests: Confronting Contemporary Drivers of Change and the Loss of Ecological Memory. For. Ecol. Manag. 2018, 421, 98–108. [Google Scholar] [CrossRef]
- Halofsky, J.S.; Donato, D.C.; Franklin, J.F.; Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. The Nature of the Beast: Examining Climate Adaptation Options in Forests with Stand-Replacing Fire Regimes. Ecosphere 2018, 9, e02140. [Google Scholar] [CrossRef]
- Mina, M.; Messier, C.; Duveneck, M.; Fortin, M.J.; Aquilué, N. Network Analysis Can Guide Resilience-Based Management in Forest Landscapes Under Global Change. Ecol. Appl. 2021, 31, e2221. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, I.; Acharya, K.; Juno, E.; Karounos, C.; Lee, B.R.; McCollum, C.; Tourville, J. Forest Resilience Under Global Environmental Change: Do We Have the Information We Need? A Systematic Review. PLoS ONE 2019, 14, e0222207. [Google Scholar] [CrossRef] [PubMed]
- Isabel, N.; Holliday, J.A.; Aitken, S.N. Forest Genomics: Advancing Climate Adaptation, Forest Health, Productivity, and Conservation. Evol. Appl. 2020, 13, 3–10. [Google Scholar] [CrossRef]
- Fujii, K.; Shibata, M.; Kitajima, K.; Ichie, T.; Kitayama, K.; Turner, B.L. Plant–Soil Interactions Maintain Biodiversity and Functions of Tropical Forest Ecosystems. Ecol. Res. 2018, 33, 149–160. [Google Scholar] [CrossRef]
- Meakem, V.; Tepley, A.J.; Gonzalez-Akre, E.B.; Herrmann, V.; Muller-Landau, H.C.; Wright, S.J.; Anderson-Teixeira, K.J. Role of Tree Size in Moist Tropical Forest Carbon Cycling and Water Deficit Responses. New Phytol. 2018, 219, 947–958. [Google Scholar] [CrossRef]
- Ribeiro, K.; Pacheco, F.S.; Ferreira, J.W.; de Sousa-Neto, E.R.; Hastie, A.; Krieger Filho, G.C.; Ometto, J.P. Tropical Peatlands and Their Contribution to the Global Carbon Cycle and Climate Change. Glob. Change Biol. 2021, 27, 489–505. [Google Scholar] [CrossRef]
- Arora, N.K. Biodiversity Conservation for Sustainable Future. Environ. Sustain. 2018, 1, 109–111. [Google Scholar] [CrossRef]
- Rajpar, M.N. Tropical Forests Are an Ideal Habitat for Wide Array of Wildlife Species. In Tropical Forests—New Edition; IntechOpen: London, UK, 2018; p. 37. [Google Scholar]
- Borma, L.S.; Costa, M.H.; da Rocha, H.R.; Arieira, J.; Nascimento, N.C.C.; Jaramillo-Giraldo, C.; Nobre, C.A. Beyond Carbon: The Contributions of South American Tropical Humid and Subhumid Forests to Ecosystem Services. Rev. Geophys. 2022, 60, e2021RG000766. [Google Scholar] [CrossRef]
- Réjou-Méchain, M.; Mortier, F.; Bastin, J.F.; Cornu, G.; Barbier, N.; Bayol, N.; Gourlet-Fleury, S. Unveiling African Rainforest Composition and Vulnerability to Global Change. Nature 2021, 593, 90–94. [Google Scholar] [CrossRef]
- Seo, S.N.; Seo, S.N. Giving Forests: A Tale of Amazon Rainforests and Congo River Forests. In Climate Change and Economics: Engaging with Future Generations with Action Plans; Palgrave Macmillan: Cham, Switzerland, 2021; pp. 43–61. [Google Scholar]
- Lindberg, K.; Martvall, A.; Lima, M.G.B.; Franca, C.S. Herbal Medicine Promotion for a Restorative Bioeconomy in Tropical Forests: A Reality Check on the Brazilian Amazon. For. Policy Econ. 2023, 155, 103058. [Google Scholar] [CrossRef]
- Neudert, R.; Ganzhorn, J.U.; Waetzold, F. Global Benefits and Local Costs–The Dilemma of Tropical Forest Conservation: A Review of the Situation in Madagascar. Environ. Conserv. 2017, 44, 82–96. [Google Scholar] [CrossRef]
- Delbanco, A.S.; Burgess, N.D.; Cuni-Sanchez, A. Medicinal Plant Trade in Northern Kenya: Economic Importance, Uses, and Origin. Econ. Bot. 2017, 71, 13–31. [Google Scholar] [CrossRef]
- Ashton, P.; Zhu, H. The Tropical-Subtropical Evergreen Forest Transition in East Asia: An Exploration. Plant Divers. 2020, 42, 255–280. [Google Scholar] [CrossRef]
- Loidi, J.; Navarro-Sánchez, G.; Vynokurov, D. Climatic Definitions of the World’s Terrestrial Biomes. Veg. Classif. Surv. 2022, 3, 231–271. [Google Scholar] [CrossRef]
- Sommer, B.; Beger, M.; Harrison, P.L.; Babcock, R.C.; Pandolfi, J.M. Differential Response to Abiotic Stress Controls Species Distributions at Biogeographic Transition Zones. Ecography 2018, 41, 478–490. [Google Scholar] [CrossRef]
- Ge, J.; Xie, Z. Geographical and Climatic Gradients of Evergreen Versus Deciduous Broad-Leaved Tree Species in Subtropical China: Implications for the Definition of the Mixed Forest. Ecol. Evol. 2017, 7, 3636–3644. [Google Scholar] [CrossRef] [PubMed]
- Usinowicz, J.; Chang-Yang, C.H.; Chen, Y.Y.; Clark, J.S.; Fletcher, C.; Garwood, N.C.; Wright, S.J. Temporal Coexistence Mechanisms Contribute to the Latitudinal Gradient in Forest Diversity. Nature 2017, 550, 105–108. [Google Scholar] [PubMed]
- Schnabel, F.; Liu, X.; Kunz, M.; Barry, K.E.; Bongers, F.J.; Bruelheide, H.; Wirth, C. Species Richness Stabilizes Productivity via Asynchrony and Drought-Tolerance Diversity in a Large-Scale Tree Biodiversity Experiment. Sci. Adv. 2021, 7, eabk1643. [Google Scholar] [CrossRef] [PubMed]
- De Lombaerde, E.; Vangansbeke, P.; Lenoir, J.; Van Meerbeek, K.; Lembrechts, J.; Rodríguez-Sánchez, F.; De Frenne, P. Maintaining Forest Cover to Enhance Temperature Buffering Under Future Climate Change. Sci. Total Environ. 2022, 810, 151338. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.G.; Walker, J.K.; Bogar, L.M. Interspecific Mycorrhizal Networks and Non-Networking Hosts: Exploring the Ecology of the Host Genus Alnus. In Mycorrhizal Networks; Springer: Dordrecht, The Netherlands, 2015; pp. 227–254. [Google Scholar]
- Kahle, H. Response of Roots of Trees to Heavy Metals. Environ. Exp. Bot. 1993, 33, 99–119. [Google Scholar] [CrossRef]
- Chen, H.; Renault, S.; Markham, J. The Effect of Frankia and Multiple Ectomycorrhizal Fungi Species on Alnus Growing in Low Fertility Soil. Symbiosis 2020, 80, 207–215. [Google Scholar] [CrossRef]
- Grover, M.; Maheswari, M.; Desai, S.; Gopinath, K.A.; Venkateswarlu, B. Elevated CO2: Plant Associated Microorganisms and Carbon Sequestration. Appl. Soil Ecol. 2015, 95, 73–85. [Google Scholar] [CrossRef]
- Ouyang, S.; Xiang, W.; Gou, M.; Chen, L.; Lei, P.; Xiao, W.; Forrester, D.I. Stability in Subtropical Forests: The Role of Tree Species Diversity, Stand Structure, Environmental and Socio-Economic Conditions. Glob. Ecol. Biogeogr. 2021, 30, 500–513. [Google Scholar] [CrossRef]
- Li, X.C.; Qian, X.; Gao, C.; Seitz, S.; Scholten, T.; Wang, Y.L.; Guo, L.D. Plant Identity Strongly Structures the Root-Associated Fungal Community in a Diverse Subtropical Forest. Basic. Appl. Ecol. 2021, 55, 98–109. [Google Scholar] [CrossRef]
- Triviño, M.; Potterf, M.; Tijerín, J.; Ruiz-Benito, P.; Burgas, D.; Eyvindson, K.; Duflot, R. Enhancing Resilience of Boreal Forests Through Management Under Global Change: A Review. Curr. Landsc. Ecol. Rep. 2023, 8, 103–118. [Google Scholar] [CrossRef]
- Thiffault, E. Boreal Forests and Soils. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2019; Volume 36, pp. 59–82. [Google Scholar]
- Hessburg, P.F.; Miller, C.L.; Parks, S.A.; Povak, N.A.; Taylor, A.H.; Higuera, P.E.; Salter, R.B. Climate, Environment, and Disturbance History Govern Resilience of Western North American Forests. Front. Ecol. Evol. 2019, 7, 239. [Google Scholar] [CrossRef]
- Montesano, P.M.; Neigh, C.S.; Macander, M.; Feng, M.; Noojipady, P. The Bioclimatic Extent and Pattern of the Cold Edge of the Boreal Forest: The Circumpolar Taiga-Tundra Ecotone. Environ. Res. Lett. 2020, 15, 105019. [Google Scholar] [CrossRef]
- Chang, C.Y.; Bräutigam, K.; Hüner, N.P.A.; Ensminger, I. Champions of winter survival: Cold acclimation and molecular regulation of cold hardiness in evergreen conifers. New Phytol. 2020, 229, 675–691. [Google Scholar] [CrossRef]
- Olnest, J.; Kielland, K. Asynchronous Recruitment Dynamics of Snowshoe Hares and White Spruce in a Boreal Forest. For. Ecol. Manag. 2017, 384, 83–91. [Google Scholar] [CrossRef]
- Pukkala, T. Effect of species composition on ecosystem services in European boreal forest. J. For. Res. 2017, 29, 261–272. [Google Scholar] [CrossRef]
- Kayes, I.; Mallik, A. Boreal Forests: Distributions, Biodiversity, and Management. In Life on Land; Springer: Cham, Switzerland, 2020; pp. 1–12. [Google Scholar]
- Sullivan, T.P.; Sullivan, D.S. Influence of Nitrogen Fertilization on Abundance and Diversity of Plants and Animals in Temperate and Boreal Forests. Environ. Rev. 2018, 26, 26–42. [Google Scholar]
