Adaptation to Climate Change in Viticulture: The Role of Varietal Selection—A Review
Abstract
:1. Introduction
2. Effects of Climate Change on Viticulture—An Overview
3. Unveiling the Impact of Abiotic Stress on the Grapevine
3.1. Summer Stress and the Major Constraints for Grapevine
3.2. The Impact of Water Stress and High Temperatures on Grapevine Leaves’ Physiological and Biochemical Stress Markers
3.3. Climate Change Associated Effects on Grape Quality
4. Adaptation Strategies Amidst Climate Change
5. Varietal Selection in Viticulture—Steps Towards the Understanding of Adaptation
5.1. Grapevine Varieties and Their Distinctive Adaptation Strategies
5.2. Exploring the Molecular Basis of Stress Resilience in Grapevine
6. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alston, J.M.; Sambucci, O. Grapes in the World Economy. In The Grape Genome; Cantu, D., Walker, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–24. ISBN 978-3-030-18600-5. [Google Scholar]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern Viticulture in Southern Europe: Vulnerabilities and Strategies for Adaptation to Water Scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- FAO OIV. Non-alcoholic products of the vitivinicultural sector intended for human consumption. In Table and Dried Grapes; FAO-OIV FOCUS 2016: Rome, Italy, 2016; ISBN 978-92-5-109708-3. [Google Scholar]
- OIV. State of the World Vine and Wine Sector in 2023; OIV: Paris, France, 2024. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.A.; Costa, R.; Fraga, H. New Insights into Thermal Growing Conditions of Portuguese Grapevine Varieties Under Changing Climates. Theor. Appl. Clim. 2019, 135, 1215–1226. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate Change, Wine, and Conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [PubMed]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Santillán, D.; Garrote, L.; Iglesias, A.; Sotes, V. Climate Change Risks and Adaptation: New Indicators for Mediterranean Viticulture. Mitig. Adapt. Strateg. Glob. Change 2020, 25, 881–899. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Future Scenarios for Viticultural Zoning in Europe: Ensemble Projections and Uncertainties. Int. J. Biometeorol. 2013, 57, 909–925. [Google Scholar] [CrossRef]
- Fraga, H.; Pinto, J.G.; Santos, J.A. Climate Change Projections for Chilling and Heat Forcing Conditions in European Vineyards and Olive Orchards: A Multi-Model Assessment. Clim. Change 2019, 152, 179–193. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Bernardo, S.; Dinis, L.-T.; Machado, N.; Moutinho-Pereira, J. Grapevine Abiotic Stress Assessment and Search for Sustainable Adaptation Strategies in Mediterranean-like Climates. A Review. Agron. Sustain. Dev. 2018, 38, 66. [Google Scholar] [CrossRef]
- Santos, J.A.; Yang, C.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Bindi, M.; Leolini, L.; et al. Long-Term Adaptation of European Viticulture to Climate Change: An Overview from the H2020 Clim4Vitis Action. Tech. Rev. 2021, 4644, 1–2. [Google Scholar] [CrossRef]
- Parker, A.K.; García de Cortázar-Atauri, I.; Trought, M.C.T.; Destrac, A.; Agnew, R.; Sturman, A.; van Leeuwen, C. Adaptation to Climate Change by Determining Grapevine Cultivar Differences Using Temperature-Based Phenology Models. OENO One 2020, 54, 955–974. [Google Scholar] [CrossRef]
- Mozell, M.R.; Thach, L. The Impact of Climate Change on the Global Wine Industry: Challenges & Solutions. Wine Econ. Policy 2014, 3, 81–89. [Google Scholar] [CrossRef]
- Morales-Castilla, I.; García de Cortázar-Atauri, I.; Cook, B.I.; Lacombe, T.; Parker, A.; van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity Buffers Winegrowing Regions from Climate Change Losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; Santos, J.A.; Malheiro, A.C.; Oliveira, A.A.; Moutinho-Pereira, J.; Jones, G.V. Climatic Suitability of Portuguese Grapevine Varieties and Climate Change Adaptation: Portuguese Grapevine Varieties under Climate Change. Int. J. Climatol. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Burgess, A.J. Wine without Water: Improving Grapevine Tolerance to Drought. Plant Physiol. 2022, 190, 1550–1551. [Google Scholar] [CrossRef]
- Villano, C.; Aiese Cigliano, R.; Esposito, S.; D’Amelia, V.; Iovene, M.; Carputo, D.; Aversano, R. DNA-Based Technologies for Grapevine Biodiversity Exploitation: State of the Art and Future Perspectives. Agronomy 2022, 12, 491. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; García De Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the World’s Future Wine-Growing Regions. Nat. Clim Change 2018, 8, 29–37. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Seguin, G. The Concept of Terroir in Viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- van Leeuwen, C. Terroir: The Effect of the Physical Environment on Vine Growth, Grape Ripening and Wine Sensory Attributes. In Managing Wine Quality; Elsevier: Amsterdam, The Netherlands, 2010; pp. 273–315. ISBN 978-1-84569-484-5. [Google Scholar]
- Jones, G.V. The Climate Component of Terroir. Elements 2018, 14, 167–172. [Google Scholar] [CrossRef]
- Jones, G.V.; Alves, F. Impact of Climate Change on Wine Production: A Global Overview and Regional Assessment in the Douro Valley of Portugal. IJGW 2012, 4, 383. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Barbe, J.-C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N.; et al. Recent Advancements in Understanding the Terroir Effect on Aromas in Grapes and Wines. OENO One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Costa, C.; Graça, A.; Fontes, N.; Teixeira, M.; Gerós, H.; Santos, J.A. The Interplay between Atmospheric Conditions and Grape Berry Quality Parameters in Portugal. Appl. Sci. 2020, 10, 4943. [Google Scholar] [CrossRef]
- Dinis, L.-T.; Bernardo, S.; Yang, C.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Mediterranean Viticulture in the Context of Climate Change. Ciência Téc. Vitiv. 2022, 37, 139–158. [Google Scholar] [CrossRef]
- Hall, A.; Mathews, A.J.; Holzapfel, B.P. Potential Effect of Atmospheric Warming on Grapevine Phenology and Post-Harvest Heat Accumulation across a Range of Climates. Int. J. Biometeorol. 2016, 60, 1405–1422. [Google Scholar] [CrossRef] [PubMed]
- Barnuud, N.N.; Zerihun, A.; Gibberd, M.; Bates, B. Berry Composition and Climate: Responses and Empirical Models. Int. J. Biometeorol. 2014, 58, 1207–1223. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge UK, 2022. [Google Scholar]
- Ali, E.; Cramer, W.; Carnicer, J.; Georgopoulou, E.; Hilmi, N.J.M.; Le Cozannet, G.; Lionello, P. Cross-Chapter Paper 4: Mediterranean Region. In Climate Change 2022: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge UK, 2022; pp. 2233–2272. [Google Scholar] [CrossRef]
- Lemus-Canovas, M.; Insua-Costa, D.; Trigo, R.M.; Miralles, D.G. Record-Shattering 2023 Spring Heatwave in Western Mediterranean Amplified by Long-Term Drought. NPJ Clim. Atmos. Sci. 2024, 7, 25. [Google Scholar] [CrossRef]
- Coupel-Ledru, A.; Westgeest, A.J.; Albasha, R.; Millan, M.; Pallas, B.; Doligez, A.; Flutre, T.; Segura, V.; This, P.; Torregrosa, L.; et al. Clusters of Grapevine Genes for a Burning World. New Phytol. 2024, 242, 10–18. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A Review of Recent Trends and Climate Change Projections. OENO One 2017, 51, 61. [Google Scholar] [CrossRef]
- Zapata, D.; Salazar, M.; Chaves, B.; Keller, M.; Hoogenboom, G. Estimation of the Base Temperature and Growth Phase Duration in Terms of Thermal Time for Four Grapevine Cultivars. Int. J. Biometeorol. 2015, 59, 1771–1781. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, V.; Vizzotto, G.; Falchi, R. Cold Hardiness Dynamics and Spring Phenology: Climate-Driven Changes and New Molecular Insights Into Grapevine Adaptive Potential. Front. Plant Sci. 2021, 12, 644528. [Google Scholar] [CrossRef]
- Cameron, W.; Petrie, P.R.; Barlow, E.W.R. The Effect of Temperature on Grapevine Phenological Intervals: Sensitivity of Budburst to Flowering. Agric. For. Meteorol. 2022, 315, 108841. [Google Scholar] [CrossRef]
- Costa, R.; Fraga, H.; Fonseca, A.; García de Cortázar-Atauri, I.; Val, M.C.; Carlos, C.; Reis, S.; Santos, J.A. Grapevine Phenology of Cv. Touriga Franca and Touriga Nacional in the Douro Wine Region: Modelling and Climate Change Projections. Agronomy 2019, 9, 210. [Google Scholar] [CrossRef]
- Keller, M. Developmental Physiology. In The Science of Grapevines; Elsevier: Amsterdam, The Netherlands, 2020; pp. 199–277. ISBN 978-0-12-816365-8. [Google Scholar]
- Bonada, M.; Sadras, V.O. Review: Critical Appraisal of Methods to Investigate the Effect of Temperature on Grapevine Berry Composition. Aust. J. Grape Wine Res. 2015, 21, 1–17. [Google Scholar] [CrossRef]
- Santos, J.A.; Malheiro, A.C.; Karremann, M.K.; Pinto, J.G. Statistical Modelling of Grapevine Yield in the Port Wine Region under Present and Future Climate Conditions. Int. J. Biometeorol. 2011, 55, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Malheiro, A.C.; Campos, R.; Fraga, H.; Eiras-Dias, J.; Silvestre, J.; Santos, J.A. Winegrape Phenology and Temperature Relationships in the Lisbon Wine Region, Portugal. OENO One 2013, 47, 287–299. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Abernethy, K.E.; Smart, R.E.; Wilson, R.J.; Maclean, I.M.D. Climate Change Impacts and Adaptive Strategies: Lessons from the Grapevine. Glob. Chang. Biol. 2016, 22, 3814–3828. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G.A. Climate Change Impacts and Adaptations of Wine Production. Nat. Rev. Earth Env. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Kizildeniz, T.; Vučetić, V.; Dai, Z.; Luedeling, E.; van Leeuwen, C.; Gomès, E.; Pascual, I.; Irigoyen, J.J.; Morales, F.; et al. Sensitivity of Grapevine Phenology to Water Availability, Temperature and CO2 Concentration. Front. Environ. Sci. 2016, 4, 48. [Google Scholar] [CrossRef]
