Exploring Co-Occurrence Patterns to Understand Epiphyte–Liana Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Liana and Epiphyte Occurrences
3.2. The Influence of Forest Type and Tree Size on Lianas and Epiphytes
3.3. Interaction Networks Between Lianas, Epiphytes, and Trees
3.4. Spatial Patterns of Trees Hosting Lianas and Epiphytes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parthasarathy, N. Biodiversity of Lianas, Sustainable Development and Biodiversity; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Zotz, G. Plants on Plants—The Biology of Vascular Epiphytes; Springer: Cham, Switzerland, 2016; 282p. [Google Scholar]
- Schnitzer, S.A.; Bongers, F. The ecology of lianas and their role in forests. Trends Ecol. Evol. 2002, 17, 223–230. [Google Scholar] [CrossRef]
- Woods, C.L. Primary ecological succession in vascular epiphytes: The species accumulation model. Biotropica 2017, 49, 452–460. [Google Scholar] [CrossRef]
- Putz, F.E. The natural history of lianas on Barro Colorado Island, Panama. Ecology 1984, 65, 1713–1724. [Google Scholar] [CrossRef]
- Putz, F.E.; Mooney, H.A. The Biology of Vines; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Schnitzer, S.A.; Dalling, J.W.; Carson, W.P. The impact of lianas on tree regeneration in tropical forest canopy gaps: Evidence for an alternative pathway of gap-phase regeneration. J. Ecol. 2000, 88, 655–666. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; Mangan, S.A.; Hubbell, S.P. The lianas of Barro Colorado Island, Panama. In Ecology of Lianas; Schnitzer, S.A., Bongers, F., Burnham, R.J., Putz, F.E., Eds.; Wiley Blackwell: Oxford, UK, 2015; pp. 76–90. [Google Scholar]
- Ceballos, S.J.; Chacoff, N.P.; Malizia, A. Interaction network of vascular epiphytes and trees in a subtropical forest. Acta Oecol. 2016, 77, 152–159. [Google Scholar] [CrossRef]
- Letcher, S.G. Patterns of liana succession in tropical forests. In Ecology of Lianas; Schnitzer, S.A., Bongers, F., Burnham, R.J., Putz, F.E., Eds.; John Wiley& Sons: Chichester, UK, 2015; pp. 116–130. [Google Scholar]
- Dewalt, S.J.; Schnitzer, S.A.; Denslow, J.S. Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. J. Trop. Ecol. 2000, 16, 1–19. [Google Scholar] [CrossRef]
- Letcher, S.G.; Chazdon, R.L. Lianas and self-supporting plants during tropical forest succession. For. Ecol. Manag. 2009, 257, 2150–2156. [Google Scholar] [CrossRef]
- Barry, K.E.; Schnitzer, S.A.; van Breugel, M.; Hall, J.S. Rapid liana colonization along a secondary forest chronosequence. Biotropica 2015, 47, 672–680. [Google Scholar] [CrossRef]
- Barthlott, W.; Schmit-Neuerburg, V.; Nieder, J.; Engwald, S. Diversity and abundance of vascular epiphytes: A comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecol. 2001, 152, 145–156. [Google Scholar] [CrossRef]
- Cascante-Marín, A.; Wolf, J.H.D.; Oostermeijer, J.G.B.; den Nijs, J.C.M.; Sanahuja, O.; Durán-Apuy, A. Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area. Basic Appl. Ecol. 2006, 7, 520–532. [Google Scholar] [CrossRef]
- Shoo, L.P.; Freebody, K.; Kanowski, J.; Catterall, C.P. Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration. Conserv. Biol. 2015, 30, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Burns, K.C. Meta-community structure of vascular epiphytes in a temperate rainforest. Botany 2008, 86, 1252–1259. [Google Scholar] [CrossRef]