- Kolomyts, E.G. Predictive Modelling of Boreal Forest Resources in Regulation of the Carbon Cycle and Mitigation of the Global Warming. Int. J. Glob. Warm. 2022, 27, 333–364. [Google Scholar] [CrossRef]
- Watson, J.; Shanahan, D.F.; Di Marco, M.; Allan, J.; Laurance, W.F.; Sanderson, E.W.; Mackey, B.; Venter, O. Catastrophic Declines in Wilderness Areas Undermine Global Environment Targets. Curr. Biol. 2016, 26, 2929–2934. [Google Scholar] [CrossRef]
- Betts, M.G.; Wolf, C.; Ripple, W.J.; Phalan, B.; Millers, K.A.; Duarte, A.; Butchart, S.H.M.; Levi, T. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 2017, 547, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Daskalova, G.; Myers-Smith, I.; Bjorkman, A.; Blowes, S.; Supp, S.R.; Magurran, A.E.; Dornelas, M. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 2020, 368, 1341–1347. [Google Scholar] [CrossRef]
- Leal, A.; Benchimol, M.; Costa, H.; Faria, C.; Cazetta, E. Impacts of landscape-scale forest loss and a dry event on the demographic structure of the endangered palm Euterpe edulis Mart. in the Atlantic Forest. Front. For. Glob. Change 2022, 5, 909901. [Google Scholar] [CrossRef]
- Lawrence, D.; Coe, M.; Walker, W.; Verchot, L.; Vandecar, K. The Unseen Effects of Deforestation: Biophysical Effects on Climate. Front. For. Glob. Change 2022, 5, 75611. [Google Scholar] [CrossRef]
- Lämås, T.; Sandström, E.; Jonzén, J.; Olsson, H.; Gustafsson, L. Tree retention practices in boreal forests: What kind of future landscapes are we creating? Scand. J. For. Res. 2015, 30, 526–537. [Google Scholar] [CrossRef]
- Tremblay, J.A.; Savard, J.-P.; Ibarzabal, J. Structural retention requirements for a key ecosystem engineer in conifer-dominated stands of a boreal managed landscape in eastern Canada. For. Ecol. Manag. 2015, 357, 220–227. [Google Scholar] [CrossRef]
- Torsten, K.; Tilker, A. How the loss of forest fauna undermines the achievement of the SDGs. Ambio 2021, 51, 103–113. [Google Scholar]
- Rivers, M.; Newton, A.C.; Oldfield, S. Scientists’ warning to humanity on tree extinctions. Plants People Planet 2022, 5, 466–482. [Google Scholar] [CrossRef]
- Teshome, D.T.; Zharare, G.E.; Naidoo, S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. Front. Plant Sci. 2020, 11, 601009. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A.; Hamann, A.; Armstrong, G.W.; Acuna-Castellanos, D. Identifying Local Actors of Deforestation and Forest Degradation in the Kalasha Valleys of Pakistan. For. Policy Econ. 2019, 104, 56–64. [Google Scholar] [CrossRef]
- Hargita, Y.; Giessen, L.; Günter, S. Similarities and Differences Between International REDD+ and Transnational Deforestation-Free Supply Chain Initiatives—A Review. Sustainability 2020, 12, 896. [Google Scholar] [CrossRef]
- Fischer, R.; Giessen, L.; Günter, S. Governance Effects on Deforestation in the Tropics: A Review of the Evidence. Environ. Sci. Policy 2020, 105, 84–101. [Google Scholar] [CrossRef]
- Aleixandre-Benavent, R.; Aleixandre-Tudó, J.L.; Castelló-Cogollos, L.; Aleixandre, J.L. Trends in Global Research in Deforestation. A Bibliometric Analysis. Land Use Policy 2018, 72, 293–302. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Carvajal-Lara, C.; Urgilés-Sanchez, R.; Ruano, M.A. Deforestation as an Indicator of Environmental Degradation: Analysis of Five European Countries. Ecol. Indic. 2018, 90, 1–8. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying Drivers of Global Forest Loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Brown, K.; Pearce, D.W. (Eds.) The Causes of Tropical Deforestation: The Economic and Statistical Analysis of Factors Giving Rise to the Loss of the Tropical Forests; Taylor & Francis: Abingdon, UK, 2023. [Google Scholar]
- Gao, Y.; Skutsch, M.; Paneque-Gálvez, J.; Ghilardi, A. Remote Sensing of Forest Degradation: A Review. Environ. Res. Lett. 2020, 15, 103001. [Google Scholar] [CrossRef]
- Houghton, R.A.; Nassikas, A.A. Negative Emissions from Stopping Deforestation and Forest Degradation, Globally. Glob. Change Biol. 2018, 24, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Caballero Espejo, J.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; Fernandez, L.E.; Silman, M. Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective. Remote Sens. 2018, 10, 1903. [Google Scholar] [CrossRef]
- Thorn, S.; Seibold, S.; Leverkus, A.B. The Living Dead: Acknowledging Life After Tree Death to Stop Forest Degradation. Front. Ecol. Environ. 2020, 18, 505–512. [Google Scholar] [CrossRef]
- Sukhbaatar, G.; Purevragchaa, B.; Ganbaatar, B.; Tseveen, B. Deforestation and Degradation of Forests in the Khustai Nuruu Mountains of Northern Mongolia. Sib. J. For. Sci. 2021, 62, 53–63. [Google Scholar]
- Ritchie, H. “Not All Forest Loss Is Equal: What Is the Difference Between Deforestation and Forest Degradation?”. 2021. Available online: https://ourworldindata.org/deforestation (accessed on 4 August 2023).
- Billings, S.A.; Hirmas, D.; Sullivan, P.L.; Lehmeier, C.A.; Bagchi, S.; Min, K.; Brecheisen, Z.; Hauser, E.; Stair, R.; Flournoy, R.; et al. Loss of Deep Roots Limits Biogenic Agents of Soil Development That Are Only Partially Restored by Decades of Forest Regeneration. Elem. Sci. Anth 2018, 6, 34. [Google Scholar] [CrossRef]
- Galatowitsch, S.; Bohnen, J. Predicting Restoration Outcomes Based on Organizational and Ecological Factors. Restor. Ecol. 2020, 28, 1201–1212. [Google Scholar] [CrossRef]
- Flores, B.M.; Staal, A.; Jakovac, C.C.; Hirota, M.; Holmgren, M.; Oliveira, R.S. Soil Erosion as a Resilience Drain in Disturbed Tropical Forests. Plant Soil. 2020, 450, 11–25. [Google Scholar] [CrossRef]
- Lin, H.; Chen, Y.; Song, Q.; Fu, P.; Cleverly, J.; Magliulo, V.; Fan, Z. Quantifying Deforestation and Forest Degradation with Thermal Response. Sci. Total Environ. 2017, 607, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, Y.; Castro-Izaguirre, N.; Baruffol, M.; Brezzi, M.; Lang, A.; Schmid, B. Impacts of Species Richness on Productivity in a Large-Scale Subtropical Forest Experiment. Science 2018, 362, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Israel, C.; Piquer-Rodríguez, M.; Gavier-Pizarro, G.; Volante, J.N.; Kuemmerle, T. Deforestation and Cattle Expansion in the Paraguayan Chaco 1987–2012. Reg. Environ. Change 2017, 17, 1179–1191. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Wu, W. Global Forest Fragmentation Change from 2000 to 2020. Nat. Commun. 2023, 14, 3752. [Google Scholar] [CrossRef] [PubMed]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global Trends of Forest Loss Due to Fire From 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- Willis, K.J.; Petrokofsky, G. The Natural Capital of City Trees. Science 2017, 356, 374–376. [Google Scholar] [CrossRef]
- Hein, L.; Bagstad, K.J.; Obst, C.; Edens, B.; Schenau, S.; Castillo, J.; Barton, D.N.; Bass, S. Progress in Natural Capital Accounting for Ecosystems. Science 2020, 367, 514–515. [Google Scholar] [CrossRef] [PubMed]
- Kinda, H.; Thiombiano, N. The Effects of Extractive Industries Rent on Deforestation in Developing Countries. Resour. Policy 2021, 73, 102203. [Google Scholar] [CrossRef]
- Schrecker, T.; Birn, A.E.; Aguilera, M. How Extractive Industries Affect Health: Political Economy Underpinnings and Pathways. Health Place 2018, 52, 135–147. [Google Scholar] [CrossRef]
- Grantham, H.S.; Tibaldeschi, P.; Izquierdo, P.; Mo, K.; Patterson, D.J.; Rainey, H.; Segan, D.B.; Hole, D.G.; Brooks, T.M.; Butchart, S.H.M.; et al. The Emerging Threat of Extractives Sector to Intact Forest Landscapes. Front. For. Glob. Change 2021, 4, 692338. [Google Scholar] [CrossRef]
- Hund, K.; Schure, J.; Van der Goes, A. Extractive Industries in Forest Landscapes: Options for Synergy with REDD+ and Development of Standards in the Democratic Republic of Congo. Resour. Policy 2017, 54, 97–108. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T. Deforestation Displaced: Trade in Forest-Risk Commodities and the Prospects for a Global Forest Transition. Environ. Res. Lett. 2019, 14, 055003. [Google Scholar] [CrossRef]
- Weisse, M.; Goldman, E.D. We Lost a Football Pitch of Primary Rainforest Every 6 Seconds in 2019. Available online: https://www.wri.org/insights/we-lost-football-pitch-primary-rainforest-every-6-seconds-2019 (accessed on 4 August 2023).