- Kizildeniz, T.; Irigoyen, J.J.; Pascual, I.; Morales, F. Simulating the Impact of Climate Change (Elevated CO2 and Temperature, and Water Deficit) on the Growth of Red and White Tempranillo Grapevine in Three Consecutive Growing Seasons (2013–2015). Agric. Water Manag. 2018, 202, 220–230. [Google Scholar] [CrossRef]
- Sweetman, C.; Sadras, V.O.; Hancock, R.D.; Soole, K.L.; Ford, C.M. Metabolic Effects of Elevated Temperature on Organic Acid Degradation in Ripening Vitis vinifera Fruit. J. Exp. Bot. 2014, 65, 5975–5988. [Google Scholar] [CrossRef]
- Cola, G.; Failla, O.; Maghradze, D.; Megrelidze, L.; Mariani, L. Grapevine Phenology and Climate Change in Georgia. Int. J. Biometeorol. 2017, 61, 761–773. [Google Scholar] [CrossRef] [PubMed]
- García de Cortázar-Atauri, I.; Duchêne, E.; Destrac-Irvine, A.; Barbeau, G.; de Rességuier, L.; Lacombe, T.; Parker, A.K.; Saurin, N.; van Leeuwen, C. Grapevine Phenology in France: From Past Observations to Future Evolutions in the Context of Climate Change. OENO One 2017, 51, 115–126. [Google Scholar] [CrossRef]
- Ramos, M.C.; Jones, G.V.; Yuste, J. Phenology of Tempranillo and Cabernet-Sauvignon Varieties Cultivated in the Ribera Del Duero DO: Observed Variability and Predictions under Climate Change Scenarios. OENO One 2018, 52. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Adaptive Capacity of Winegrape Varieties Cultivated in Greece to Climate Change: Current Trends and Future Projections. OENO One 2020, 54, 1201–1219. [Google Scholar] [CrossRef]
- Petrie, P.R.; Sadras, V.O. Advancement of Grapevine Maturity in Australia between 1993 and 2006: Putative Causes, Magnitude of Trends and Viticultural Consequences. Aust. J. Grape Wine Res. 2008, 14, 33–45. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling Climate Change Impacts on Viticultural Yield, Phenology and Stress Conditions in Europe. Glob. Chang. Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.C. Projection of Phenology Response to Climate Change in Rainfed Vineyards in North-East Spain. Agric. For. Meteorol. 2017, 247, 104–115. [Google Scholar] [CrossRef]
- Merrill, N.K.; García De Cortázar-Atauri, I.; Parker, A.K.; Walker, M.A.; Wolkovich, E.M. Exploring Grapevine Phenology and High Temperatures Response Under Controlled Conditions. Front. Environ. Sci. 2020, 8, 516527. [Google Scholar] [CrossRef]
- Tombesi, S.; Sabbatini, P.; Frioni, T.; Grisafi, F.; Barone, F.; Zani, P.; Palliotti, A.; Poni, S. Grapevine Response to Stress Generated by Excessive Temperatures during the Budburst. Horticulturae 2022, 8, 187. [Google Scholar] [CrossRef]
- Cook, B.I.; Wolkovich, E.M. Climate Change Decouples Drought from Early Wine Grape Harvests in France. Nat. Clim Change 2016, 6, 715–719. [Google Scholar] [CrossRef]
- Dinu, D.G.; Ricciardi, V.; Demarco, C.; Zingarofalo, G.; De Lorenzis, G.; Buccolieri, R.; Cola, G.; Rustioni, L. Climate Change Impacts on Plant Phenology: Grapevine (Vitis Vinifera) Bud Break in Wintertime in Southern Italy. Foods 2021, 10, 2769. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine Phenology and Climate Change: Relationships and Trends in the Veneto Region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Bock, A.; Sparks, T.; Estrella, N.; Menzel, A. Changes in the Phenology and Composition of Wine from Franconia, Germany. Clim. Res. 2011, 50, 69–81. [Google Scholar] [CrossRef]
- Yang, C.; Menz, C.; De Abreu Jaffe, M.S.; Costafreda-Aumedes, S.; Moriondo, M.; Leolini, L.; Torres-Matallana, A.; Molitor, D.; Junk, J.; Fraga, H.; et al. Projections of Climate Change Impacts on Flowering-Veraison Water Deficits for Riesling and Müller-Thurgau in Germany. Remote Sens. 2022, 14, 1519. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A.; Moutinho-Pereira, J.; Carlos, C.; Silvestre, J.; Eiras-Dias, J.; Mota, T.; Malheiro, A.C. Statistical Modelling of Grapevine Phenology in Portuguese Wine Regions: Observed Trends and Climate Change Projections. J. Agric. Sci. 2016, 154, 795–811. [Google Scholar] [CrossRef]
- Reis, S.; Fraga, H.; Carlos, C.; Silvestre, J.; Eiras-Dias, J.; Rodrigues, P.; Santos, J.A. Grapevine Phenology in Four Portuguese Wine Regions: Modeling and Predictions. Appl. Sci. 2020, 10, 3708. [Google Scholar] [CrossRef]
- Yang, C.; Ceglar, A.; Menz, C.; Martins, J.; Fraga, H.; Santos, J.A. Performance of Seasonal Forecasts for the Flowering and Veraison of Two Major Portuguese Grapevine Varieties. Agric. For. Meteorol. 2023, 331, 109342. [Google Scholar] [CrossRef]
- Koch, B.; Oehl, F. Climate Change Favors Grapevine Production in Temperate Zones. Agric. Sci. 2018, 09, 247–263. [Google Scholar] [CrossRef]
- Kuhn, N.; Guan, L.; Dai, Z.W.; Wu, B.-H.; Lauvergeat, V.; Gomès, E.; Li, S.-H.; Godoy, F.; Arce-Johnson, P.; Delrot, S. Berry Ripening: Recently Heard through the Grapevine. J. Exp. Bot. 2014, 65, 4543–4559. [Google Scholar] [CrossRef] [PubMed]
- Chitwood, D.H.; Klein, L.L.; O’Hanlon, R.; Chacko, S.; Greg, M.; Kitchen, C.; Miller, A.J.; Londo, J.P. Latent Developmental and Evolutionary Shapes Embedded within the Grapevine Leaf. New Phytol. 2016, 210, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Hu, S.; Zhao, X.; Kumar, S.; Li, Y.; Yang, J.; Hou, H. Mechanisms of the Morphological Plasticity Induced by Phytohormones and the Environment in Plants. Int. J. Mol. Sci. 2021, 22, 765. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Yang, Z.Q.; Lee, K.W. Photosynthetic and Physiological Responses to High Temperature in Grapevine (Vitis vinifera L.) Leaves during the Seedling Stage. J. Hortic. Sci. Biotechnol. 2017, 92, 2–10. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, X.; Zhai, H.; Gao, H.; Yao, Y.; Du, Y. Responses of Photosystem II Photochemistry and the Alternative Oxidase Pathway to Heat Stress in Grape Leaves. Acta Physiol. Plant 2016, 38, 232. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, B.; Hao, Y.; Yang, R.; Wang, Y. Effects of Short-Term Heat Stress on PSII and Subsequent Recovery for Senescent Leaves of Vitis vinifera L. Cv. Red Globe. J. Integr. Agric. 2018, 17, 2683–2693. [Google Scholar] [CrossRef]
- Moutinho-Pereira, J.; Magalhães, N.; Gonçalves, B.; Bacelar, E.; Brito, M.; Correia, C. Gas Exchange and Water Relations of Three Vitis vinifera L. Cultivars Growing Under Mediterranean Climate. Photosynthetica 2007, 45, 202–207. [Google Scholar] [CrossRef]
- Medrano, H.; Escalona, J.M.; Cifre, J.; Bota, J.; Flexas, J. A Ten-Year Study on the Physiology of Two Spanish Grapevine Cultivars under Field Conditions: Effects of Water Availability from Leaf Photosynthesis to Grape Yield and Quality. Funct. Plant Biol. 2003, 30, 607. [Google Scholar] [CrossRef]
- Greer, D.H.; Abeysinghe, S.K.; Rogiers, S.Y. The Effect of Light Intensity and Temperature on Berry Growth and Sugar Accumulation in Vitis vinifera “Shiraz” under Vineyard Conditions. VITIS J. Grapevine Res. 2019, 58, 7–16. [Google Scholar] [CrossRef]
- Greer, D.H. Intraspecific Differences in the Photosynthetic Responses to Chloroplast CO2 and Photon Flux Density at Different Leaf Temperatures of Four Grapevine Cultivars Grown in Common Outdoor Conditions. Plant Direct 2024, 8, e595. [Google Scholar] [CrossRef]
- Greer, D.H.; Weston, C. A Comparison of the Phenology, Berry Ripening and Canopy Temperatures of Four Common Grapevine Cultivars in Response to High Temperatures. Acta Hortic. 2016, 1115, 111–118. [Google Scholar] [CrossRef]
- Zha, Q.; Xi, X.; He, Y.; Yin, X.; Jiang, A. Effect of Short-Time High-Temperature Treatment on the Photosynthetic Performance of Different Heat-Tolerant Grapevine Cultivars. Photochem. Photobiol. 2021, 97, 763–769. [Google Scholar] [CrossRef]
- Gómez-Del-Campo, M.; Baeza, P.; Ruiz, C.; Lissarrague, J.R. Water-Stress Induced Physiological Changes in Leaves of Four Container-Grown Grapevine Cultivars (Vitis vinifera L.). VITIS 2015, 43, 99–105. [Google Scholar] [CrossRef]
- Bertamini, M.; Zulini, L.; Muthuchelian, K.; Nedunchezhian, N. Effect of Water Deficit on Photosynthetic and Other Physiological Responses in Grapevine (Vitis vinifera L. Cv. Riesling) Plants. Photosynthetica 2006, 44, 151–154. [Google Scholar] [CrossRef]
- Escalona, J.M.; Flexas, J.; Medrano, H. Stomatal and Non-Stomatal Limitations of Photosynthesis Under Water Stress in Field-Grown Grapevines. Funct. Plant Biol. 2000, 27, 87. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The Physiology of Drought Stress in Grapevine: Towards an Integrative Definition of Drought Tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef] [PubMed]
- Degu, A.; Hochberg, U.; Wong, D.C.J.; Alberti, G.; Lazarovitch, N.; Peterlunger, E.; Castellarin, S.D.; Herrera, J.C.; Fait, A. Swift Metabolite Changes and Leaf Shedding Are Milestones in the Acclimation Process of Grapevine under Prolonged Water Stress. BMC Plant Biol. 2019, 19, 69. [Google Scholar] [CrossRef] [PubMed]
- Zha, Q.; Xi, X.; He, Y.; Jiang, A. Transcriptomic Analysis of the Leaves of Two Grapevine Cultivars under High-Temperature Stress. Sci. Hortic. 2020, 265, 109265. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Vidigal, P.; Amâncio, S. Oxidative Stress Homeostasis in Grapevine (Vitis vinifera L.). Front. Environ. Sci. 2015, 3, 20. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants Under Stressful Conditions. J. Bot. 2012, 2012, 1–26. [Google Scholar] [CrossRef]
- Sepúlveda, G.; Kliewer, W.M. Effect of High Temperature on Grapevines (Vitis vinifera L.). II. Distribution of Soluble Sugars. Am. J. Enol. Vitic. 1986, 37, 20–25. [Google Scholar] [CrossRef]
- Zufferey, V.; Murisier, F.; Vivin, P.; Belcher, S.; Lorenzini, F.; Spring, J.L.; Viret, O. Carbohydrate Reserves in Grapevine (Vitis vinifera L. ’Chasselas’): The Influence of the Leaf to Fruit Ratio. VITIS J. Grapevine Res. 2015, 51, 103. [Google Scholar] [CrossRef]
- Tombesi, S.; Cincera, I.; Frioni, T.; Ughini, V.; Gatti, M.; Palliotti, A.; Poni, S. Relationship among Night Temperature, Carbohydrate Translocation and Inhibition of Grapevine Leaf Photosynthesis. Environ. Exp. Bot. 2019, 157, 293–298. [Google Scholar] [CrossRef]