- Woods, C.L.; DeWalt, S.J. The conservation value of secondary forests for vascular epiphytes in Central Panama. Biotropica 2013, 45, 119–127. [Google Scholar] [CrossRef]
- Woods, C.L.; Cardelús, C.L.; DeWalt, S.J. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J. Ecol. 2015, 103, 421–430. [Google Scholar] [CrossRef]
- Magrach, A.; Rodríguez-Pérez, J.; Campbell, M.; Laurance, W.F. Edge effects shape the spatial distribution of lianas and epiphytic ferns in Australian tropical rain forest fragments. Appl. Veg. Sci. 2014, 17, 754–764. [Google Scholar] [CrossRef]
- Bruy, D.; Ibanez, T.; Munzinger, J.; Isnard, S. Abundance, richness and composition of lianas in forest communities along an elevation gradient in New Caledonia. Plant Ecolog. Divers. 2017, 10, 469–481. [Google Scholar] [CrossRef]
- Kelly, D.L. Epiphytes and climbers of a Jamaican rain forest: Vertical distribution, life forms and life histories. J. Biogeogr. 1985, 12, 223–241. [Google Scholar] [CrossRef]
- DeWalt, S.J.; Schnitzer, S.A.; Alves, L.F.; Bongers, F.; Burnham, R.J.; Cai, Z.; Carson, W.P.; Chave, J.; Chuyong, G.B.; Costa, F.R.C.; et al. Biogeographical patterns of liana abundance and diversity. In Ecology of Lianas; Schnitzer, S.A., Bongers, F., Burnham, R.J., Putz, F.E., Eds.; John Wiley& Sons: Chichester, UK, 2015; pp. 131–146. [Google Scholar]
- Tanaka, H.O.; Itioka, T. Ants inhabiting myrmecophytic ferns regulate the distribution of lianas on emergent trees in a Bornean tropical rainforest. Biol. Lett. 2011, 7, 706–709. [Google Scholar] [CrossRef]
- Malizia, A.; Campanello, P.; Villagra, M.; Ceballos, S. Geographical, Taxonomical and Ecological Aspects of Lianas in Subtropical Forests of Argentina. In Biodiversity of Lianas, Sustainable Development and Biodiversity; Parthasarathy, N., Ed.; Springer: Cham, Switzerland, 2015; pp. 17–41. [Google Scholar] [CrossRef]
- Ceballos, S.J. Vascular epiphytes in Argentinian Yungas: Distribution, diversity, and ecology. Bot. Rev. 2022, 89, 91–113. [Google Scholar] [CrossRef]
- Malizia, A.; Grau, H.R. Liana-host tree associations in a subtropical montane forest of north western Argentina. J. Trop. Ecol. 2006, 22, 331–339. [Google Scholar] [CrossRef]
- Grau, H.R.; Paolini, L.; Malizia, A.; Carilla, J. Distribución, estructura y dinámica de los bosques de la Sierra de San Javier. In Ecología de Una Transición Natural Urbana: El Gran San Miguel de Tucumán y la Sierra de San Javier; Grau, H.R., Ed.; EDUNT: Tucumán, Argentina, 2010; pp. 38–48. [Google Scholar]
- Grau, H.R.; Arturi, M.F.; Brown, A.D.; Aceñolaza, P.G. Floristic and structural patterns along a chronosequence of secondary forest succession in Argentinean subtropical montane forests. For. Ecol. Manag. 1997, 95, 161–171. [Google Scholar] [CrossRef]
- Brown, A.D.; Grau, H.R.; Malizia, L.R.; Grau, A. Argentina. In Bosques Nublados del Neotrópico; Kappelle, M., Brown, A.D., Eds.; Instituto Nacional de Biodiversidad: San José, Puerto Rico, 2001; pp. 623–659. [Google Scholar]
- Hunzinger, H. Hydrology of montane forests in the Sierra de San Javier, Tucuman, Argentina. Mt. Res. Dev. 1997, 17, 299–308. [Google Scholar] [CrossRef]