- Hirons, M. How the Sustainable Development Goals Risk Undermining Efforts to Address Environmental and Social Issues in the Small-Scale Mining Sector. Environ. Sci. Policy 2020, 114, 321–328. [Google Scholar] [CrossRef]
- González-González, A.; Clerici, N.; Quesada, B. Growing Mining Contribution to Colombian Deforestation. Environ. Res. Lett. 2021, 16, 064046. [Google Scholar] [CrossRef]
- Giljum, S.; Maus, V.; Kuschnig, N.; Luckeneder, S.; Tost, M.; Sonter, L.J.; Bebbington, A.J. A Pantropical Assessment of Deforestation Caused by Industrial Mining. Proc. Natl. Acad. Sci. USA 2022, 119, e2118273119. [Google Scholar] [CrossRef] [PubMed]
- Bruna, N. A Climate-Smart World and the Rise of Green Extractivism. J. Peasant Stud. 2022, 49, 839–864. [Google Scholar] [CrossRef]
- Ye, J.; van der Ploeg, J.D.; Schneider, S.; Shanin, T. The Incursions of Extractivism: Moving from Dispersed Places to Global Capitalism. J. Peasant Stud. 2020, 47, 155–183. [Google Scholar] [CrossRef]
- Burchardt, H.J.; Dietz, K.; Warnecke-Berger, H. Dependency, Rent, and the Failure of Neo-Extractivism. In Dependent Capitalisms in Contemporary Latin America and Europe; Palgrave Macmillan: Cham, Switzerland, 2021; pp. 207–229. [Google Scholar]
- Smart, S. The Political Economy of Latin American Conflicts Over Mining Extractivism. Extr. Ind. Soc. 2020, 7, 767–779. [Google Scholar] [CrossRef]
- MacKenzie, C.A. Risk, Reciprocity and Retribution: Choosing to Extract Resources from a Protected Area. Ecol. Econ. 2018, 143, 314–323. [Google Scholar] [CrossRef]
- Raftopoulos, M.; Morley, J. Ecocide in the Amazon: The Contested Politics of Environmental Rights in Brazil. Int. J. Hum. Rights 2020, 24, 1616–1641. [Google Scholar] [CrossRef]
- Nikinmaa, L.; Lindner, M.; Cantarello, E.; Jump, A.S.; Seidl, R.; Winkel, G.; Muys, B. Reviewing the Use of Resilience Concepts in Forest Sciences. Curr. For. Rep. 2020, 6, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Sage, R.F. Global Change Biology: A Primer. Glob. Change Biol. 2020, 26, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Falk, D.A.; van Mantgem, P.J.; Keeley, J.E.; Gregg, R.M.; Guiterman, C.H.; Tepley, A.J.; Marshall, L.A. Mechanisms of Forest Resilience. For. Ecol. Manag. 2022, 512, 120129. [Google Scholar] [CrossRef]
- Biesbroek, R.; Dupuis, J.; Wellstead, A. Explaining Through Causal Mechanisms: Resilience and Governance of Social–Ecological Systems. Curr. Opin. Environ. Sustain. 2017, 28, 64–70. [Google Scholar] [CrossRef]
- Ungar, M. Systemic Resilience. Ecol. Soc. 2018, 23, 34. [Google Scholar] [CrossRef]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and Ecosystem Services in Forest Ecosystems: A Research Agenda for Applied Forest Ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Doyen, L.; Béné, C.; Borgomeo, E.; Brooks, K.; Chu, L.; Wyrwoll, P.R. Realizing Resilience for Decision-Making. Nat. Sustain. 2019, 2, 907–913. [Google Scholar] [CrossRef]
- Hayes, S.; Desha, C.; Burke, M.; Gibbs, M.; Chester, M. Leveraging Socio-Ecological Resilience Theory to Build Climate Resilience in Transport Infrastructure. Transp. Rev. 2019, 39, 677–699. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Ayala-Orozco, B.; Gavito, M.E.; Mora, F.; Siddique, I.; Balvanera, P.; Jaramillo, V.J.; Martínez-Meyer, E. Resilience of Soil Properties to Land-Use Change in a Tropical Dry Forest Ecosystem. Land Degrad. Dev. 2018, 29, 315–325. [Google Scholar] [CrossRef]
- Clemmensen, K.; Bahr, A.; Ovaskainen, O.; Dahlberg, A.; Ekblad, A.; Wallander, H.; Stenlid, J.; Finlay, R.D.; Wardle, D.; Lindahl, B.D. Roots and associated fungi drive longterm carbon sequestration in boreal forest. Science 2013, 339, 1615–1618. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.A.; Lennon, J.T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl. Acad. Sci. USA 2012, 109, 14058–14062. [Google Scholar] [CrossRef] [PubMed]
- Detto, M.; Levine, J.M.; Pacala, S.W. Maintenance of High Diversity in Mechanistic Forest Dynamics Models of Competition for Light. Ecol. Monogr. 2022, 92, e1500. [Google Scholar] [CrossRef]
- Tomao, A.; Bonet, J.A.; Castano, C.; de-Miguel, S. How Does Forest Management Affect Fungal Diversity and Community Composition? Current Knowledge and Future Perspectives for the Conservation of Forest Fungi. For. Ecol. Manag. 2020, 457, 117678. [Google Scholar] [CrossRef]
- Zanne, A.E.; Abarenkov, K.; Afkhami, M.E.; Aguilar-Trigueros, C.A.; Bates, S.; Bhatnagar, J.M.; Treseder, K.K. Fungal Functional Ecology: Bringing a Trait-Based Approach to Plant-Associated Fungi. Biol. Rev. 2020, 95, 409–433. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Reddy, S.P.P. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems Under Abiotic and Biotic Stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Phillips, R.P.; Jo, I.; Fei, S.; Liang, J.; Schmid, B.; Eisenhauer, N. Higher productivity in forests with mixed mycorrhizal strategies. Nat. Commun. 2023, 14, 1377. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, R.; Singh, D. Mycorrhizal Fungi as Biocontrol Agent for Soil Borne Pathogens: A Review. J. Pharmacogn. Phytochem. 2019, 8, 281–284. [Google Scholar]
- Moles, A.T. Being John Harper: Using Evolutionary Ideas to Improve Understanding of Global Patterns in Plant Traits. J. Ecol. 2018, 106, 1–18. [Google Scholar] [CrossRef]
- Hassani, M.A.; Durán, P.; Hacquard, S. Microbial Interactions Within the Plant Holobiont. Microbiome 2018, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Li, Y.; Cao, X.; Qi, Y. MicroRNAs and Their Regulatory Roles in Plant–Environment Interactions. Annu. Rev. Plant Biol. 2019, 70, 489–525. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, P. The Future Has Roots in the Past: The Ideas and Scientists That Shaped Mycorrhizal Research. New Phytol. 2018, 220, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial Services of Arbuscular Mycorrhizal Fungi–From Ecology to Application. Front. Plant Sci. 2018, 9, 1270. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.E.; Groten, K. The Costs and Benefits of Plant–Arbuscular Mycorrhizal Fungal Interactions. Annu. Rev. Plant Biol. 2022, 73, 649–672. [Google Scholar] [CrossRef] [PubMed]
- Sun, J. The Understanding of Mycorrhizae Networks: A Historical Approach. Confluence 2022, 1, 2. [Google Scholar] [CrossRef]
- Anthony, M.A.; Crowther, T.W.; Van Der Linde, S.; Suz, L.M.; Bidartondo, M.I.; Cox, F.; Averill, C. Forest Tree Growth Is Linked to Mycorrhizal Fungal Composition and Function Across Europe. ISME J. 2022, 16, 1327–1336. [Google Scholar] [CrossRef]
- Simard, S.W.; Roach, W.J.; Defrenne, C.E.; Pickles, B.J.; Snyder, E.N.; Robinson, A.; Lavkulich, L.M. Harvest Intensity Effects on Carbon Stocks and Biodiversity Are Dependent on Regional Climate in Douglas-Fir Forests of British Columbia. Front. For. Glob. Change 2020, 3, 88. [Google Scholar] [CrossRef]
- Roach, W.J.; Simard, S.W.; Defrenne, C.E.; Pickles, B.J.; Lavkulich, L.M.; Ryan, T.L. Tree Diversity, Site Index, and Carbon Storage Decrease with Aridity in Douglas-Fir Forests in Western Canada. Front. For. Glob. Change 2021, 4, 682076. [Google Scholar] [CrossRef]
- Defrenne, C.E.; Philpott, T.J.; Guichon, S.H.; Roach, W.J.; Pickles, B.J.; Simard, S.W. Shifts in Ectomycorrhizal Fungal Communities and Exploration Types Relate to the Environment and Fine-Root Traits Across Interior Douglas-Fir Forests of Western Canada. Front. Plant Sci. 2019, 10, 643. [Google Scholar] [CrossRef]
- Robinson, A.J.; Defrenne, C.E.; Roach, W.J.; Dymond, C.C.; Pickles, B.J.; Simard, S.W. Harvesting Intensity and Aridity Are More Important Than Climate Change in Affecting Future Carbon Stocks of Douglas-Fir Forests. Front. For. Glob. Change 2022, 5, 934067. [Google Scholar] [CrossRef]
- Birch, J.D.; Lutz, J.A.; Hogg, E.H.; Simard, S.W.; Pelletier, R.; LaRoi, G.H.; Karst, J. Decline of an Ecotone Forest: 50 Years of Demography in the Southern Boreal Forest. Ecosphere 2019, 10, e02698. [Google Scholar] [CrossRef]
- Beck, J.L.; Cale, J.A.; Rodriguez-Ramos, J.C.; Kanekar, S.S.; Karst, J.; Cahill, J.F.; Erbilgin, N. Changes in Soil Fungal Communities Following Anthropogenic Disturbance Are Linked to Decreased Lodgepole Pine Seedling Performance. J. Appl. Ecol. 2020, 57, 1292–1302. [Google Scholar] [CrossRef]
- Modi, D.; Simard, S.; Lavkulich, L.; Hamelin, R.C.; Grayston, S.J. Stump Removal and Tree Species Composition Promote a Bacterial Microbiome That May Be Beneficial in the Suppression of Root Disease. FEMS Microbiol. Ecol. 2021, 97, fiaa213. [Google Scholar] [CrossRef]
- Hooper, R. The Wisdom of the Woods. New Sci. 2021, 250, 39–43. [Google Scholar] [CrossRef]