- Jing, P.; Wang, D.; Zhu, C.; Chen, J. Plant Physiological, Morphological and Yield-Related Responses to Night Temperature Changes across Different Species and Plant Functional Types. Front. Plant Sci. 2016, 7, 1774. [Google Scholar] [CrossRef]
- Bertamini, M.; Faralli, M.; Varotto, C.; Grando, M.S.; Cappellin, L. Leaf Monoterpene Emission Limits Photosynthetic Downregulation under Heat Stress in Field-Grown Grapevine. Plants 2021, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Pontin, M.; Berli, F.; Bottini, R.; Piccoli, P. Metabolism of Terpenes in the Response of Grape (Vitis vinifera L.) Leaf Tissues to UV-B Radiation. Phytochemistry 2012, 77, 89–98. [Google Scholar] [CrossRef]
- Akhi, M.Z.; Haque, M.M.; Biswas, M.S.; Akhi, M.Z.; Haque, M.M.; Biswas, M.S. Role of Secondary Metabolites to Attenuate Stress Damages in Plants. In Antioxidants-Benefits, Sources, Mechanisms of Action; IntechOpen: London, UK, 2021; ISBN 978-1-83968-865-2. [Google Scholar]
- Carvalho, L.C.; Coito, J.L.; Colaço, S.; Sangiogo, M.; Amâncio, S. Heat Stress in Grapevine: The Pros and Cons of Acclimation. Plant Cell Environ. 2015, 38, 777–789. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Coito, J.L.; Gonçalves, E.F.; Chaves, M.M.; Amâncio, S. Differential Physiological Response of the Grapevine Varieties Touriga Nacional and Trincadeira to Combined Heat, Drought and Light Stresses. Plant Biol. 2016, 18, 101–111. [Google Scholar] [CrossRef]
- Smit, S.J.; Vivier, M.A.; Young, P.R. Linking Terpene Synthases to Sesquiterpene Metabolism in Grapevine Flowers. Front. Plant Sci. 2019, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, P.; Teixeira, G.; Lopes, C.M.; Monteiro, A. The Role of Grapevine Leaf Morphoanatomical Traits in Determining Capacity for Coping with Abiotic Stresses: A Review. Ciência Téc. Vitiv. 2021, 36, 75–88. [Google Scholar] [CrossRef]
- Chitwood, D.; Mullins, J.; Migicovsky, Z.; Frank, M.; VanBuren, R.; Londo, J. Vein-to-Blade Ratio Is an Allometric Indicator of Climate-Induced Changes in Grapevine Leaf Size and Shape. bioRxiv 2020, bioRxiv:2020.05.20.106906. [Google Scholar] [CrossRef]
- Baumgartner, A.; Donahoo, M.; Chitwood, D.H.; Peppe, D.J. The Influences of Environmental Change and Development on Leaf Shape in Vitis. Am. J. Bot. 2020, 107, 676–688. [Google Scholar] [CrossRef]
- Herrera, J.C.; Calderan, A.; Gambetta, G.A.; Peterlunger, E.; Forneck, A.; Sivilotti, P.; Cochard, H.; Hochberg, U. Stomatal Responses in Grapevine Become Increasingly More Tolerant to Low Water Potentials throughout the Growing Season. Plant J. 2022, 109, 804–815. [Google Scholar] [CrossRef] [PubMed]
- Serra, I.; Strever, A.; Myburgh, P.; Schmeisser, M.; Deloire, P.A. Grapevine (Vitis vinifera L. ‘Pinotage’) Leaf Stomatal Size and Density as Modulated by Different Rootstocks and Scion Water Status. Acta Hortic. 2017, 1157, 177–182. [Google Scholar] [CrossRef]
- Teixeira, G.; Monteiro, A.; Santos, C.; Lopes, C.M. Leaf Morphoanatomy Traits in White Grapevine Cultivars with Distinct Geographical Origin. Ciência Téc. Vitiv. 2018, 33, 90–101. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Hardie, W.J.; Smith, J.P. Stomatal Density of Grapevine Leaves (Vitis vinifera L.) Responds to Soil Temperature and Atmospheric Carbon Dioxide: Environmental Influences on Stomatal Density. Aust. J. Grape Wine Res. 2011, 17, 147–152. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuño, M.F.; Lopes, C.M.; Chaves, M.M. Grapevine Varieties Exhibiting Differences in Stomatal Response to Water Deficit. Funct. Plant Biol. 2012, 39, 179–189. [Google Scholar] [CrossRef]
- Zeisler-Diehl, V.V.; Barthlott, W.; Schreiber, L. Plant Cuticular Waxes: Composition, Function, and Interactions with Microorganisms. In Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate; Wilkes, H., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 123–138. ISBN 978-3-319-90568-6. [Google Scholar]
- Yeats, T.H.; Rose, J.K.C. The Formation and Function of Plant Cuticles. Plant Physiol. 2013, 163, 5–20. [Google Scholar] [CrossRef]
- Duchêne, É. How Can Grapevine Genetics Contribute to the Adaptation to Climate Change? OENO One 2016, 50, 12. [Google Scholar] [CrossRef]
- Rienth, M.; Torregrosa, L.; Sarah, G.; Ardisson, M.; Brillouet, J.-M.; Romieu, C. Temperature Desynchronizes Sugar and Organic Acid Metabolism in Ripening Grapevine Fruits and Remodels Their Transcriptome. BMC Plant Biol. 2016, 16, 164. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine Responses to Heat Stress and Global Warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef]
- Keller, M. Managing Grapevines to Optimise Fruit Development in a Challenging Environment: A Climate Change Primer for Viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69. [Google Scholar] [CrossRef]
- Arrizabalaga-Arriazu, M.; Gomès, E.; Morales, F.; Irigoyen, J.J.; Pascual, I.; Hilbert, G. High Temperature and Elevated Carbon Dioxide Modify Berry Composition of Different Clones of Grapevine (Vitis vinifera L.) Cv. Tempranillo. Front. Plant Sci. 2020, 11, 603687. [Google Scholar] [CrossRef]
- Carbonell-Bejerano, P.; Diago, M.-P.; Martínez-Abaigar, J.; Martínez-Zapater, J.M.; Tardáguila, J.; Núñez-Olivera, E. Solar Ultraviolet Radiation Is Necessary to Enhance Grapevine Fruit Ripening Transcriptional and Phenolic Responses. BMC Plant Biol. 2014, 14, 183. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.; Shrestha, P.M. Solute Accumulation Differs in the Vacuoles and Apoplast of Ripening Grape Berries. Planta 2014, 239, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Duchêne, É.; Dumas, V.; Butterlin, G.; Jaegli, N.; Rustenholz, C.; Chauveau, A.; Bérard, A.; Le Paslier, M.C.; Gaillard, I.; Merdinoglu, D. Genetic Variations of Acidity in Grape Berries Are Controlled by the Interplay Between Organic Acids and Potassium. Theor. Appl. Genet 2020, 133, 993–1008. [Google Scholar] [CrossRef]
- Burbidge, C.A.; Ford, C.M.; Melino, V.J.; Wong, D.C.J.; Jia, Y.; Jenkins, C.L.D.; Soole, K.L.; Castellarin, S.D.; Darriet, P.; Rienth, M.; et al. Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines. Front. Plant Sci. 2021, 12, 643024. [Google Scholar] [CrossRef]
- Lakso, A.N.; Kliewer, W.M. The Influence of Temperature on Malic Acid Metabolism in Grape Berries: I. Enzyme Responses. Plant Physiol. 1975, 56, 370–372. [Google Scholar] [CrossRef]
- DeBolt, S.; Ristic, R.; Iland, P.G.; Ford, C.M. Altered Light Interception Reduces Grape Berry Weight and Modulates Organic Acid Biosynthesis During Development. Horts 2008, 43, 957–961. [Google Scholar] [CrossRef]
- Savoi, S.; Wong, D.C.J.; Degu, A.; Herrera, J.C.; Bucchetti, B.; Peterlunger, E.; Fait, A.; Mattivi, F.; Castellarin, S.D. Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit. Front. Plant Sci. 2017, 8, 1124. [Google Scholar] [CrossRef] [PubMed]
- Mirás-Avalos, J.M.; Intrigliolo, D.S. Grape Composition under Abiotic Constrains: Water Stress and Salinity. Front. Plant Sci. 2017, 8, 851. [Google Scholar] [CrossRef] [PubMed]
- Mira De Orduña, R. Climate Change Associated Effects on Grape and Wine Quality and Production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A. Modified Grape Composition under Climate Change Conditions Requires Adaptations in the Vineyard. OENO One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, Y.-Y. Grape Phytochemicals and Associated Health Benefits. Crit. Rev. Food Sci. Nutr. 2013, 53, 1202–1225. [Google Scholar] [CrossRef]
- Braidot, E.; Zancani, M.; Petrussa, E.; Peresson, C.; Bertolini, A.; Patui, S.; Macrì, F.; Vianello, A. Transport and Accumulation of Flavonoids in Grapevine (Vitis vinifera L.). Plant Signal. Behav. 2008, 3, 626–632. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Sánchez-Díaz, M.; Delrot, S.; Aguirreolea, J.; Pascual, I.; Gomès, E. Ultraviolet-B Radiation and Water Deficit Interact to Alter Flavonol and Anthocyanin Profiles in Grapevine Berries through Transcriptomic Regulation. Plant Cell Physiol. 2014, 55, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Gouot, J.C.; Smith, J.P.; Holzapfel, B.P.; Walker, A.R.; Barril, C. Grape Berry Flavonoids: A Review of Their Biochemical Responses to High and Extreme High Temperatures. J. Exp. Bot. 2019, 70, 397–423. [Google Scholar] [CrossRef]
- Rienth, M.; Torregrosa, L.; Luchaire, N.; Chatbanyong, R.; Lecourieux, D.; Kelly, M.T.; Romieu, C. Day and Night Heat Stress Trigger Different Transcriptomic Responses in Green and Ripening Grapevine (Vitis vinifera) Fruit. BMC Plant Biol. 2014, 14, 108. [Google Scholar] [CrossRef]
- Kayesh, E.; Shangguan, L.; Korir, N.K.; Sun, X.; Bilkish, N.; Zhang, Y.; Han, J.; Song, C.; Cheng, Z.-M.; Fang, J. Fruit Skin Color and the Role of Anthocyanin. Acta Physiol. Plant 2013, 35, 2879–2890. [Google Scholar] [CrossRef]
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.; Gerós, H. Berry Phenolics of Grapevine under Challenging Environments. IJMS 2013, 14, 18711–18739. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, V.A.P.; Fernandes, A.; Oliveira, J.; Teixeira, N.; Mateus, N. A Review of the Current Knowledge of Red Wine Colour. OENO One 2017, 51, 1–15. [Google Scholar] [CrossRef]
- Capitello, R.; Agnoli, L.; Charters, S.; Begalli, D. Labelling Environmental and Terroir Attributes: Young Italian Consumers’ Wine Preferences. J. Clean. Prod. 2021, 304, 126991. [Google Scholar] [CrossRef]
- Corduas, M.; Cinquanta, L.; Ievoli, C. The Importance of Wine Attributes for Purchase Decisions: A Study of Italian Consumers’ Perception. Food Qual. Prefer. 2013, 28, 407–418. [Google Scholar] [CrossRef]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of Anthocyanins in Red-Wine Grape under High Temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef]
- De Rosas, I.; Deis, L.; Baldo, Y.; Cavagnaro, J.B.; Cavagnaro, P.F. High Temperature Alters Anthocyanin Concentration and Composition in Grape Berries of Malbec, Merlot, and Pinot Noir in a Cultivar-Dependent Manner. Plants 2022, 11, 926. [Google Scholar] [CrossRef]