- Cabrera, A.; Willink, A. Biogeografía de América Latina, 2nd ed.; OEA: Washington, DC, USA, 1980. [Google Scholar]
- Grau, H.R. Scale-dependent relationships between treefalls and species richness in a Neotropical montane forest. Ecology 2002, 83, 2591–2601. [Google Scholar] [CrossRef]
- Ceballos, S.J. Vascular epiphyte communities in secondary and mature forests of a subtropical montane area. Acta Oecol. 2020, 105, 103571. [Google Scholar] [CrossRef]
- Ceballos, S.J.; Malizia, A.; Chacoff, N. Alternative pathways of liana communities in the forests of northwestern Argentina. Biotropica 2020, 52, 533–540. [Google Scholar] [CrossRef]
- Malizia, A.; Grau, H.R. Landscape context and microenvironment influences on liana communities within treefall gaps. J. Veg. Sci. 2008, 19, 597–604. [Google Scholar] [CrossRef]
- Ceballos, S.J.; Malizia, A. Liana density declined and basal area increased over 12 y in a subtropical montane forest in Argentina. J. Trop. Ecol. 2017, 33, 241–248. [Google Scholar] [CrossRef]
- Gerwing, J.J.; Schnitzer, S.A.; Burnham, R.J.; Bongers, F.; Chave, J.; DeWalt, S.J.; Ewango, C.E.; Foster, R.; Kenfack, D.; Martínez-Ramos, M.; et al. A standard protocol for liana censuses. Biotropica 2006, 38, 256–261. [Google Scholar] [CrossRef]
- Flores-Palacios, A.; García-Franco, J.G. Sampling methods for vascular epiphytes: Their effectiveness in recording species richness and frequency. Selbyana 2001, 22, 181–191. Available online: https://www.jstor.org/stable/41760095 (accessed on 14 September 2024).
- Acebey, A.; Krömer, T.; Maass, B.L.; Kessler, M. Ecoregional distribution of potentially useful species of Araceae and Bromeliaceae as non-timber forest products in Bolivia. Biodivers. Conserv. 2010, 19, 2553–2564. [Google Scholar] [CrossRef]
- Johansson, D. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr. Suecica 1974, 59, 1–136. [Google Scholar]
- Dormann, C.F.; Fründ, J.; Blüthgen, N.; Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open J. Ecol. 2009, 2, 7–24. [Google Scholar] [CrossRef]
- Baddeley, A.; Turner, R. Spatstat: An R package for analyzing spatial point patterns. J. Stat. Softw. 2005, 12, 1–42. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org (accessed on 14 September 2024).
- Malizia, A. Host tree preference of vascular epiphytes and climbers in a subtropical montane cloud forest of Northwest Argentina. Selbyana 2003, 24, 196–205. Available online: https://www.jstor.org/stable/41760133 (accessed on 14 September 2024).
- Grau, H.R.; Aragón, R. Árboles invasores de la Sierra de San Javier, Tucumán, Argentina. In Ecología de Árboles Exóticos en las Yungas Argentinas; Grau, H.R., Ed.; LIEY: Tucumán, Argentina, 2000; pp. 5–20. [Google Scholar]
- Ceballos, S.J.; Blundo, C.; Malizia, A.; Osinaga Acosta, O.; Carilla, J. Dynamics of tree mortality in subtropical montane forests of Northwestern Argentina. For. Ecol. Manag. 2021, 497, 119528. [Google Scholar] [CrossRef]
- Hietz, P.; Hietz-Seifert, U. Structure and ecology of epiphyte communities of a cloud forest in central Veracruz, Mexico. J. Veg. Sci. 1995, 6, 719–728. [Google Scholar] [CrossRef]
- Chittibabu, C.V.; Parthasarathy, N. Liana diversity and host relationships in a tropical evergreen forest in the Indian Eastern Ghats. Ecol. Res. 2001, 16, 519–529. [Google Scholar] [CrossRef]