- Becquer, A.; Guerrero-Galán, C.; Eibensteiner, J.; Houdinet, G.; Bücking, H.; Zimmermann, S.; Garcia, K. The ectomycorrhizal contribution to tree nutrition. Adv. Bot. Res. 2019, 89, 77–126. [Google Scholar]
- Usman, M.; Ho-Plágaro, T.; Frank, H.E.; Calvo-Polanco, M.; Gaillard, I.; Garcia, K.; Zimmermann, S.D. Mycorrhizal Symbiosis for Better Adaptation of Trees to Abiotic Stress Caused by Climate Change in Temperate and Boreal Forests. Front. For. Glob. Change 2021, 4, 742392. [Google Scholar] [CrossRef]
- Policelli, N.; Horton, T.R.; Hudon, A.T.; Patterson, T.R.; Bhatnagar, J.M. Back to Roots: The Role of Ectomycorrhizal Fungi in Boreal and Temperate Forest Restoration. Front. For. Glob. Change 2020, 3, 97. [Google Scholar] [CrossRef]
- Razgulin, S.M. Mycorrhizal Complexes and Their Role in the Ecology of Boreal Forests (Review). Biol. Bull. 2022, 49, 704–712. [Google Scholar] [CrossRef]
- Beiler, K.; Durall, D.; Simard, S.; Kretzer, M. Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol. 2010, 185, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Southam, H.; Stafl, N.; Guichon, S.H.; Simard, S.W. Characterizing the Ectomycorrhizal Fungal Community of Whitebark Pine in Interior British Columbia: Mature Trees, Natural Regeneration and Planted Seedlings. Front. For. Glob. Change 2022, 4, 750701. [Google Scholar] [CrossRef]
- Cornell, J.B. Deep Nature Play: A Guide to Wholeness, Aliveness, Creativity, and Inspired Learning; Crystal Clarity Publishers: Los Angeles, CA, USA, 2018. [Google Scholar]
- Nicholas, E. Seeing the Forest for the Trees: Exploring the Forest Aspect of the Tree of Life Process to Sustain and Nourish Socioecological Activism. Int. J. Narrat. Ther. Community Work 2021, 1, 1–9. [Google Scholar]
- Fishel, S.R. The Global Tree: Forests and the Possibility of a Multispecies IR. Rev. Int. Stud. 2023, 49, 223–240. [Google Scholar] [CrossRef]
- DellaSala, D.A.; Mackey, B.; Norman, P.; Campbell, C.; Comer, P.J.; Kormos, C.F.; Keith, H.; Rogers, B. Mature and old-growth forests contribute to large-scale conservation targets in the conterminous United States. Front. For. Glob. Change 2022, 5, 979528. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Laurance, W.F. The Ecology, Distribution, Conservation and Management of Large Old Trees. Biol. Rev. 2017, 92, 1434–1458. [Google Scholar] [CrossRef] [PubMed]
- Carreon-Ortiz, H.; Valdez, F. A New Mycorrhized Tree Optimization Nature-Inspired Algorithm. Soft Comput. 2022, 26, 4797–4817. [Google Scholar] [CrossRef]
- Stan, K.; Sanchez-Azofeifa, A. Tropical Dry Forest Diversity, Climatic Response, and Resilience in a Changing Climate. Forests 2019, 10, 443. [Google Scholar] [CrossRef]
- Álvarez-Yépiz, J.C.; Martínez-Yrízar, A.; Fredericksen, T.S. Resilience of Tropical Dry Forests to Extreme Disturbance Events. For. Ecol. Manag. 2018, 426, 1–6. [Google Scholar] [CrossRef]
- Anjos, L.J.; de Toledo, P.M. Measuring Resilience and Assessing Vulnerability of Terrestrial Ecosystems to Climate Change in South America. PLoS ONE 2018, 13, e0194654. [Google Scholar] [CrossRef]
- Kijowska-Oberc, J.; Staszak, A.M.; Kamiński, J.; Ratajczak, E. Adaptation of Forest Trees to Rapidly Changing Climate. Forests 2020, 11, 123. [Google Scholar] [CrossRef]
- Baltzer, J.L.; Day, N.J.; Walker, X.J.; Greene, D.; Mack, M.C.; Alexander, H.D.; Johnstone, J.F. Increasing Fire and the Decline of Fire Adapted Black Spruce in the Boreal Forest. Proc. Natl. Acad. Sci. USA 2021, 118, e2024872118. [Google Scholar] [CrossRef] [PubMed]
- Simard, S. Finding the Mother Tree: Uncovering the Wisdom and Intelligence of the Forest; Penguin: London, UK, 2021. [Google Scholar]
- Genre, A.; Lanfranco, L.; Perotto, S.; Bonfante, P. Unique and Common Traits in Mycorrhizal Symbioses. Nat. Rev. Microbiol. 2020, 18, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Wohlleben, P. The Power of Trees: How Ancient Forests Can Save Us If We Let Them; Greystone Books Ltd: Vancouver, BC, Canada, 2023. [Google Scholar]
- Wall, C.B.; Egan, C.P.; Swift, S.I.; Hynson, N.A. Three Decades Post-Reforestation Has Not Led to the Reassembly of Arbuscular Mycorrhizal Fungal Communities Associated with Remnant Primary Forests. Mol. Ecol. 2020, 29, 4234–4247. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, S.J.; Paap, T.; Hardy, G.E.St.J.; Burgess, T.I. Anthropogenic Disturbance Impacts Mycorrhizal Communities and Abiotic Soil Properties: Implications for an Endemic Forest Disease. Front. For. Glob. Change 2021, 3, 593243. [Google Scholar] [CrossRef]
- Gorzelak, M.A.; Asay, A.K.; Pickles, B.J.; Simard, S.W. Inter-Plant Communication Through Mycorrhizal Networks Mediates Complex Adaptive Behaviour in Plant Communities. AoB Plants 2015, 7, plv050. [Google Scholar] [CrossRef] [PubMed]
- Frąc, M.; Hannula, S.E.; Bełka, M.; Jędryczka, M. Fungal Biodiversity and Their Role in Soil Health. Front. Microbiol. 2018, 9, 707. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, B.; Nie, Y.; Liu, Y.; Kuzyakov, Y. Root and Mycorrhizal Strategies for Nutrient Acquisition in Forests Under Nitrogen Deposition: A Meta-Analysis. Soil Biol. Biochem. 2021, 163, 108418. [Google Scholar] [CrossRef]
- Winagraski, E.; Kaschuk, G.; Monteiro, P.H.R.; Auer, C.G.; Higa, A.R. Diversity of Arbuscular Mycorrhizal Fungi in Forest Ecosystems of Brazil: A Review. Cerne 2019, 25, 25–35. [Google Scholar] [CrossRef]
- Soka, G.E.; Ritchie, M.E. Arbuscular Mycorrhizal Spore Composition and Diversity Associated with Different Land Uses in a Tropical Savanna Landscape, Tanzania. Appl. Soil Ecol. 2018, 125, 222–232. [Google Scholar] [CrossRef]
- Fall, A.F.; Nakabonge, G.; Ssekandi, J.; Founoune-Mboup, H.; Badji, A.; Balde, I.; Ndiaye, M. Diversity of Arbuscular Mycorrhizal Fungi Associated with Maize in the Eastern Part of Uganda. Biol. Life Sci. Forum 2022, 15, 12. [Google Scholar] [CrossRef]
- Lugo, M.A.; Ontivero, R.E.; Iriarte, H.J.; Yelikbayev, B.; Pagano, M.C. The Diversity of Arbuscular Mycorrhizal Fungi and Their Associations in South America: A Case Study of Argentinean and Brazilian Cattle Raising Productive Ecosystems: A Review. Diversity 2023, 15, 1006. [Google Scholar] [CrossRef]
- Vieira, L.C.; Silva, D.K.A.; Escobar, I.E.C.; Silva, J.M.D.; Moura, I.A.; Oehl, F.; Silva, G.A.D. Changes in an Arbuscular Mycorrhizal Fungi Community Along an Environmental Gradient. Plants 2020, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Nouhra, E.R.; Palfner, G.; Kuhar, F.; Pastor, N.; Smith, M.E. Ectomycorrhizal Fungi in South America: Their Diversity in Past, Present and Future Research. In Mycorrhizal Fungi in South America; Springer: Berlin/Heidelberg, Germany, 2019; pp. 73–95. [Google Scholar]
- Hanif, M.; Ashraf, Z.; Bashir, S.; Riaz, F.; Amanat, R.; Yousaf, N.; Sarwar, S. Ectomycorrhizal Fungi as Biofertilizers in Forestry. In Arbuscular Mycorrhizal Fungi in Agriculture-New Insights; IntechOpen: London, UK, 2023. [Google Scholar]
- Wu, T.; Tissue, D.T.; Su, W.; Li, X.; Yang, S.; Liu, X.; Liu, J. Long-Term Field Translocation Differentially Affects Arbuscular Mycorrhizal and Ectomycorrhizal Trees in a Sub-Tropical Forest. Agric. For. Meteorol. 2023, 342, 109724. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Kou, Y. Ectomycorrhizal Fungi: Participation in Nutrient Turnover and Community Assembly Pattern in Forest Ecosystems. Forests 2020, 11, 453. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, Y.; Liu, Q.; Yin, H. Plant Nitrogen Acquisition from Inorganic and Organic Sources via Root and Mycelia Pathways in Ectomycorrhizal Alpine Forests. Soil Biol. Biochem. 2019, 136, 107517. [Google Scholar] [CrossRef]
- Li, X.; Qu, Z.; Zhang, Y.; Ge, Y.; Sun, H. Soil Fungal Community and Potential Function in Different Forest Ecosystems. Diversity 2022, 14, 520. [Google Scholar] [CrossRef]
- Högberg, M.N.; Skyllberg, U.; Högberg, P.; Knicker, H. Does Ectomycorrhiza Have a Universal Key Role in the Formation of Soil Organic Matter in Boreal Forests? Soil Biol. Biochem. 2020, 140, 107635. [Google Scholar] [CrossRef]
- Männistö, M.; Vuosku, J.; Stark, S.; Saravesi, K.; Suokas, M.; Markkola, A.; Rautio, P. Bacterial and Fungal Communities in Boreal Forest Soil Are Insensitive to Changes in Snow Cover Conditions. FEMS Microbiol. Ecol. 2018, 94, fiy123. [Google Scholar] [CrossRef] [PubMed]
- Ho-Plágaro, T.; García-Garrido, J.M. Molecular Regulation of Arbuscular Mycorrhizal Symbiosis. Int. J. Mol. Sci. 2022, 23, 5960. [Google Scholar] [CrossRef]
- Miyauchi, S.; Kiss, E.; Kuo, A.; Drula, E.; Kohler, A.; Sánchez-García, M.; Morin, E.; Andreopoulos, B.; Barry, K.W.; Bonito, G.; et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 2020, 11, 5125. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Wang, E. Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annu. Rev. Plant Biol. 2023, 74, 569–607. [Google Scholar] [CrossRef]