- Tarara, J.M.; Lee, J.; Spayd, S.E.; Scagel, C.F. Berry Temperature and Solar Radiation Alter Acylation, Proportion, and Concentration of Anthocyanin in Merlot Grapes. Am. J. Enol. Vitic. 2008, 59, 235–247. [Google Scholar] [CrossRef]
- Costa, E.; Cosme, F.; Jordão, A.M.; Mendes-Faia, A. Anthocyanin Profile and Antioxidant Activity from 24 Grape Varieties Cultivated in Two Portuguese Wine Regions. OENO One 2014, 48, 51. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; Di Gaspero, G. Transcriptional Regulation of Anthocyanin Biosynthesis in Ripening Fruits of Grapevine under Seasonal Water Deficit. Plant Cell Env. 2007, 30, 1381–1399. [Google Scholar] [CrossRef]
- Flamini, R.; De Rosso, M.; De Marchi, F.; Dalla Vedova, A.; Panighel, A.; Gardiman, M.; Maoz, I.; Bavaresco, L. An Innovative Approach to Grape Metabolomics: Stilbene Profiling by Suspect Screening Analysis. Metabolomics 2013, 9, 1243–1253. [Google Scholar] [CrossRef]
- Hasan, M.; Bae, H. An Overview of Stress-Induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-Enriched Grape Products. Molecules 2017, 22, 294. [Google Scholar] [CrossRef]
- Degu, A.; Ayenew, B.; Cramer, G.R.; Fait, A. Polyphenolic Responses of Grapevine Berries to Light, Temperature, Oxidative Stress, Abscisic Acid and Jasmonic Acid Show Specific Developmental-Dependent Degrees of Metabolic Resilience to Perturbation. Food Chem. 2016, 212, 828–836. [Google Scholar] [CrossRef]
- Rocchetti, G.; Ferrari, F.; Trevisan, M.; Bavaresco, L. Impact of Climatic Conditions on the Resveratrol Concentration in Blend of Vitis vinifera L. Cvs. Barbera and Croatina Grape Wines. Molecules 2021, 26, 401. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xi, B.; Dai, H. Effects of Water Stress on Resveratrol Accumulation and Synthesis in ‘Cabernet Sauvignon’ Grape Berries. Agronomy 2023, 13, 633. [Google Scholar] [CrossRef]
- Deluc, L.G.; Decendit, A.; Papastamoulis, Y.; Mérillon, J.-M.; Cushman, J.C.; Cramer, G.R. Water Deficit Increases Stilbene Metabolism in Cabernet Sauvignon Berries. J. Agric. Food Chem. 2011, 59, 289–297. [Google Scholar] [CrossRef]
- Viguié, V.; Lecocq, F.; Touzard, J.-M. Viticulture and Adaptation to Climate Change. J. Int. Sci. Vigne Vin 2014, 7, 55–60. [Google Scholar]
- Naulleau, A.; Gary, C.; Prévot, L.; Hossard, L. Evaluating Strategies for Adaptation to Climate Change in Grapevine Production–A Systematic Review. Front. Plant Sci. 2021, 11, 607859. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current Viticultural Techniques to Mitigate the Effects of Global Warming on Grape and Wine Quality: A Comprehensive Review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
- Neethling, E.; Petitjean, T.; Quénol, H.; Barbeau, G. Assessing Local Climate Vulnerability and Winegrowers’ Adaptive Processes in the Context of Climate Change. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 777–803. [Google Scholar] [CrossRef]
- Martins, A.A.; Araújo, A.R.; Graça, A.; Caetano, N.S.; Mata, T.M. Towards Sustainable Wine: Comparison of Two Portuguese Wines. J. Clean. Prod. 2018, 183, 662–676. [Google Scholar] [CrossRef]
- Nicholas, K.A.; Durham, W.H. Farm-Scale Adaptation and Vulnerability to Environmental Stresses: Insights from Winegrowing in Northern California. Glob. Environ. Chang. 2012, 22, 483–494. [Google Scholar] [CrossRef]
- Touzard, J.-M.; Ollat, N. Long-Term Adaptation to Climate Change in Viticulture and Enology: The Laccave Project. J. Int. Sci. Vigne Vin. 2014, 1–7. [Google Scholar]
- Neethling, E.; Barbeau, G.; Coulon-Leroy, C.; Quénol, H. Spatial Complexity and Temporal Dynamics in Viticulture: A Review of Climate-Driven Scales. Agric. For. Meteorol. 2019, 276–277, 107618. [Google Scholar] [CrossRef]
- Wang, X.; De Bei, R.; Fuentes, S.; Collins, C. Influence of Canopy Management Practices on Canopy Architecture and Reproductive Performance of Semillon and Shiraz Grapevines in a Hot Climate. Am. J. Enol. Vitic. 2019, 70, 360–372. [Google Scholar] [CrossRef]
- Hunter, J.J. Implications of Seasonal Canopy Management and Growth Compensation in Grapevine. S. Afr. J. Enol. Vitic. 2017, 21, 81–89. [Google Scholar] [CrossRef]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural Practice and Environmental Impacts on the Flavonoid Composition of Grapes and Wine: A Review of Recent Research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Santos, J.A. Viticultural Irrigation Demands under Climate Change Scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- Reineke, A.; Thiéry, D. Grapevine Insect Pests and Their Natural Enemies in the Age of Global Warming. J. Pest. Sci. 2016, 89, 313–328. [Google Scholar] [CrossRef]
- Juroszek, P.; Von Tiedemann, A. Linking Plant Disease Models to Climate Change Scenarios to Project Future Risks of Crop Diseases: A Review. J. Plant Dis. Prot. 2015, 122, 3–15. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. A Review: Soil Management, Sustainable Strategies and Approaches to Improve the Quality of Modern Viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- Monteiro, E.; Gonçalves, B.; Cortez, I.; Castro, I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. Plants 2022, 11, 396. [Google Scholar] [CrossRef]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef] [PubMed]
- Pallotti, L.; Silvestroni, O.; Dottori, E.; Lattanzi, T.; Lanari, V. Effects of Shading Nets as a Form of Adaptation to Climate Change on Grapes Production: A Review. OENO One 2023, 57, 467–476. [Google Scholar] [CrossRef]
- Bernardo, S.; Dinis, L.-T.; Luzio, A.; Machado, N.; Gonçalves, A.; Vives-Peris, V.; Pitarch-Bielsa, M.; López-Climent, M.F.; Malheiro, A.C.; Correia, C.; et al. Optimising Grapevine Summer Stress Responses and Hormonal Balance by Applying Kaolin in Two Portuguese Demarcated Regions. OENO One 2021, 55, 207–222. [Google Scholar] [CrossRef]
- Dinis, L.T.; Malheiro, A.C.; Luzio, A.; Fraga, H.; Ferreira, H.; Gonçalves, I.; Pinto, G.; Correia, C.M.; Moutinho-Pereira, J. Improvement of Grapevine Physiology and Yield under Summer Stress by Kaolin-Foliar Application: Water Relations, Photosynthesis and Oxidative Damage. Photosyntetica 2018, 56, 641–651. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Vanden Heuvel, J.E. Influence of Grapevine Training Systems on Vine Growth and Fruit Composition: A Review. Am. J. Enol. Vitic. 2009, 60, 251–268. [Google Scholar] [CrossRef]
- Delrot, S.; Grimplet, J.; Carbonell-Bejerano, P.; Schwandner, A.; Bert, P.-F.; Bavaresco, L.; Costa, L.D.; Di Gaspero, G.; Duchêne, E.; Hausmann, L.; et al. Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change. In Genomic Designing of Climate-Smart Fruit Crops; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 157–270. ISBN 978-3-319-97946-5. [Google Scholar]
- Zhang, L.; Marguerit, E.; Rossdeutsch, L.; Ollat, N.; Gambetta, G.A. The Influence of Grapevine Rootstocks on Scion Growth and Drought Resistance. Theor. Exp. Plant Physiol. 2016, 28, 143–157. [Google Scholar] [CrossRef]
- Reynolds, A.G. Grapevine Breeding in France–a Historical Perspective. In Grapevine Breeding Programs for the Wine Industry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 65–76. ISBN 978-1-78242-075-0. [Google Scholar]
- Cardone, M.F.; D’Addabbo, P.; Alkan, C.; Bergamini, C.; Catacchio, C.R.; Anaclerio, F.; Chiatante, G.; Marra, A.; Giannuzzi, G.; Perniola, R.; et al. Inter-Varietal Structural Variation in Grapevine Genomes. Plant J. 2016, 88, 648–661. [Google Scholar] [CrossRef] [PubMed]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The Challenge of Adapting Grapevine Varieties to Climate Change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef]
- Myles, S. Improving Fruit and Wine: What Does Genomics Have to Offer? Trends Genet 2013, 29, 190–196. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Silva, M.; Coito, J.L.; Rocheta, M.P.; Amâncio, S. Design of a Custom RT-qPCR Array for Assignment of Abiotic Stress Tolerance in Traditional Portuguese Grapevine Varieties. Front. Plant Sci. 2017, 8, 1835. [Google Scholar] [CrossRef]
- Biasi, R.; Brunori, E.; Ferrara, C.; Salvati, L. Assessing Impacts of Climate Change on Phenology and Quality Traits of Vitis vinifera L.: The Contribution of Local Knowledge. Plants 2019, 8, 121. [Google Scholar] [CrossRef]
- Duchêne, E.; Butterlin, G.; Dumas, V.; Merdinoglu, D. Towards the Adaptation of Grapevine Varieties to Climate Change: QTLs and Candidate Genes for Developmental Stages. Theor. Appl. Genet 2012, 124, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Delfino, P.; Zenoni, S.; Imanifard, Z.; Tornielli, G.B.; Bellin, D. Selection of Candidate Genes Controlling Veraison Time in Grapevine Through Integration of Meta-QTL and Transcriptomic Data. BMC Genom. 2019, 20, 739. [Google Scholar] [CrossRef]
- Gashu, K.; Sikron Persi, N.; Drori, E.; Harcavi, E.; Agam, N.; Bustan, A.; Fait, A. Temperature Shift Between Vineyards Modulates Berry Phenology and Primary Metabolism in a Varietal Collection of Wine Grapevine. Front. Plant Sci. 2020, 11, 588739. [Google Scholar] [CrossRef] [PubMed]
- Stratonovitch, P.; Semenov, M.A. Heat Tolerance around Flowering in Wheat Identified as a Key Trait for Increased Yield Potential in Europe under Climate Change. J. Exp. Bot. 2015, 66, 3599–3609. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.C.; Gonçalves, E.F.; Marques da Silva, J.; Costa, J.M. Potential Phenotyping Methodologies to Assess Inter- and Intravarietal Variability and to Select Grapevine Genotypes Tolerant to Abiotic Stress. Front. Plant Sci. 2021, 12, 718202. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Fernandes, F.; Pinto-Carnide, O.; Valentão, P.; Falco, V.; Martín, J.P.; Ortiz, J.M.; Arroyo-García, R.; Andrade, P.B.; Castro, I. Identification of Vitis vinifera L. Grape Berry Skin Color Mutants and Polyphenolic Profile. Food Chem. 2016, 194, 117–127. [Google Scholar] [CrossRef]