- Nabe-Nielsen, J. Diversity and distribution of lianas in a neotropical rain forest, Yasuní National Park, Ecuador. J. Trop. Ecol. 2001, 17, 1–19. [Google Scholar] [CrossRef]
- Pérez-Salicrup, D.R.; De Meijere, W. Number of lianas per tree and number of trees climbed by lianas at Los Tuxtlas, Mexico. Biotropica 2005, 37, 153–156. [Google Scholar] [CrossRef]
- Martin, P.H.; Sherman, R.E.; Fahey, T.J. Forty years of tropical forest recovery from agriculture: Structure and floristics of secondary and old-growth riparian forests in the Dominican Republic. Biotropica 2004, 36, 297–317. [Google Scholar] [CrossRef]
Tree dbh Quartiles | No. of Trees | No. of Trees Hosting Lianas | No. of Trees Hosting Epiphytes | No. of Trees Shared Between Lianas and Epiphytes | Chi-Square Test (p-Value) |
---|---|---|---|---|---|
1 (<13.15 cm) | 528 | 123 | 130 | 27 (11.9%) | 0.44 (0.51) |
2 (>13.15–<19.75) | 535 | 156 | 223 | 62 (19.6%) | 0.24 (0.62) |
3 (>19.75–<33.76) | 521 | 178 | 319 | 111 (28.8%) | 0.08 (0.77) |
4 (>33.76) | 527 | 270 | 423 | 215 (45%) | 0.07 (0.79) |
Forest Patch Label | Forest Type | No. of Trees | No. of Trees Hosting Lianas | No. of Trees Hosting Epiphytes | No. of Trees Shared Between Lianas and Epiphytes |
---|---|---|---|---|---|
Guarán | Successional | 197 | 91 | 110 | 60 (42.6%) |
Nativo | Successional | 182 | 33 | 49 | 17 (26.2%) |
Reserva | Successional | 226 | 7 | 120 | 4 (3.3%) |
Mora | Successional | 141 | 82 | 43 | 32 (34.4%) |
NogalCebil | Successional | 146 | 24 | 95 | 21 (21.4%) |
Cedro | Successional | 147 | 73 | 55 | 37 (40.7%) |
Sismógrafo | Successional | 173 | 53 | 61 | 19 (20%) |
Frontino | Successional | 168 | 32 | 134 | 27 (19.4%) |
CuestaVieja | Mature | 190 | 63 | 147 | 47 (28.8%) |
Laderas | Mature | 135 | 61 | 90 | 52 (52.5%) |
Ha1 | Mature | 210 | 105 | 102 | 54 (35.3%) |
Ha6 | Mature | 196 | 103 | 86 | 45 (31.3%) |
Forest Patch Label | Estimate | z Value | p Value |
---|---|---|---|
Guarán | −0.18 | −0.85 | 0.39 |
Nativo | −0.39 | −1.10 | 0.27 |
Reserva | −2.84 | −7.31 | 0.001 * |
Mora | 0.64 | 2.88 | 0.003 * |
NogalCebil | −1.37 | −5.03 | 0.001 * |
Cedro | 0.28 | 1.02 | 0.31 |
Sismógrafo | −0.14 | −0.58 | 0.55 |
Frontino | −1.43 | −7.27 | 0.001 * |
CuestaVieja | −0.84 | −4.15 | 0.001 * |
Laderas | −0.38 | −2.34 | 0.09 |
Ha1 | 0.01 | 0.13 | 0.89 |
Ha6 | 0.18 | 1.20 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceballos, S.J.; Aráoz, E.; Rojas, T.N. Exploring Co-Occurrence Patterns to Understand Epiphyte–Liana Interactions. Plants 2025, 14, 140. https://doi.org/10.3390/plants14010140
Ceballos SJ, Aráoz E, Rojas TN. Exploring Co-Occurrence Patterns to Understand Epiphyte–Liana Interactions. Plants. 2025; 14(1):140. https://doi.org/10.3390/plants14010140
Chicago/Turabian StyleCeballos, Sergio J., Ezequiel Aráoz, and Tobías Nicolás Rojas. 2025. "Exploring Co-Occurrence Patterns to Understand Epiphyte–Liana Interactions" Plants 14, no. 1: 140. https://doi.org/10.3390/plants14010140
APA StyleCeballos, S. J., Aráoz, E., & Rojas, T. N. (2025). Exploring Co-Occurrence Patterns to Understand Epiphyte–Liana Interactions. Plants, 14(1), 140. https://doi.org/10.3390/plants14010140