- Magurno, F.; Malicka, M.; Posta, K.; Wozniak, G.; Lumini, E.; Piotrowska-Seget, Z. Glomalin Gene as Molecular Marker for Functional Diversity of Arbuscular Mycorrhizal Fungi in Soil. Biol. Fertil. Soils 2019, 55, 411–417. [Google Scholar] [CrossRef]
- Stewart, J.E.; Kim, M.S.; Klopfenstein, N.B. Molecular Genetic Approaches Toward Understanding Forest-Associated Fungi and Their Interactive Roles Within Forest Ecosystems. Curr. For. Rep. 2018, 4, 72–84. [Google Scholar] [CrossRef]
- Valadares, R.B.S.; Marroni, F.; Sillo, F.; Oliveira, R.R.M.; Balestrini, R.; Perotto, S. A Transcriptomic Approach Provides Insights on the Mycorrhizal Symbiosis of the Mediterranean Orchid Limodorum abortivum in Nature. Plants 2021, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.M.; van der Heijden, M. The mycorrhizal symbiosis: Research frontiers in genomics, ecology, and agricultural application. New Phytol. 2024, 242, 1486–1506. [Google Scholar] [CrossRef] [PubMed]
- Terhonen, E.; Blumenstein, K.; Kovalchuk, A.; Asiegbu, F.O. Forest Tree Microbiomes and Associated Fungal Endophytes: Functional Roles and Impact on Forest Health. Forests 2019, 10, 42. [Google Scholar] [CrossRef]
- Shi, L.; Dossa, G.G.O.; Paudel, E.; Zang, H.; Xu, J.; Harrison, R.D. Changes in Fungal Communities Across a Forest Disturbance Gradient. Appl. Environ. Microbiol. 2019, 85, e00080-19. [Google Scholar] [CrossRef] [PubMed]
- Vannier, N.; Mony, C.; Bittebiere, A.K.; Michon-Coudouel, S.; Biget, M.; Vandenkoornhuyse, P. A Microorganisms’ Journey Between Plant Generations. Microbiome 2018, 6, 79. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Liu, W.; Qiu, X.; Zhang, J.; Zhang, J.; Bai, Y. The Root Microbiome: Community Assembly and Its Contributions to Plant Fitness. J. Integr. Plant Biol. 2022, 64, 230–243. [Google Scholar] [CrossRef]
- Riechers, M.; Balázsi, Á.; Betz, L.; Jiren, T.S.; Fischer, J. The Erosion of Relational Values Resulting From Landscape Simplification. Landsc. Ecol. 2020, 35, 2601–2612. [Google Scholar] [CrossRef]
- Steidinger, B.S.; Crowther, T.W.; Liang, J.; Van Nuland, M.E.; Werner, G.D.A.; Reich, P.B.; Nabuurs, G.J.; De-Miguel, S.; Zhou, M.; Picard, N.; et al. Climatic Controls of Decomposition Drive the Global Biogeography of Forest-Tree Symbioses. Nature 2019, 569, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M. Mycorrhizal Planet: How Symbiotic Fungi Work with Roots to Support Plant Health and Build Soil Fertility; Chelsea Green Publishing: Chelsea, VT, USA, 2017. [Google Scholar]
- Guiry, E.J.; Buckley, M.; Orchard, T.J.; Hawkins, A.L.; Needs-Howarth, S.; Holm, E.; Szpak, P. Deforestation Caused Abrupt Shift in Great Lakes Nitrogen Cycle. Limnol. Oceanogr. 2020, 65, 1921–1935. [Google Scholar] [CrossRef]
- Nickerson, M.A.; Pitt, A.L.; Tavano, J.J.; Hecht, K.A.; Mitchell, J.C. Forest Removal and the Cascade of Effects Corresponding with an Ozark Hellbender Population Decline. Bull. Fla. Mus. Nat. Hist. 2017, 54, 148–164. [Google Scholar] [CrossRef]
- Szatten, D.; Habel, M. Effects of Land Cover Changes on Sediment and Nutrient Balance in the Catchment with Cascade-Dammed Waters. Remote Sens. 2020, 12, 3414. [Google Scholar] [CrossRef]
- McCann, K.S.; Cazelles, K.; MacDougall, A.S.; Fussmann, G.F.; Bieg, C.; Cristescu, M.; Fryxell, J.M.; Gellner, G.; Lapointe, B.; Gonzalez, A. Landscape Modification and Nutrient-Driven Instability at a Distance. Ecol. Lett. 2021, 24, 398–414. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, Z.; Wang, C. Defoliation-induced tree growth declines are jointly limited by carbon source and sink activities. Sci. Total Environ. 2021, 762, 143077. [Google Scholar] [CrossRef] [PubMed]
- Muler, A.E.; Rother, D.C.; Brancalion, P.S.; Naves, R.P.; Rodrigues, R.R.; Pizo, M.A. Can overharvesting of a non-timber-forest-product change the regeneration dynamics of a tropical rainforest? The case study of Euterpe edulis. For. Ecol. Manag. 2014, 324, 117–125. [Google Scholar] [CrossRef]
- Garcia_Florez, L.; Vanclay, J.K.; Glencross, K.; Nichols, J.D. Understanding 48 years of changes in tree diversity, dynamics and species responses since logging disturbance in a subtropical rainforest. For. Ecol. Manag. 2017, 393, 29–39. [Google Scholar] [CrossRef]
- Baird, A.; Pope, F. ‘Can’t see the forest for the trees’: The importance of fungi in the context of UK tree planting. Food Energy Secur. 2022, 11, e371. [Google Scholar] [CrossRef]
- Faria, D.; Morante-Filho, J.C.; Baumgarten, J. The Breakdown of Ecosystem Functionality Driven by Deforestation in a Global Biodiversity Hotspot. Biol. Conserv. 2023, 283, 110126. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Brockerhoff, E.G.; Kalisz, S.; Nuñez, M.A.; Wardle, D.A.; Wingfield, M.J. Biological Invasions in Forest Ecosystems. Biol. Invasions 2017, 19, 3437–3458. [Google Scholar] [CrossRef]
- Boers, N.; Marwan, N.; Barbosa, H.M.; Kurths, J. A Deforestation-Induced Tipping Point for the South American Monsoon System. Sci. Rep. 2017, 7, 41489. [Google Scholar] [CrossRef] [PubMed]
- Ayyam, V.; Palanivel, S.; Chandrakasan, S. Coastal Ecosystems of the Tropics-Adaptive Management; Springer: Singapore, 2019. [Google Scholar]
- Bhattarai, K.; Conway, D.; Bhattarai, K.; Conway, D. Forestry and Environment. In Contemporary Environmental Problems in Nepal. Geographic Perspectives; Springer: Dordrecht, Netherlands, 2021; pp. 663–754. [Google Scholar]
- Raimi, M.O.; Abiola, I.; Alima, O.; Omini, D.E. Exploring How Human Activities Disturb the Balance of Biogeochemical Cycles: Evidence from the Carbon, Nitrogen and Hydrologic Cycles. Nitrogen. Hydrol. Cycles 2021, 2, 3–44. [Google Scholar]
- Valtera, M.; Schaetzl, R.J. Pit-Mound Microrelief in Forest Soils: Review of Implications for Water Retention and Hydrologic Modelling. For. Ecol. Manag. 2017, 393, 40–51. [Google Scholar] [CrossRef]
- Chen, X.; Liang, Z.; Zhang, Z.; Zhang, L. Effects of Soil and Water Conservation Measures on Runoff and Sediment Yield in Red Soil Slope Farmland Under Natural Rainfall. Sustainability 2020, 12, 3417. [Google Scholar] [CrossRef]
- Szeman, I.; Wenzel, J. What Do We Talk About When We Talk About Extractivism? Text. Pract. 2021, 35, 505–523. [Google Scholar] [CrossRef]
- Alaoui, A.; Diserens, E. Mapping Soil Compaction–A Review. Curr. Opin. Environ. Sci. Health 2018, 5, 60–66. [Google Scholar] [CrossRef]
- Veldkamp, E.; Schmidt, M.; Powers, J.S.; Corre, M.D. Deforestation and Reforestation Impacts on Soils in the Tropics. Nat. Rev. Earth Environ. 2020, 1, 590–605. [Google Scholar] [CrossRef]
- Shimamoto, C.Y.; Padial, A.A.; da Rosa, C.M.; Marques, M.C. Restoration of ecosystem services in tropical forests: A global meta-analysis. PLoS ONE 2018, 13, e0208523. [Google Scholar] [CrossRef]
- Herbohn, J.; Ota, L.; Gregorio, N.; Chazdon, R.; Fisher, R.; Baynes, J.; Applegate, G.; Page, T.; Carias, D.; Romero, C.; et al. The community capacity curve applied to reforestation: A framework to support success. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023, 378, 20210079. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carrière, S.D.; Martin-StPaul, N.K.; Cakpo, C.B.; Patris, N.; Gillon, M.; Chalikakis, K.; Davi, H. The Role of Deep Vadose Zone Water in Tree Transpiration During Drought Periods in Karst Settings–Insights from Isotopic Tracing and Leaf Water Potential. Sci. Total Environ. 2020, 699, 134332. [Google Scholar] [CrossRef] [PubMed]
- Jamali, D.; Karam, C. Corporate Social Responsibility in Developing Countries as an Emerging Field of Study. Int. J. Manag. Rev. 2018, 20, 32–61. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, L.; Peng, W.; Zhang, C.; Li, C.; Robinson, B.E.; Daily, G.C. Realizing the Values of Natural Capital for Inclusive, Sustainable Development: Informing China’s New Ecological Development Strategy. Proc. Natl. Acad. Sci. USA 2019, 116, 8623–8628. [Google Scholar] [CrossRef] [PubMed]
- Gorwa, R. The Platform Governance Triangle: Conceptualising the Informal Regulation of Online Content. Internet Policy Rev. 2019, 8, 1–22. [Google Scholar] [CrossRef]
- Howes, M.; Wortley, L.; Potts, R. Environmental Sustainability: A Case of Policy Implementation Failure? Sustainability 2017, 2, 165. [Google Scholar] [CrossRef]
- O’Faircheallaigh, C. Shaping Projects, Shaping Impacts: Community-Controlled Impact Assessments and Negotiated Agreements. Third World Q. 2017, 38, 1181–1197. [Google Scholar] [CrossRef]
- Heywood, P.M. Rethinking Corruption: Hocus-Pocus, Locus and Focus. Slav. East Eur. Rev. 2017, 95, 21–48. [Google Scholar] [CrossRef]