- Ferreira, V.; Matus, J.T.; Pinto-Carnide, O.; Carrasco, D.; Arroyo-García, R.; Castro, I. Genetic Analysis of a White-to-Red Berry Skin Color Reversion and Its Transcriptomic and Metabolic Consequences in Grapevine (Vitis vinifera Cv. ‘Moscatel Galego’). BMC Genom. 2019, 20, 952. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.M.; Egipto, R.; Zarrouk, O.; Chaves, M.M. Carry-over Effects on Bud Fertility Makes Early Defoliation a Risky Crop-Regulating Practice in Mediterranean Vineyards. Aust. J. Grape Wine Res. 2020, 26, 290–299. [Google Scholar] [CrossRef]
- Chitwood, D.H.; Rundell, S.M.; Li, D.Y.; Woodford, Q.L.; Yu, T.T.; Lopez, J.R.; Greenblatt, D.; Kang, J.; Londo, J.P. Climate and Developmental Plasticity: Interannual Variability in Grapevine Leaf Morphology. Plant Physiol. 2016, 170, 1480–1491. [Google Scholar] [CrossRef]
- Demmings, E.M.; Williams, B.R.; Lee, C.-R.; Barba, P.; Yang, S.; Hwang, C.-F.; Reisch, B.I.; Chitwood, D.H.; Londo, J.P. Quantitative Trait Locus Analysis of Leaf Morphology Indicates Conserved Shape Loci in Grapevine. Front. Plant Sci. 2019, 10, 1373. [Google Scholar] [CrossRef] [PubMed]
- Gómez-del-Campo, M.; Ruiz, C.; Baeza, P.; Lissarrague, J.R. Drought Adaptation Strategies of Four Grapevine Cultivars (Vitis vinifera L.): Modification of the Properties of the Leaf Area. OENO One 2003, 37, 131. [Google Scholar] [CrossRef]
- Karami, L.; Ghaderi, N.; Javadi, T. Morphological and Physiological Responses of Grapevine (Vitis vinifera L.) to Drought Stress and Dust Pollution. Folia Hortic. 2017, 29, 231–240. [Google Scholar] [CrossRef]
- Ju, Y.; Yue, X.; Zhao, X.; Zhao, H.; Fang, Y. Physiological, Micro-Morphological and Metabolomic Analysis of Grapevine (Vitis vinifera L.) Leaf of Plants under Water Stress. Plant Physiol. Biochem. 2018, 130, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Greer, D.H.; Weedon, M.M. The Impact of High Temperatures on Vitis vinifera Cv. Semillon Grapevine Performance and Berry Ripening. Front. Plant Sci. 2013, 4, 491. [Google Scholar] [CrossRef] [PubMed]
- Salem-Fnayou, A.B.; Bouamama, B.; Ghorbel, A.; Mliki, A. Investigations on the Leaf Anatomy and Ultrastructure of Grapevine (Vitis Vinifera) under Heat Stress. Microsc. Res. Tech. 2011, 74, 756–762. [Google Scholar] [CrossRef]
- Castagna, A.; Csepregi, K.; Neugart, S.; Zipoli, G.; Večeřová, K.; Jakab, G.; Jug, T.; Llorens, L.; Martínez-Abaigar, J.; Martínez-Lüscher, J.; et al. Environmental Plasticity of Pinot Noir Grapevine Leaves: A Trans-European Study of Morphological and Biochemical Changes along a 1,500-Km Latitudinal Climatic Gradient. Plant Cell Environ. 2017, 40, 2790–2805. [Google Scholar] [CrossRef]
- Monteiro, A.; Teixeira, G.; Santos, C.; Lopes, C.M. Leaf Morphoanatomy of Four Red Grapevine Cultivars Grown under the Same Terroir. E3S Web Conf. 2018, 50, 01038. [Google Scholar] [CrossRef]
- Boso, S.; Gago, P.; Alonso-Villaverde, V.; Santiago, J.L.; Martinez Rodriguez, M.C. Density and Size of Stomata in the Leaves of Different Hybrids (Vitis sp.) and Vitis vinifera Varieties. Vitis 2016, 55, 902. [Google Scholar] [CrossRef]
- Hopper, D.W.; Ghan, R.; Cramer, G.R. A Rapid Dehydration Leaf Assay Reveals Stomatal Response Differences in Grapevine Genotypes. Hortic. Res. 2014, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Matkowski, H.; Daszkowska-Golec, A. Update on Stomata Development and Action Under Abiotic Stress. Front Plant Sci. 2023, 14, 1270180. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.O.; Montoro, A.; Moran, M.A.; Aphalo, P.J. Elevated Temperature Altered the Reaction Norms of Stomatal Conductance in Field-Grown Grapevine. Agric. For. Meteorol. 2012, 165, 35–42. [Google Scholar] [CrossRef]
- Prieto, J.A.; Lebon, É.; Ojeda, H. Stomatal Behavior of Different Grapevine Cultivars in Response to Soil Water Status and Air Water Vapor Pressure Deficit. OENO One 2010, 44, 9. [Google Scholar] [CrossRef]
- Villalobos-González, L.; Alarcón, N.; Bastías, R.; Pérez, C.; Sanz, R.; Peña-Neira, Á.; Pastenes, C. Photoprotection Is Achieved by Photorespiration and Modification of the Leaf Incident Light, and Their Extent Is Modulated by the Stomatal Sensitivity to Water Deficit in Grapevines. Plants 2022, 11, 1050. [Google Scholar] [CrossRef] [PubMed]
- Soar, C.J.; Speirs, J.; Maffei, S.M.; Penrose, A.B.; Mccarthy, M.G.; Loveys, B.R. Grape Vine Varieties Shiraz and Grenache Differ in Their Stomatal Response to VPD: Apparent Links with ABA Physiology and Gene Expression in Leaf Tissue. Aust. J. Grape Wine Res. 2006, 12, 2–12. [Google Scholar] [CrossRef]
- Beis, A.; Patakas, A. Differences in Stomatal Responses and Root to Shoot Signalling between Two Grapevine Varieties Subjected to Drought. Funct. Plant Biol. 2010, 37, 139. [Google Scholar] [CrossRef]
- Gisbert, C.; Soler, J.X.; Fos, M.; Intrigliolo, D.S.; Yuste, A.; Picó, B.; Torrent, D.; Peiró, R. Characterization of Local Mediterranean Grapevine Varieties for Their Resilience to Semi-Arid Conditions under a Rain-Fed Regime. Agronomy 2022, 12, 2234. [Google Scholar] [CrossRef]
- Vaz, M.; Coelho, R.; Rato, A.; Samara-Lima, R.; Silva, L.L.; Campostrini, E.; Mota, J.B. Adaptive Strategies of Two Mediterranean Grapevines Varieties (Aragonez Syn. Tempranillo and Trincadeira) Face Drought: Physiological and Structural Responses. Theor. Exp. Plant Physiol. 2016, 28, 205–220. [Google Scholar] [CrossRef]
- Dinis, L.-T.; Correia, C.M.; Ferreira, H.F.; Gonçalves, B.; Gonçalves, I.; Coutinho, J.F.; Ferreira, M.I.; Malheiro, A.C.; Moutinho-Pereira, J. Physiological and Biochemical Responses of Semillon and Muscat Blanc à Petits Grains Winegrapes Grown under Mediterranean Climate. Sci. Hortic. 2014, 175, 128–138. [Google Scholar] [CrossRef]
- Hochberg, U.; Rockwell, F.E.; Holbrook, N.M.; Cochard, H. Iso/Anisohydry: A Plant–Environment Interaction Rather Than a Simple Hydraulic Trait. Trends Plant Sci. 2018, 23, 112–120. [Google Scholar] [CrossRef]
- Hugalde, I.; Vila, H. Isohydric or Anisohydric Behavior in Grapevines... An Endless Controversy? Rev. Investig. Agric. 2014, 40, 75–82. [Google Scholar]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under Deficit Irrigation: Hints from Physiological and Molecular Data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef]
- Villalobos-González, L.; Muñoz-Araya, M.; Franck, N.; Pastenes, C. Controversies in Midday Water Potential Regulation and Stomatal Behavior Might Result From the Environment, Genotype, and/or Rootstock: Evidence From Carménère and Syrah Grapevine Varieties. Front. Plant Sci. 2019, 10, 1522. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, U.; Degu, A.; Fait, A.; Rachmilevitch, S. Near Isohydric Grapevine Cultivar Displays Higher Photosynthetic Efficiency and Photorespiration Rates under Drought Stress as Compared with near Anisohydric Grapevine Cultivar. Physiol. Plant 2013, 147, 443–452. [Google Scholar] [CrossRef]
- Moutinho-Pereira, J.; Gonçalves, B.; Bacelar, E.; Boaventura Cunha, J.; Countinho, J.; Correira, C.M. Effects of Elevated CO2 on Grapevine (Vitis vinifera L.): Physiological and Yield Attributes. VITIS J. Grapevine Res. 2015, 48, 159. [Google Scholar] [CrossRef]
- Rienth, M.; Vigneron, N.; Darriet, P.; Sweetman, C.; Burbidge, C.; Bonghi, C.; Walker, R.P.; Famiani, F.; Castellarin, S.D. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario–A Review. Front. Plant Sci. 2021, 12, 643258. [Google Scholar] [CrossRef]
- Dimopoulos, N.; Tindjau, R.; Wong, D.C.J.; Matzat, T.; Haslam, T.; Song, C.; Gambetta, G.A.; Kunst, L.; Castellarin, S.D. Drought Stress Modulates Cuticular Wax Composition of the Grape Berry. J. Exp. Bot. 2020, 71, 3126–3141. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, S.; Hernández-Montes, E.; Dhingra, A.; Keller, M. Impact of Heat Stress, Water Stress, and Their Combined Effects on the Metabolism and Transcriptome of Grape Berries. Sci. Rep. 2023, 13, 9907. [Google Scholar] [CrossRef] [PubMed]
- Brito, C.; Dinis, L.-T.; Bernardo, S.; Correia, C.; Moutinho-Pereira, J. A Comparative Physiological Study of Three Red Varieties in the Demarcated Douro Region. Sci. Hortic. 2024, 327, 112873. [Google Scholar] [CrossRef]
- Bota, J.; Tomás, M.; Flexas, J.; Medrano, H.; Escalona, J.M. Differences among Grapevine Cultivars in Their Stomatal Behavior and Water Use Efficiency under Progressive Water Stress. Agric. Water Manag. 2016, 164, 91–99. [Google Scholar] [CrossRef]
- Rocheta, M.; Coito, J.L.; Ramos, M.J.N.; Carvalho, L.; Becker, J.D.; Carbonell-Bejerano, P.; Amâncio, S. Transcriptomic Comparison between Two Vitis vinifera L. Varieties (Trincadeira and Touriga Nacional) in Abiotic Stress Conditions. BMC Plant Biol. 2016, 16, 224. [Google Scholar] [CrossRef] [PubMed]
- Matus, J.T.; Cavallini, E.; Loyola, R.; Höll, J.; Finezzo, L.; Dal Santo, S.; Vialet, S.; Commisso, M.; Roman, F.; Schubert, A.; et al. A Group of Grapevine MYBA Transcription Factors Located in Chromosome 14 Control Anthocyanin Synthesis in Vegetative Organs with Different Specificities Compared with the Berry Color Locus. Plant J. 2017, 91, 220–236. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Mu, L.; Yan, G.-L.; Liang, N.-N.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef]
- Landi, M.; Tattini, M.; Gould, K.S. Multiple Functional Roles of Anthocyanins in Plant-Environment Interactions. Environ. Exp. Bot. 2015, 119, 4–17. [Google Scholar] [CrossRef]
- Movahed, N.; Pastore, C.; Cellini, A.; Allegro, G.; Valentini, G.; Zenoni, S.; Cavallini, E.; D’Incà, E.; Tornielli, G.B.; Filippetti, I. The Grapevine VviPrx31 Peroxidase as a Candidate Gene Involved in Anthocyanin Degradation in Ripening Berries under High Temperature. J. Plant Res. 2016, 129, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.H.; Rafique, R.; Rafique, T.; Naseer, M.; Khalil, U.; Rafique, R. Effect of Climate Change on Polyphenols Accumulation in Grapevine. In Biochemistry; A. Badria, F., Ed.; IntechOpen: London, UK, 2022; Volume 26, ISBN 978-1-83969-346-5. [Google Scholar]
- Pillet, J.; Egert, A.; Pieri, P.; Lecourieux, F.; Kappel, C.; Charon, J.; Gomès, E.; Keller, F.; Delrot, S.; Lecourieux, D. VvGOLS1 and VvHsfA2 Are Involved in the Heat Stress Responses in Grapevine Berries. Plant Cell Physiol. 2012, 53, 1776–1792. [Google Scholar] [CrossRef]
- Medici, A.; Laloi, M.; Atanassova, R. Profiling of Sugar Transporter Genes in Grapevine Coping with Water Deficit. FEBS Lett. 2014, 588, 3989–3997. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yan, J.; Li, Q.; Deng, Z.; Liu, S.; Lu, J.; Zhang, Y. Sucrose Transporters of Resistant Grapevine Are Involved in Stress Resistance. Plant Mol. Biol. 2019, 100, 111–132. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.S.; Zhang, C.; Kurjogi, M.M.; Pervaiz, T.; Zheng, T.; Zhang, C.; Lide, C.; Shangguan, L.; Fang, J. Insights into Grapevine Defense Response against Drought as Revealed by Biochemical, Physiological and RNA-Seq Analysis. Sci. Rep. 2017, 7, 13134. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Guo, D.; Pei, M.; Wei, T.; Liu, H.; Bian, L.; Yu, K.; Zhang, G.; Yu, Y. Identification of the DEAD-Box RNA Helicase Family Members in Grapevine Reveals That VviDEADRH25a Confers Tolerance to Drought Stress. J. Integr. Agric. 2022, 21, 1357–1374. [Google Scholar] [CrossRef]
- Liu, G.-T.; Wang, J.-F.; Cramer, G.; Dai, Z.-W.; Duan, W.; Xu, H.-G.; Wu, B.-H.; Fan, P.-G.; Wang, L.-J.; Li, S.-H. Transcriptomic Analysis of Grape (Vitis vinifera L.) Leaves during and after Recovery from Heat Stress. BMC Plant Biol. 2012, 12, 174. [Google Scholar] [CrossRef] [PubMed]
- Rocheta, M.; Becker, J.D.; Coito, J.L.; Carvalho, L.; Amâncio, S. Heat and Water Stress Induce Unique Transcriptional Signatures of Heat-Shock Proteins and Transcription Factors in Grapevine. Funct. Integr. Genom. 2014, 14, 135–148. [Google Scholar] [CrossRef]
- Ji, X.-R.; Yu, Y.-H.; Ni, P.-Y.; Zhang, G.-H.; Guo, D.-L. Genome-Wide Identification of Small Heat-Shock Protein (HSP20) Gene Family in Grape and Expression Profile during Berry Development. BMC Plant Biol. 2019, 19, 433. [Google Scholar] [CrossRef] [PubMed]
- Vandeleur, R.K.; Mayo, G.; Shelden, M.C.; Gilliham, M.; Kaiser, B.N.; Tyerman, S.D. The Role of Plasma Membrane Intrinsic Protein Aquaporins in Water Transport through Roots: Diurnal and Drought Stress Responses Reveal Different Strategies between Isohydric and Anisohydric Cultivars of Grapevine. Plant Physiol. 2009, 149, 445–460. [Google Scholar] [CrossRef]
- Shelden, M.C.; Vandeleur, R.; Kaiser, B.N.; Tyerman, S.D. A Comparison of Petiole Hydraulics and Aquaporin Expression in an Anisohydric and Isohydric Cultivar of Grapevine in Response to Water-Stress Induced Cavitation. Front. Plant Sci. 2017, 8, 1893. [Google Scholar] [CrossRef]
- Lukšić, K.; Mucalo, A.; Smolko, A.; Brkljačić, L.; Marinov, L.; Hančević, K.; Ozretić Zoković, M.; Bubola, M.; Maletić, E.; Karoglan Kontić, J.; et al. Biochemical Response and Gene Expression to Water Deficit of Croatian Grapevine Cultivars (Vitis vinifera L.) and a Specimen of Vitis Sylvestris. Plants 2023, 12, 3420. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Sun, Y.; Li, X.; Guo, D.; Zhao, L.; Ma, C.; Wang, L.; Wang, S. β-Ketoacyl-CoA Synthase Improves the Drought Tolerance of Root Restricted Grown Grapevines by Regulating the Cuticular Wax Biosynthesis. Sci. Hortic. 2023, 307, 111494. [Google Scholar] [CrossRef]
- Zombardo, A.; Mica, E.; Puccioni, S.; Perria, R.; Valentini, P.; Mattii, G.B.; Cattivelli, L.; Storchi, P. Berry Quality of Grapevine under Water Stress as Affected by Rootstock–Scion Interactions through Gene Expression Regulation. Agronomy 2020, 10, 680. [Google Scholar] [CrossRef]
Variety | Berry Colour | Country | Growth Conditions | Type of Stress | Observations | Tolerance to Stress | Reference |
---|---|---|---|---|---|---|---|
Albarin Blanco | White | Spain | Field trial | Summer stress | Medium stomatal length, width, and density. | Unconclusive | [192] |
Alvarinho | White | Spain | Field trial | Summer stress | Medium stomatal length, width, and density. | Unconclusive | [192] |
Alvarinho | White | Portugal | Field trial | Summer stress | Smaller leaves, epidermal cells with intermediate thickness, thinner waxy cuticle. Lower stomatal density. | Sensitive | [105] |
Alicante Bouschet | Red | Spain | Field trial | Summer stress | Medium stomatal length, width, and density. | Unconclusive | [192] |
Antão Vaz | Red | Portugal | Field trial | Summer stress | Response varied between different field conditions, being sensitive to light stress, and moderately sensitive to drought and heat stresses in one, while being sensitive to light, drought, and heat under harsher conditions. | Sensitive | [173] |
Aragonez | Red | Portugal | Field trial | Drought | Higher leaf temperature, lower stomatal conductance, gradual decrease of water potential, lower water use efficiency, lower net photosynthetic values. | Unconclusive | [107] |
Aragonez | Red | Portugal | Field trial | Drought | Drought regime led to decreased stomatal conductance. Higher values of total leaf chlorophyll maintained during drought. Reduced maximum assimilation rate, maximum and apparent quantum yield. Increased reflectance under drought. Decreased brix. | Less tolerant | [201] |
Aragonez | Red | Portugal | Field trial | Summer stress | Highest chlorophyll and carotenoid content, lowest net photosynthetic rate, lowest soluble sugar and starch content, lower net photosynthetic rate, lowest stomatal conductance. | Less tolerant | [76] |
Aragonez | Red | Portugal | Field trial | Summer stress | Higher concentration of chlorophylls and photochemical response, low stem water potential, low values of stomatal conductance and net CO2 assimilation rate. | Tolerant | [212] |
Aragonez | Red | Spain | Field trial | Drought | High concentration of photosynthetic pigments and high values of photosynthetic parameters, low intrinsic water use efficiency, higher stomatal conductance, and net CO2 assimilation. | Sensitive | [213] |
Arcos | Red | Spain | Field trial | Summer stress | Lower stomatal conductance values and is considered one of the most stressed varieties. High stomatal density coupled with lower stomatal dimensions. | Tolerant | [200] |
Argamussa | White | Spain | Field trial | Drought | Under progressive water depletion presented the maximum intrinsic water use efficiency. | Tolerant | [213] |
Arinto | White | Portugal | Field trial | Summer stress | Larger leaves, epidermal cells with intermediate thickness, thinner waxy cuticle. Lower stomatal density. | Sensitive | [105] |
Bastardo | Red | Portugal | Field trial | Summer stress | Overall tolerant to light, drought, and heat stresses. Response varied between different field conditions. | Unconclusive | [173] |
Bobal | Red | Spain | Field trial | Summer stress | Higher stomatal conductance values, high intrinsic water use efficiency. | Tolerant | [200] |
Cabernet Sauvignon | Red | Chile | Pots, open-air | Drought | High stomatal sensitivity to water deficit, lower reductions in photorespiration. | Sensitive | [197] |
Cabernet Sauvignon | Red | Portugal | Field trial | Summer stress | Smaller leaves, high leaf density, and small and/or sunken stomata. | Tolerant | [191] |
Cabernet Sauvignon | Red | Portugal | Field trial | Drought | Medium leaf temperature, lowest water use efficiency, highest number of stomata, highest specific leaf area. | Unconclusive | [107] |
Cabernet Sauvignon | Red | Spain | Field trial | Drought | Low minimum stem water potential values, low intrinsic water use efficiency, tight control of stomatal aperture. | Sensitive | [213] |
Cabernet Sauvignon | Red | Spain | Field trial | Summer stress | Medium stomatal length, width, and density. | Unconclusive | [192] |
Cabernet Sauvignon | Red | USA | Greenhouse/laboratory | Drought/leaf dehydration | Intermediate leaf water loss, medium stomatal density, low stomatal sensitivity to water loss. | Tolerant | [193] |
Caiño Blanco | White | Spain | Field trial | Summer stress | Medium stomatal length, width, and density. | Unconclusive | [192] |
Caiño Tinto | Red | Spain | Field trial | Summer stress | Medium stomatal length, width, and density. | Unconclusive | [192] |
Callet | Red | Spain | Field trial | Drought | Low stem water potential values. | Sensitive | [213] |
Callet Blanc | White | Spain | Field trial | Drought | Low stem water potential values. | Sensitive | [213] |
Carménère | Red | Chile | Pots, open-air | Drought | Lower stomatal sensitivity to water deficit, reduced in light. | Tolerant | [197] |
Castañal | Red | Spain | Field trial | Summer stress | Low stomatal length, width, and density. | Unconclusive | [192] |
Castelão | Red | Portugal | Field trial | Summer stress | Response varied between different field conditions. Sensitive to light, heat, and drought in one, and tolerant to heat and drought in another. | Unconclusive | [173] |
Cerceal Branco | White | Portugal | Field trial | Summer stress | Tolerant to light and drought stresses and sensitive to heat stress under two different field conditions. | Tolerant | [173] |
Chardonnay | White | Chile | Pots, open-air | Drought | Lower stomatal sensitivity to water deficit. | Tolerant | [197] |
Chardonnay | White | Spain | Field trial | Drought | High minimum stem water potential values, low intrinsic water use efficiency. | Sensitive | [213] |
Chasselas Dorée | White | Spain | Field trial | Summer stress | Medium stomatal length and width and with high stomatal density. | Unconclusive | [192] |
Ekigaïna | Red | France | Field trial/greenhouse | Summer stress/drought | Isohydric behaviour, strongest stomatal response to changes in leaf water potential, reduction in fertility. | Sensitive | [196] |
Encruzado | White | Portugal | Field trial | Summer stress | Medium-sized leaves, thicker upper epidermal cells and intermediate thickness of lower epidermal cells, intermediate waxy cuticle. High stomatal density. | Unconclusive | [105] |