- White, R. Global Harms and the Natural Environment. In The Palgrave Handbook of Social Harm; Palgrave Macmillan: Singapore, 2021; pp. 89–114. [Google Scholar]
- Szablowski, D.; Campbell, B. Struggles Over Extractive Governance: Power, Discourse, Violence, and Legality. Extr. Ind. Soc. 2019, 6, 635–641. [Google Scholar] [CrossRef]
- Gray, S.J.; Hellman, N.; Ivanova, M.N. Extractive Industries Reporting: A Review of Accounting Challenges and the Research Literature. Abacus 2019, 55, 42–91. [Google Scholar] [CrossRef]
- Banerjee, S.B. Transnational Power and Translocal Governance: The Politics of Corporate Responsibility. Hum. Relat. 2018, 71, 796–821. [Google Scholar] [CrossRef]
- Singh, R.L.; Singh, P.K. Global Environmental Problems. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer: Singapore, 2017; pp. 13–41. [Google Scholar]
- Kumari, R.; Banerjee, A.; Kumar, R.; Kumar, A.; Saikia, P.; Khan, M.L. Deforestation in India: Consequences and Sustainable Solutions. In Forest Degradation Around the World; IntechOpen: London, UK, 2019; pp. 1–18. [Google Scholar]
- Sheikh, H.; Mitchell, P.; Foth, M. More-Than-Human Smart Urban Governance: A Research Agenda. Digit. Geogr. Soc. 2023, 4, 100045. [Google Scholar] [CrossRef]
- Pickles, B.J.; Simard, S.W. Mycorrhizal Networks and Forest Resilience to Drought. In Mycorrhizal Mediation of Soil; Elsevier: Amsterdam, The Netherlands, 2017; pp. 319–339. [Google Scholar]
- Sonter, L.J.; Herrera, D.; Barrett, D.J.; Galford, G.L.; Moran, C.J.; Soares-Filho, B.S. Mining Drives Extensive Deforestation in the Brazilian Amazon. Nat. Commun. 2017, 8, 1013. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Paliwal, R. Green Technologies for Restoration of Damaged Ecosystem. In Soil Health Restoration and Management; Springer: Singapore, 2020; pp. 357–380. [Google Scholar]
- Abe, C.A.; Lobo, F.L.; Novo, E.M.L.D.M.; Costa, M.; Dibike, Y. Modeling the Effects of Land Cover Change on Sediment Concentrations in a Gold-Mined Amazonian Basin. Reg. Environ. Change 2019, 19, 1801–1813. [Google Scholar] [CrossRef]
- De Jong, W.; Pokorny, B.; Katila, P.; Galloway, G.; Pacheco, P. Community Forestry and the Sustainable Development Goals: A Two Way Street. Forests 2018, 9, 331. [Google Scholar] [CrossRef]
- Feng, Y.; Su, H.; Tang, Z.; Wang, S.; Zhao, X.; Zhang, H.; Fang, J. Reduced Resilience of Terrestrial Ecosystems Locally Is Not Reflected on a Global Scale. Commun. Earth Environ. 2021, 2, 88. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X.; Ding, C.; Xu, B.; Zhou, G.; Zhu, L. Analysis of Ecological Resilience to Evaluate the Inherent Maintenance Capacity of a Forest Ecosystem Using a Dense Landsat Time Series. Ecol. Inform. 2020, 57, 101064. [Google Scholar] [CrossRef]
- Canarini, A.; Kaiser, C.; Merchant, A.; Richter, A.; Wanek, W. Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Front. Plant Sci. 2019, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Koshila Ravi, R.; Anusuya, S.; Balachandar, M.; Muthukumar, T. Microbial Interactions in Soil Formation and Nutrient Cycling. In Mycorrhizosphere and Pedogenesis; Springer: Singapore, 2019; pp. 363–382. [Google Scholar]
- Garcia, K.; Delaux, P.-M.; Cope, K.; Ane, J.-M. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytol. 2015, 208, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Marín, C.; Bueno, C.G. A Systematic Review of South American and European Mycorrhizal Research: Is there a Need for Scientific Symbiosis. In Mycorrhizal Fungi in South America; Springer: Cham, Switzerland, 2019; pp. 97–110. [Google Scholar] [CrossRef]
- Muneer, M.A.; Wang, P.; Zaib-un-Nisa; Lin, C.; Ji, B. Potential role of common mycorrhizal networks in improving plant growth and soil physicochemical properties under varying nitrogen levels in a grassland ecosystem. Glob. Ecol. Conserv. 2020, 24, e01352. [Google Scholar] [CrossRef]
- Thurner, M.A.; Caldararu, S.; Engel, J.; Rammig, A.; Zaehle, S. Modelled forest ecosystem carbon–nitrogen dynamics with integrated mycorrhizal processes under elevated CO2. Biogeosciences 2024, 21, 1391–1410. [Google Scholar] [CrossRef]
- Hannula, E.S.; Morriën, E. Will fungi solve the carbon dilemma? Geoderma 2022, 413, 115767. [Google Scholar] [CrossRef]
- Mansourian, S.; Parrotta, J.; Balaji, P.; Bellwood-Howard, I.; Bhasme, S.; Bixler, R.P.; Yap, S.L. Putting the Pieces Together: Integration for Forest Landscape Restoration Implementation. Land Degrad. Dev. 2020, 31, 419–429. [Google Scholar] [CrossRef]
- Isaac, M.E.; Borden, K.A. Nutrient Acquisition Strategies in Agroforestry Systems. Plant Soil 2019, 444, 1–19. [Google Scholar] [CrossRef]
- Siqueira-Gay, J.; Sonter, L.J.; Sánchez, L.E. Exploring Potential Impacts of Mining on Forest Loss and Fragmentation within a Biodiverse Region of Brazil’s Northeastern Amazon. Resour. Policy 2020, 67, 101662. [Google Scholar] [CrossRef]
- Hailu, F. Climate Change as a Trigger for Desertification and Possible Alternatives to Reduce Biodiversity Loss. J. Selva Andin. Biosph. 2023, 11, 94–111. [Google Scholar]
- Karvonen, J.; Halder, P.; Kangas, J.; Leskinen, P. Indicators and tools for assessing sustainability impacts of the forest bioeconomy. For. Ecosyst. 2017, 4, 2. [Google Scholar] [CrossRef]
- Bebbington, A.J.; Sauls, L.A.; Rosa, H.; Fash, B.; Bebbington, D.H. Conflicts over Extractivist Policy and the Forest Frontier in Central America. Eur. Rev. Lat. Am. Caribb. Stud. 2018, 106, 103–132. [Google Scholar] [CrossRef]
- Jo, I.; Fei, S.; Oswalt, C.M.; Domke, G.M.; Phillips, R.P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 2019, 5, eaav6358. [Google Scholar] [CrossRef]
- Nocentini, S.; Buttoud, G.; Ciancio, O.; Corona, P. Managing Forests in a Changing World: The Need for a Systemic Approach. A Review. For. Syst. 2017, 26, eR01. [Google Scholar] [CrossRef]
- Boyno, G.; Rezaee Danesh, Y.; Demir, S.; Teniz, N.; Mulet, J.M.; Porcel, R. The Complex Interplay Between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int. J. Mol. Sci. 2023, 24, 16774. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Izquierdo, L.; Rincón, A.; Lindahl, B.D.; Buée, M. Fungal Community of Forest Soil: Diversity, Functions, and Services. In Forest Microbiology; Academic Press: Cambridge, MA, USA, 2021; pp. 231–255. [Google Scholar]
- Green, S.M.; Dungait, J.A.; Tu, C.; Buss, H.L.; Sanderson, N.; Hawkes, S.J.; Quine, T.A. Soil Functions and Ecosystem Services Research in the Chinese Karst Critical Zone. Chem. Geol. 2019, 527, 119107. [Google Scholar] [CrossRef]
- Menge, E.M. Evaluating the Impact of Land-Use Change on Arbuscular Mycorrhizal Fungi (AMF) Diversity and Function. Int. J. Sci. Res. Arch. 2023, 10, 546–556. [Google Scholar] [CrossRef]
- Menge, E.M. Investigating the Ecological Role of Arbuscular Mycorrhizal Fungi (AMF) in Natural Ecosystems. Int. J. Sci. Res. Arch. 2023, 10, 524–534. [Google Scholar] [CrossRef]
- Zavahir, J.S.; Wijepala, P.C.; Seneviratne, G. Role of Microbial Communities in Plant–Microbe Interactions, Metabolic Cooperation, and Self-Sufficiency Leading to Sustainable Agriculture. In Role of Microbial Communities for Sustainability; Springer: Singapore, 2021; pp. 1–35. [Google Scholar]
- Kaupper, T.; Hetz, S.; Kolb, S.; Yoon, S.; Horn, M.A.; Ho, A. Deforestation for Oil Palm: Impact on Microbially Mediated Methane and Nitrous Oxide Emissions, and Soil Bacterial Communities. Biol. Fertil. Soils 2020, 56, 287–298. [Google Scholar] [CrossRef]
- Argüelles-Moyao, A.; Galicia, L. Assisted Migration and Plant Invasion: Importance of Belowground Ecology in Conifer Forest Tree Ecosystems. Can. J. For. Res. 2023, 54, 110–121. [Google Scholar] [CrossRef]
- Di Sacco, A.; Hardwick, K.A.; Blakesley, D.; Brancalion, P.H.; Breman, E.; Cecilio Rebola, L.; Antonelli, A. Ten Golden Rules for Reforestation to Optimize Carbon Sequestration, Biodiversity Recovery and Livelihood Benefits. Glob. Change Biol. 2021, 27, 1328–1348. [Google Scholar] [CrossRef]
- Davies, S.J.; Abiem, I.; Salim, K.A.; Aguilar, S.; Allen, D.; Alonso, A.; Yap, S.L. ForestGEO: Understanding Forest Diversity and Dynamics Through a Global Observatory Network. Biol. Conserv. 2021, 253, 108907. [Google Scholar] [CrossRef]
- Garcia, S.; Abildtrup, J.; Stenger, A. How Does Economic Research Contribute to the Management of Forest Ecosystem Services? Ann. For. Sci. 2018, 75, 53. [Google Scholar] [CrossRef]
- Löf, M.; Madsen, P.; Metslaid, M.; Witzell, J.; Jacobs, D.F. Restoring Forests: Regeneration and Ecosystem Function for the Future. New For. 2019, 50, 139–151. [Google Scholar] [CrossRef]
- Trogisch, S.; Liu, X.; Rutten, G.; Xue, K.; Bauhus, J.; Brose, U.; Bruelheide, H. The Significance of Tree-Tree Interactions for Forest Ecosystem Functioning. Basic Appl. Ecol. 2021, 55, 33–52. [Google Scholar] [CrossRef]