Encruzado | White | Portugal | Field trial | Summer stress | Tolerant to light and drought stresses and sensitive to heat stress in two different field conditions. | Tolerant | [173] |
Escursac | Red | Spain | Field trial | Drought | Highest intrinsic water use efficiency, tight control of stomatal aperture. | Less tolerant | [213] |
Esperó de Gall | Red | Spain | Field trial | Drought | Lowest leaf photosynthesis value. | Sensitive | [213] |
Fernão Pires | White | Portugal | Field trial | Summer stress | Sensitive to heat, light, and drought stresses in both field conditions. | Sensitive | [173] |
Forcallat | Red | Spain | Field trial | Summer stress | Lower stomatal conductance values and is considered one of the most stressed varieties. Highest intrinsic water use efficiency, high stomatal density coupled with lower stomatal dimensions. Berries with moderate total acid concentration and anthocyanin content. | Tolerant | [200] |
Galmeter | Red | Spain | Field trial | Drought | High intrinsic water use efficiency, lowest stomatal conductance. | Sensitive | [213] |
Garnacha | Red | Spain | Field trial | Summer stress | Higher stomatal conductance values. | Tolerant | [200] |
Giró Ros | White | Spain | Field trial | Drought | Low stem water potential values, tight control of stomatal aperture. Under progressive water depletion presented the maximum intrinsic water use efficiency. | Tolerant | [213] |
Godello | White | Spain | Field trial | Summer stress | Medium stomatal length, width and density. | Unconclusive | [192] |
Gorgollasa | Red | Spain | Field trial | Drought | High intrinsic water use efficiency, low stem water potential values. | Sensitive | [213] |
Grenache | Red | France | Field trial/greenhouse | Summer stress/drought | Isohydric behaviour; incomplete maturation. | Sensitive | [196] |
Grenache | Red | Spain | Field trial | Drought | Moderate intrinsic water use efficiency and stomatal behaviour. | Sensitive | [213] |
Grenache | Red | USA | Greenhouse/laboratory | Drought/leaf dehydration | Intermediate leaf water loss, high stomatal density, intermediate stomatal sensitivity to water loss. | Tolerant | [193] |
Jacquez | Red | Spain | Field trial | Summer stress | Low stomatal length, width, and density. | Unconclusive | [192] |
Macabeo | White | Portugal | Field trial | Summer stress | Medium-sized leaves with thicker upper and lower epidermal cells, thicker upper cuticle. High stomatal density. | Tolerant | Teixeira et al. (2018) |
Macabeo | White | Spain | Field trial | Drought | Highest minimum stem water potential values, highest stomatal conductance, lowest intrinsic water use efficiency. | Sensitive | [213] |
Malvasia de Banyalbufar | White | Spain | Field trial | Drought | Low stem water potential values. | Sensitive | [213] |
Manto Negro | Red | Spain | Field trial | Drought | Tight control of stomatal aperture, low intrinsic water use efficiency. | Tolerant | [213] |
Marselan | Red | France | Field trial/greenhouse | Summer stress/drought | Anisohydric behaviour. Maintained gas exchange under drought stress, complete maturation under severe water restriction. | Less tolerant | [196] |
Mavrodafni | Red | Greece | Pots, sheltered | Drought | Steep decline in predawn water potential and lower values of stomatal conductance and photosynthetic rate. Highest leaf ABA concentration along with high pH values, promoting stomatal closure. | Less tolerant | [199] |
Jaen | Red | Spain | Field trial | Summer stress | Medium stomatal length, width, and density. | Unconclusive | [192] |
Merlot | Red | Spain | Field trial | Drought | Low stem water potential values. | Sensitive | [213] |
Moll | White | Spain | Field trial | Drought | Tight control of stomatal aperture. | Sensitive | [213] |
Monastrell | Red | Spain | Field trial | Summer stress | Higher stomatal conductance values, high intrinsic water use efficiency. | Tolerant | [200] |
Moscatel Graúdo | White | Portugal | Field trial | Summer stress | Medium-sized leaves with high specific leaf area. Thinner upper epidermal cells and intermediate lower epidermal cells, thinner upper cuticle. High stomatal density. | Unconclusive | [105] |
Moscatel Graúdo | White | Portugal | Field trial | Summer stress | Different response under different field conditions. Sensitive to heat, light and drought stresses in one, and only sensitive to drought in another. | Tolerant | [173] |
Mourvèdre | Red | France | Field trial/greenhouse | Summer stress/drought | Isohydric behaviour, reduction in fertility. | Sensitive | [196] |
Muscat Italia | White | Tunisia | Greenhouse | Heat | Increased leaf blade thickness, decreased palisade parenchyma thickness, folds in the adaxial surface. Elongated convex epidermal cells with less sinuous shape. Irregular giant pores on the adaxial surface. Chloroplasts suffered alterations in shape, thylakoid membrane orientation, grana stacking, starch granules and plastoglobuli. | Unconclusive | [189] |
Muscat-à-Petits-Grains | White | Portugal | Field trial | Summer stress | Medium-sized leaves with thinner upper and lower epidermal cells, thinner upper cuticle. High stomatal density. | Unconclusive | [105] |
Muscat-à-Petits-Grains | White | Portugal | Field trial | Summer stress | Higher midday leaf water potential, higher soluble sugars and lower total phenol concentration, higher efficiency of PSII, higher reflectance indexes, higher concentration of Ca2+ and Mg2+, higher stomatal density. | Tolerant | [202] |
Razegui | Red | Tunisia | Greenhouse | Heat | Increased leaf blade thickness, decreased palisade parenchyma thickness, folds in the adaxial surface involving both cuticle and epidermal cells. Elongated convex epidermal cells with less sinuous shape. Irregular giant pores on the adaxial surface. Chloroplasts suffered alterations in shape, thylakoid membrane orientation, grana stacking, starch granules and plastoglobuli. | Unconclusive | [189] |
Sabater | Red | Spain | Field trial | Drought | Tight control of stomatal aperture. | Sensitive | [213] |
Savatiano | White | Greece | Pots, sheltered | Drought | Lower values of predawn water potential, stomatal conductance, and photosynthetic rate. Higher leaf ABA concentrations promoting stomatal closure at early stress stages. | Tolerant | [199] |
Sauvignon Blanc | White | Chile | Pots, open-air | Drought | High stomatal sensitivity to water deficit, lower reductions in photorespiration. | Sensitive | [197] |
Semillon | White | Portugal | Field trial | Summer stress | Lower midday water potential, lower stomatal conductance in the afternoon, higher non-photochemical quenching, higher concentration of K+, higher soluble sugar and lower photosynthetic pigments, higher total phenols concentration, higher thiobarbituric acid-reactive substance. | Sensitive | [202] |
Shiraz | Red | USA | Greenhouse/pots/laboratory | Drought/leaf dehydration | Leaves lost the most water, highest rate of dehydration, lowest stomatal density, slow response to water loss via stomatal closure, stomata more sensitive to ABA application. | Sensitive | [193] |
Syrah | Red | France | Field trial/greenhouse | Summer stress/drought | Anisohydric behaviour, maintained gas exchange under drought stress, complete maturation under severe water restriction. | Tolerant | [196] |
Syrah | Red | Portugal | Field trial | Summer stress | High leaf density, and small and/or sunken stomata. | Tolerant | [191] |
Syrah | Red | Portugal | Field trial | Drought (regulated deficit irrigation) | Highest leaf temperature, lowest stomatal conductance, highest water use efficiency, lowest number of stomata. | Unconclusive | [107] |
Syrah | Red | Spain | Field trial | Drought | Low stem water potential values, low intrinsic water use efficiency. | Sensitive | [213] |
Tinta Barroca | Red | Portugal | Field trial | Summer stress | Sensitive to light stress, being consistent in two different locations. | Sensitive | [173] |
Tinto Cão | Red | Portugal | Field trial | Summer stress | Lower chlorophyll and carotenoid content but higher Chl a/b ratio, highest starch content, higher R:FR transmittance and reflectance, lowest leaf water potential. | Tolerant | [76] |
Tinto Cão | Red | Portugal | Field Trial | Summer stress | Better adjustment of water status, minimized light-harvesting system, lower photosynthetic productivity, lower chlorophyll concentration, reduced photochemical efficiency, higher investment in photoprotective mechanisms. | Tolerant | [212] |
Torrontés | White | Spain | Field trial | Summer stress | Higher stomatal density, length, and width. | Unconclusive | [192] |
Touriga Franca | Red | Portugal | Field trial | Summer stress | Response varied between different locations. Sensitive to heat and drought and tolerant to high light in one location, while being tolerant to heat and light but sensitive to drought in another. High potential of adaptability. | Tolerant | [173] |
Touriga Franca | Red | Portugal | Field trial | Drought (regulated deficit irrigation) | Lowest leaf temperature, highest stomatal conductance, low water use efficiency, lowest leaf area. | Tolerant (w/irrigation) | [107] |
Touriga Nacional | Red | Portugal | Field trial | Summer stress | Smaller leaf size with lower dry weight and stomata density. | Less tolerant | [191] |
Touriga Nacional | Red | Portugal | Growth chamber/field | Summer stress | High tolerance to heat and light stresses. No response to stress under controlled growth conditions. Fewer responsive genes under stress conditions. | Tolerant | [214] |
Touriga Nacional | Red | Portugal | Growth chamber | Heat stress | Rapid and increased redox potential, increased photosynthetic pigments, increased ABA concentration, increased expression of heat-shock protein genes. | Tolerant | [97] |
Touriga Nacional | Red | Portugal | Field trial | Summer stress | Moderate steam water potential, higher photosynthetic pigments concentration along with better photochemical responses. Gas exchange parameters remained stable throughout the analysis. Efficient use of radiation and CO2. | Tolerant | [212] |
Touriga Nacional | Red | Portugal | Field trial | Summer stress | Highest soluble sugar content, highest water potential, highest net photosynthetic rate, highest stomatal conductance. | Tolerant | [76] |
Treixadura | White | Spain | Field trial | Summer stress | Longer stomata. Stomatal density, length and width varied between years. | Unconclusive | [192] |
Trincadeira | Red | Portugal | Field trial | Summer stress | Larger leaf size, higher leaf, and stomata density. | Less tolerant | [191] |
Trincadeira | Red | Portugal | Growth chamber/field | Summer stress | Significant decreases in photosynthetic parameters. Higher number of responsive genes under stress, and a greater transcriptome reprogramming. | Sensitive | [214] |
Trincadeira | Red | Portugal | Growth chamber | Heat stress | Slow and insufficient response to increased photosynthetic pigments, increased ABA concentration, increased expression of heat-shock protein and ROS scavenger genes. | Sensitive | [97] |
Trincadeira | Red | Portugal | Field trial | Drought | Higher leaf temperature, lower stomatal conductance, gradual decrease of water potential, lower water use efficiency, lower net photosynthetic values. | Unconclusive | [107] |
Trincadeira | Red | Portugal | Field trial | Drought (different irrigation regimes) | Drought plants recovered more rapidly and efficiently after irrigation. Drought regime led to decreased stomatal conductance and total chlorophyll. Reduced maximum assimilation rate, maximum and apparent quantum yield. Increased reflectance under drought. Increased Brix. | Tolerant | [201] |
Valent Blanc | White | Spain | Field trial | Drought | Low stem water potential values. | Sensitive | [213] |
Valent Negre | Red | Spain | Field trial | Drought | High intrinsic water use efficiency, low stem water potential values. | Sensitive | [213] |
Veremeta | Red | Spain | Field trial | Summer stress | Higher stomatal conductance values. | Tolerant | [200] |
Vinater Blanc | White | Spain | Field trial | Drought | Under progressive water depletion presented the high intrinsic water use efficiency. | Sensitive | [213] |
Vinater Negre | Red | Spain | Field trial | Drought | Low stem water potential values, under progressive water depletion presented high intrinsic water use efficiency. | Tolerant | [213] |
Viosinho | White | Portugal | Field trial | Summer stress | Smaller leaves with thicker upper epidermal cells and intermediate lower epidermal cells, thicker upper cuticle. Medium stomatal density. | Tolerant | [105] |
Viosinho | White | Portugal | Field trial | Summer stress | Tolerant to heat, drought, and light stresses. | Tolerant | [173] |
Gene | Protein | Organ | Type of Stress | Function/Hypothetical Function | Results | Reference |
---|---|---|---|---|---|---|
CER1 | Fatty acyl-CoA reductase | Fruit | Drought | Aliphatic wax biosynthetic pathway | Upregulated | [210] |
CER2 | Fatty acyl-CoA reductase | Fruit | Drought | Aliphatic wax biosynthetic pathway | Upregulated | [210] |
CER3 | Fatty acyl-CoA reductase | Fruit | Drought | Aliphatic wax biosynthetic pathway | Upregulated | [210] |
CER4 | Fatty acyl-CoA reductase | Fruit | Drought | Aliphatic wax biosynthetic pathway | Upregulated | [210] |
CER10 | Fatty acyl-CoA reductase | Fruit | Drought | Aliphatic wax biosynthetic pathway | Upregulated | [210] |
Myb5a | Transcription factor | Fruit | Drought | Affects the expression of several structural genes of the flavonoid pathway | Upregulated | [139] |
MybC | Transcription factor/affects the expression of several structural genes of the flavonoid pathway | Fruit | Drought | Affects the expression of several structural genes of the flavonoid pathway | Upregulated | [139] |
VvCHS1 | Chalcone synthase | Fruit | Drought | Involved in flavonoid metabolism | No differences | [139] |
VvCHS2 | Chalcone synthase | Fruit | Drought | Involved in flavonoid metabolism | Upregulated | [139] |
VvCHS3 | Chalcone synthase | Fruit | Drought | Involved in flavonoid metabolism | Upregulated | [139] |
VvDFR | Dihydroflavonol reductase | Fruit | Heat | Involved in flavonoid metabolism | Downregulated | [218] |
VvF3′5′Hi | Flavonoid-3′5′-hydroxylase i | Fruit | Heat | Catalyse the hydroxylation of flavonoids | Downregulated | [218] |
Fruit | Drought | Upregulated | [139] | |||
VvF3′H | Flavonoid 3′-hydroxylase | Fruit | Drought | Catalyse the hydroxylation of flavonoids | Upregulated | [139] |
VvF3′H A | Flavonoid 3′-hydroxylase | Fruit | Drought | Phenylpropanoid pathway | No differences were observed | [232] |
VvF3′H B | Flavonoid 3′-hydroxylase | Fruit | Drought | Phenylpropanoid pathway | Upregulated | [232] |
VvF3H | Flavonoid 3-hydroxylase | Fruit | Drought | Catalyse the hydroxylation of flavonoids | Upregulated | [139] |
VvFLS | Flavonol synthase | Fruit | Drought | Involved in flavonol biosynthesis | Upregulated in grafted grapevines | [232] |
VvGIN2 | Vacuolar invertase | Leaf | Drought | Involved in sugar transport | Upregulated | [221] |
VvGOLS1 | Galactinol synthase | Fruit | Heat | Biosynthesis of raffinose family oligosaccharides | Upregulated | [220] |
VvHsfA2 | Transcription factor | Fruit | Heat | Transcriptional factor of heat-stress related genes | Upregulated | [220] |
Leaf | Heat | Upregulated in the heat tolerant variety | [87] | |||
VvHSFA7 | Transcription factor | Leaf | Heat | Transcriptional factor of heat-stress related genes | Upregulated in the heat tolerant variety | [87] |
VvHSFA9 | Transcription factor | Leaf | Heat | Transcriptional factor of heat-stress related genes | Upregulated in the heat tolerant variety | [87] |
VvHT1 | Hexose transporter | Leaf | Drought | Involved in sugar transport | Downregulated | [221] |
VvHT5 | Hexose transporter | Leaf | Drought | Involved in sugar transport | Upregulated | [221] |
VvKCS12 | β-ketoacyl-CoA synthase | Leaf | Drought | Involved in cuticular wax biosynthesis | Upregulated | [231] |
VvKCS14 | β-ketoacyl-CoA synthase | Leaf | Drought | Involved in cuticular wax biosynthesis | Upregulated | [231] |
VvMSA | ABA-, stress-, and ripening-induced protein | Leaf | Drought | Gene expression regulator under stress conditions | Upregulated | [221] |
VvMYB14 | Transcription factor | Fruit | Drought | Involved in secondary metabolism | Upregulated | [232] |
VvMYB4R1 | Transcription factor | Fruit | Drought | Transcriptional factor involved in stilbene biosynthesis | Upregulated | [232] |
VvMybA | Transcription factor | Fruit | Heat | Regulate the expression of UFGT | Downregulated | [218] |
Fruit | Drought | Upregulated | [139] | |||
VvMYBC2-L3 | Transcription factor | Fruit | Drought | Transcriptional repressor in the synthesis of anthocyanins | Downregulated | [232] |
VvNAC44 | NAC domain-containing protein | Fruit | Drought | Involved in berry ripening and stress response | Upregulated | [232] |
VvNAC60 | NAC domain-containing protein | Fruit | Drought | Involved in berry ripening and stress response | Upregulated | [232] |
VvOMT | O-methyltransferase | Fruit | Drought | Phenylpropanoid pathway | Upregulated | [139] |
VvPAL | Phenylalanine ammonia-lyase | Fruit | Drought | Involved in the first step of the phenylpropanoid pathway | Upregulated | [232] |
VvPIP1;1 | Plasma membrane aquaporin | Leaf | Drought | Involved in the transport of water and small solutes | Differed between varieties | [229] |
VvPIP2;1 | Plasma membrane aquaporin | Leaf | Drought | Involved in the transport of water and small solutes | Downregulated | [229] |
VvPIP2;2 | Plasma membrane aquaporin | Leaf | Drought | Involved in the transport of water and small solutes | Differed between varieties | [229] |
VvPIP2;3 | Plasma membrane aquaporin | Leaf | Drought | Involved in the transport of water and small solutes | Differed between varieties | [229] |
VvPrx31 | Class III peroxidase | Fruit | Heat | Putative role in anthocyanin degradation | Upregulated | [218] |
VvPsbP | Extrinsic subunit of photosystem II | Leaf | Heat | “Photosynthetic” pathway | Upregulated in the heat tolerant variety | [87] |
VvsHSP | Small transcription factor | Leaf | Heat | Transcriptional factor of heat-stress related genes | Upregulated in the heat tolerant variety | [87] |
VvSUC11 | Sucrose transporter | Leaf | Drought | Involved in sugar transport | Upregulated | [221] |
VvTIP1;1 | Tonoplast aquaporins | Leaf | Drought | Involved in the transport of water and small solutes | Differed between varieties | [229] |
VvTIP2;1 | Tonoplast aquaporins | Leaf | Drought | Involved in the transport of water and small solutes | Downregulated | [229] |
VvUFGT | UDP-glucose:flavonoid 3-O-glucosyltransferase | Fruit | Heat | Glycosylation of anthocyanidins | Downregulated | [218] |
Fruit | Drought | Upregulated | [139] | |||
WSD1 | Wax ester synthase/diacylglycerol acyltransferase 1 | Fruit | Drought | Aliphatic wax biosynthetic pathway | Upregulated | [210] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baltazar, M.; Castro, I.; Gonçalves, B. Adaptation to Climate Change in Viticulture: The Role of Varietal Selection—A Review. Plants 2025, 14, 104. https://doi.org/10.3390/plants14010104
Baltazar M, Castro I, Gonçalves B. Adaptation to Climate Change in Viticulture: The Role of Varietal Selection—A Review. Plants. 2025; 14(1):104. https://doi.org/10.3390/plants14010104
Chicago/Turabian StyleBaltazar, Miguel, Isaura Castro, and Berta Gonçalves. 2025. "Adaptation to Climate Change in Viticulture: The Role of Varietal Selection—A Review" Plants 14, no. 1: 104. https://doi.org/10.3390/plants14010104
APA StyleBaltazar, M., Castro, I., & Gonçalves, B. (2025). Adaptation to Climate Change in Viticulture: The Role of Varietal Selection—A Review. Plants, 14(1), 104. https://doi.org/10.3390/plants14010104