- Baskent, E.Z.; Borges, J.G.; Kašpar, J.; Tahri, M. A Design for Addressing Multiple Ecosystem Services in Forest Management Planning. Forests 2020, 11, 1108. [Google Scholar] [CrossRef]
- Ogle, K.; Liu, Y.; Vicca, S.; Bahn, M. A hierarchical, multivariate meta-analysis approach to synthesising global change experiments. New Phytol. 2021, 231, 2382–2394. [Google Scholar] [CrossRef]
- Song, J.; Wan, S.; Piao, S.; Knapp, A.K.; Classen, A.T.; Vicca, S.; Ciais, P.; Hovenden, M.J.; Leuzinger, S.; Beier, C.; et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 2019, 3, 1309–1320. [Google Scholar] [CrossRef]
- La Notte, A.; D’Amato, D.; Mäkinen, H.; Paracchini, M.L.; Liquete, C.; Egoh, B.; Crossman, N.D. Ecosystem Services Classification: A Systems Ecology Perspective of the Cascade Framework. Ecol. Indic. 2017, 74, 392–402. [Google Scholar] [CrossRef]
- Kučera, A.; Samec, P.; Bajer, A.; Skene, K.R.; Vichta, T.; Vranová, V.; Datta, R. Forest Soil Water in Landscape Context. In Soil Moisture Importance; IntechOpen: London, UK, 2020; p. 45. [Google Scholar]
- Busch, J.; Ferretti-Gallon, K. What Drives Deforestation and What Stops It? A Meta-Analysis. Rev. Environ. Econ. Policy 2017, 11, 3–23. [Google Scholar] [CrossRef]
- Desbureaux, S.; Damania, R. Rain, forests and farmers: Evidence of drought induced deforestation in Madagascar and its consequences for biodiversity conservation. Biol. Conserv. 2018, 221, 357–364. [Google Scholar] [CrossRef]
- Yousuf, S.; Naqash, N.; Singh, R. Nutrient Cycling: An Approach for Environmental Sustainability. In Environmental Microbiology: Advanced Research and Multidisciplinary Applications; Bentham Science Publisher: Sharjah, United Arab Emirates, 2022; p. 77. [Google Scholar]
- Swamy, L.; Drazen, E.; Johnson, W.R.; Bukoski, J.J. The Future of Tropical Forests Under the United Nations Sustainable Development Goals. J. Sustain. For. 2018, 37, 221–256. [Google Scholar] [CrossRef]
- Osaki, M.; Tsuji, N.; Kato, T.; Yamanaka, M.D.; Sulaiman, A.; Silsigia, S.; Wetadewi, R.I. Natural Capital-Based Societies in the Tropics. In Tropical Peatland Eco-Management; Springer: Singapore, 2021; pp. 197–245. [Google Scholar]
- Kusters, K.; De Graaf, M.; Ascarrunz, N.; Benneker, C.; Boot, R.; Van Kanten, R.; Zagt, R. Formalizing Community Forest Tenure Rights: A Theory of Change and Conditions for Success. For. Policy Econ. 2022, 141, 102766. [Google Scholar] [CrossRef]
- Pokorny, B.; Sotirov, M.; Kleinschmit, D.; Kanowski, P. Forests as a Global Commons: International Governance and the Role of Germany. In Report to the Science Platform Sustainability 2030; Universität Freiburg: Freiburg, Germany, 2019; pp. 1–67. [Google Scholar]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B 2020, 375, 20190120. [Google Scholar] [CrossRef] [PubMed]
- Ingram, V.; van Den Berg, J.; Van Oorschot, M.; Arets, E.; Judge, L. Governance Options to Enhance Ecosystem Services in Cocoa, Soy, Tropical Timber and Palm Oil Value Chains. Environ. Manag. 2018, 62, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Chiasson, G.; Angelstam, P.; Axelsson, R.; Doyon, F. Towards Collaborative Forest Planning in Canadian and Swedish Hinterlands: Different Institutional Trajectories? Land Use Policy 2019, 83, 334–345. [Google Scholar] [CrossRef]
- Barnard, P.; Moomaw, W.R.; Fioramonti, L.; Laurance, W.F.; Mahmoud, M.I.; O’Sullivan, J.; Ziervogel, G. World Scientists’ Warnings Into Action, Local to Global. Sci. Prog. 2021, 104, 00368504211056290. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Gamarra, J.G. The Importance of Sharing Global Forest Data in a World of Crises. Sci. Data 2020, 7, 424. [Google Scholar] [CrossRef] [PubMed]
- Pal, P. An Assessment of Forest Diversity: Challenges and Management. In Agro-Biodiversity and Agri-Ecosystem Management; Springer: Singapore, 2022; pp. 11–26. [Google Scholar]
- Mansourian, S. Governance and Forest Landscape Restoration: A Framework to Support Decision-Making. J. Nat. Conserv. 2017, 37, 21–30. [Google Scholar] [CrossRef]
- Deacon, R.T. Assessing the Relationship between Government Policy and Deforestation 1. In The Economics of Land Use; Routledge: London, UK, 2017; pp. 517–534. [Google Scholar]
- Moraes, I.; Azevedo-Ramos, C.; Pacheco, J. Public Forests Under Threat in the Brazilian Amazon: Strategies for Coping Shifts in Environmental Policies and Regulations. Front. For. Glob. Change 2021, 4, 631756. [Google Scholar] [CrossRef]
- Viljur, M.; Abella, S.R.; Adámek, M.; Alencar, J.B.R.; Barber, N.A.; Beudert, B.; Burkle, L.A.; Cagnolo, L.; Campos, B.R.; Chao, A.; et al. The effect of natural disturbances on forest biodiversity: An ecological synthesis. Biol. Rev. 2022, 97, 1930–1947. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, B.; Gómez-Aparicio, L.; Ávila, J.M.; Pérez-Ramos, I.M.; García, L.V.; Marañón, T. Impact of tree decline on spatial patterns of seedling-mycorrhiza interactions: Implications for regeneration dynamics in Mediterranean forests. For. Ecol. Manag. 2015, 353, 1–9. [Google Scholar] [CrossRef]
- Urruth, L.M.; Bassi, J.B.; Chemello, D. Policies to Encourage Agroforestry in the Southern Atlantic Forest. Land Use Policy 2022, 112, 105802. [Google Scholar] [CrossRef]
- Karger, D.N.; Kessler, M.; Lehnert, M.; Jetz, W. Limited Protection and Ongoing Loss of Tropical Cloud Forest Biodiversity and Ecosystems Worldwide. Nat. Ecol. Evol. 2021, 5, 854–862. [Google Scholar] [CrossRef]
- Njana, M.A.; Mbilinyi, B.; Eliakimu, Z. The Role of Forests in the Mitigation of Global Climate Change: Empirical Evidence from Tanzania. Environ. Chall. 2021, 4, 100170. [Google Scholar] [CrossRef]
- Fort, T.; Pauvert, C.; Zanne, A.E.; Ovaskainen, O.; Caignard, T.; Barret, M.; Vacher, C. Maternal Effects and Environmental Filtering Shape Seed Fungal Communities in Oak Trees. BioRxiv 2019, 691121. [Google Scholar] [CrossRef]
- Cholewińska, O.; Keczyński, A.; Kusińska, B.; Jaroszewicz, B. Species Identity of Large Trees Affects the Composition and the Spatial Structure of Adjacent Trees. Forests 2021, 12, 1162. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, J.; Zhu, W.; Zhang, B.; Zhu, L. Spatial Variation of Altitudinal Belts as Dividing Index Between Warm Temperate and Subtropical Zones in the Qinling-Daba Mountains. J. Geogr. Sci. 2020, 30, 642–656. [Google Scholar] [CrossRef]
- Jewaria, P.K.; Hänninen, H.; Li, X.; Bhalerao, R.P.; Zhang, R. A Hundred Years After: Endodormancy and the Chilling Requirement in Subtropical Trees. New Phytol. 2021, 231, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Ballarin, F.; Li, S. Diversification in Tropics and Subtropics Following the Mid-Miocene Climate Change: A Case Study of the Spider Genus Nesticella. Glob. Change Biol. 2018, 24, e577–e591. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, X.; Xu, W.; Bongers, F.J.; Bao, W.; Chen, B.; Ma, K. Effects of Diversity, Climate and Litter on Soil Organic Carbon Storage in Subtropical Forests. For. Ecol. Manag. 2020, 476, 118479. [Google Scholar] [CrossRef]
- Weißbecker, C.; Heintz-Buschart, A.; Bruelheide, H.; Buscot, F.; Wubet, T. Linking Soil Fungal Generality to Tree Richness in Young Subtropical Chinese Forests. Microorganisms 2019, 7, 547. [Google Scholar] [CrossRef] [PubMed]
- Frelich, L.E.; Johnstone, J.; Kuuluvainen, T. Boreal Forests. In Future Forests; Elsevier: Amsterdam, The Netherlands, 2024; pp. 221–242. [Google Scholar]
- Molinari, C.; Lehsten, V.; Blarquez, O.; Carcaillet, C.; Davis, B.A.; Kaplan, J.O.; Bradshaw, R.H. The Climate, the Fuel and the Land Use: Long-Term Regional Variability of Biomass Burning in Boreal Forests. Glob. Change Biol. 2018, 24, 4929–4945. [Google Scholar] [CrossRef] [PubMed]
- Pohjanmies, T.; Triviño, M.; Le Tortorec, E.; Mazziotta, A.; Snäll, T.; Mönkkönen, M. Impacts of Forestry on Boreal Forests: An Ecosystem Services Perspective. Ambio 2017, 46, 743–755. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Gauthier, S. Young and Old Forest in the Boreal: Critical Stages of Ecosystem Dynamics and Management Under Global Change. For. Ecosyst. 2018, 5, 26. [Google Scholar] [CrossRef]
Keyword | Frequency (n = 1472) | Contextual Themes | Potential Implications |
---|---|---|---|
Mother trees: Guardians of ecosystem resilience | 46 | Ecosystem management, Forest resilience | Importance of key species in ecosystem recovery |
The hypothesis of Suzanne Simard | 33 | Mycorrhizal networks, Inter-species communication | Foundation for understanding forest symbiotic relationships |
Symbiotic relationships | 55 | Biodiversity, Ecosystem health | Role in ecosystem stability and resilience |
Fungi, plants, carbohydrates, and water | 51 | Nutrient cycles, Water dynamics | Critical aspects of forest ecosystems’ functioning |
Impact of deforestation, extraction and biodiversity | 77 | Deforestation impacts, Biodiversity loss | Effects on global biodiversity and climate |
Underground biodiversity and mycorrhiza networks | 49 | Soil health, Mycorrhizae | Role of soil biodiversity in nutrient exchange |
Arbuscular mycorrhizae | 32 | Plant-fungi interaction | Importance in plant nutrition and soil health |
Endomycorrhizas and ectomycorrhizas | 57 | Types of mycorrhizal fungi | Differences in symbiosis and ecosystem roles |
Mycorrhizae and genetic engineering | 10 | Biotechnology applications | Potential for enhancing plant resilience |
Biotechnology and mycorrhizae | 19 | Biotech in ecosystem management | Innovations in sustainable forestry practices |
Molecular research of mycorrhizal fungi | 16 | Scientific advancements | Contributions to understanding mycorrhizal functions |
Nitrogen collection | 34 | Nitrogen cycle, Plant adaptation | Efficiency of Nitrogen Uptake and ecosystem nutrient cycling |
Coopetition in the Forest | 19 | Inter-species relationships | Competitive and cooperative dynamics in forest ecosystems |
Dynamic ecosystem and biodiversity | 63 | Ecosystem dynamics, Biodiversity importance | Impact of diversity on ecosystem resilience |
Forest resilience | 65 | Response to disturbances | Strategies for enhancing forest recovery and sustainability |
Resilience and disruption | 47 | Effects of environmental stressors | Mechanisms of ecosystem adaptation and survival |
Healthy Forests | 52 | Indicators of forest health | Relationship with biodiversity and ecosystem services |
Overexploitation and depletion of resources | 68 | Resource management | Consequences of unsustainable extractivism |
Forest biological diversity | 58 | Species diversity, Genetic diversity | Role in ecosystem functionality and resilience |
Tropical forests | 42 | Biodiversity hotspots | Challenges and conservation priorities |
Subtropical forests | 30 | Ecosystem services, Climate regulation | Importance in global ecological balance |
Boreal forests | 28 | Carbon sequestration, Biodiversity | Role in Climate Mitigation and biodiversity conservation |
Natural Capital and extractivism | 37 | Economic valuation, Resource extraction | Impact on ecosystem services and sustainability |
Deforestation and alteration of biodiversity | 75 | Habitat destruction, Species extinction | Long-term effects on global biodiversity |
Interrelation and exchange of nutrients in networks | 47 | Nutrient Cycle, Ecosystem interdependence | Basis for forest productivity and health |
Disorganized development versus organized development | 25 | Sustainable development, Land use planning | Effects on forest conservation and resource use |
Nitrogen-fixing microorganisms | 34 | Nitrogen cycle, Soil fertility | Contribution to ecosystem nutrient dynamics |
Impairment of cascade nutrient exchange | 21 | Pollution, Soil degradation | Impact on ecosystem nutrient cycles and productivity |
Vadose zone and hydric sequences | 16 | Water cycle, Soil moisture | Influence on plant growth and ecosystem dynamics |
Modification of water cycles | 38 | Climate change, Deforestation | Effects on hydrological systems and forest health |
Cascading ecological effects | 30 | Ecosystem interconnections | Consequences of disruptions in ecological networks |
Importance of public policies | 56 | Policy interventions, Conservation strategies | Role in regulating extractivism and protecting forests |
Regulation of the extractivist framework | 39 | Legal frameworks, Governance | Approaches to sustainable resource management |
Institutions and governance | 48 | Policy effectiveness, Institutional roles | Impact on environmental regulation and enforcement |
Extractivism vs. Sustainability | 33 | Economic models, Environmental sustainability | Challenges in balancing resource use with conservation |
Regulation of extractivism phenomena | 22 | Policy development, Environmental law |
Forest Region | Boreal Forests | Tropical Forests | Subtropical Forest |
---|---|---|---|
Location | Located in the north of the northern hemisphere. Russia (Siberia, European part); Canada (Yukon, British Columbia, to Newfoundland and Labrador); United States (Alaska); Sweden (North and center); Finland (North and East); Norway (North); Iceland Estonia; Latvia; Lithuania Kazakhstan (North); Mongolia (North). | Approximately 85 countries contain tropical forest ecosystems that cover 18 million km2. Brazil (Amazon rainforest); Indonesia (Sumatra, Borneo, New Guinea); Democratic Republic of the Congo (Congo Forest); Peru (Amazon rainforest); Colombia (Amazon Region); Venezuela (Amazon jungle, Orinoco Forests); Malaysia (Peninsular and island); Papua New Guinea; Bolivia (Amazon rainforest); Madagascar India (Northeast, western Ghats); Australia (Northern Queensland); Mexico (South, Yucatan Peninsula, Chiapas); Thailand | It is normally located between 23.5° and 35° latitude in both hemispheres. United States (Southeast, Florida, Georgia); China (South, Yunnan); Australia (East Coast, New South Wales, Queensland); India (Northeast, Western Ghats); Brazil (South, Paraná, São Paulo); Argentina (North, Misiones); Mexico (South, Chiapas, Veracruz); South Africa (East Coast, KwaZulu-Natal); Japan (South, Kyushu); New Zealand (North Island, Northland). |
Climate | Extreme cold with temperatures that can drop to −45 degrees Celsius and short growing seasons. | Warm and humid with year-round growing seasons. | Generally warm with high humidity. Two different seasons: a hot and humid summer and a cooler and drier winter. |
Vegetation | Forest soils are usually low in fertility and acidic, with a thin A horizon. These forests are dominated by conifers, spruce, pine, and larch, along with birch and poplar. | Various plant species and dense vegetation. Generally, tropical forest ecosystems extend further towards the poles, where humidity is adequate. | Diverse and dense, with a variety of trees, shrubs, and undergrowth. Evergreen broadleaf dominates these forests. |
Species Diversity | Lower species diversity | Extremely high species diversity | The high diversity of species varies depending on the specific region. |
Dominant Fauna | Moose, caribou, wolves, bears, owls. | Jaguars, monkeys, various birds, insects, and species of mushrooms. | Monkeys, tigers, snakes and numerous species of birds. |
Impact on Biodiversity | Influenced by recurrent disturbances (fires, insect infestations). Habitat fragmentation causes species to be moved. | It houses the greatest biodiversity on the planet, which is why they are the true thermometer of the planet. This forest helps stabilize the world’s climate | These forests play a crucial role in the maintenance of biodiversity. They serve as vital refuges for migratory species. Help stabilize the global climate |
Carbon Storage | Important for carbon storage | Carbon storage and oxygen production. | Important carbon reservoirs |
Importance of the Ecosystem | One of the world’s leading providers of ecosystem services. Storage of carbon and fresh water. | High biodiversity, ecological services, and climate balance | It is important to maintain ecological and climatic balance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bas, T.G.; Sáez, M.L.; Sáez, N. Sustainable Development versus Extractivist Deforestation in Tropical, Subtropical, and Boreal Forest Ecosystems: Repercussions and Controversies about the Mother Tree and the Mycorrhizal Network Hypothesis. Plants 2024, 13, 1231. https://doi.org/10.3390/plants13091231
Bas TG, Sáez ML, Sáez N. Sustainable Development versus Extractivist Deforestation in Tropical, Subtropical, and Boreal Forest Ecosystems: Repercussions and Controversies about the Mother Tree and the Mycorrhizal Network Hypothesis. Plants. 2024; 13(9):1231. https://doi.org/10.3390/plants13091231
Chicago/Turabian StyleBas, Tomas Gabriel, Mario Luis Sáez, and Nicolas Sáez. 2024. "Sustainable Development versus Extractivist Deforestation in Tropical, Subtropical, and Boreal Forest Ecosystems: Repercussions and Controversies about the Mother Tree and the Mycorrhizal Network Hypothesis" Plants 13, no. 9: 1231. https://doi.org/10.3390/plants13091231
APA StyleBas, T. G., Sáez, M. L., & Sáez, N. (2024). Sustainable Development versus Extractivist Deforestation in Tropical, Subtropical, and Boreal Forest Ecosystems: Repercussions and Controversies about the Mother Tree and the Mycorrhizal Network Hypothesis. Plants, 13(9), 1231. https://doi.org/10.3390/plants13091231