Optimization of Irrigation Amount and Nitrogen Rate of Drip-Fertigated Sugar Beet Based on Sugar Yield, Nitrogen Use Efficiency, and Critical Nitrogen Dilution Curve in the Arid Southern Xinjiang of China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design
2.3. Measurements and Methods
2.3.1. Sample Analyses
Sugar Yield
N Concentration and Uptake
N Use Efficiency
Soil NO3-N Residue
2.3.2. Critical Nitrogen (Nc) Dilution Curve
Nc Dilution Curve Based on Dry Matter
Evaluation of Model Performance
Nitrogen Nutrition Index
2.4. Data Analysis and Statistics
3. Results
3.1. Sugar Yield, N Uptake, Use Efficiency, and Residual
3.1.1. Sugar Yield
3.1.2. N Uptake
3.1.3. NUPE, NUtE and NUE
3.1.4. Soil NO3-N Distribution in the 0–80 cm Soil Profile at Harvest
3.2. Nc Dilution Curve Model
3.2.1. Determination of Nc Dilution Curve Model
3.2.2. Validation of Nc Dilution Curve Model
3.2.3. N Nutrition Diagnosis Based on the Nc Dilution Curve Model
3.2.4. Relationship Between Relative Sugar Yield and NNI
4. Discussion
4.1. Effects of Irrigation Amount and N Rate on Sugar Yield, N Uptake and Use Efficiency, and Soil NO3-N Residue
4.1.1. Sugar Yield
4.1.2. N Uptake and Use Efficiency
4.1.3. Soil NO3-N Residue
4.2. Nc Dilution Curve Model
4.2.1. Nc Dilution Curve Model Based on Dry Matter
4.2.2. Optimal Irrigation Amount and N Rate Based on the Diagnosis of N Nutrition Status
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, X.; Xiang, Y.; Fan, J.; Zhang, F.; Hu, W.; Yan, F.; Guo, J.; Xiao, C.; Li, Y.; Cheng, H.; et al. Evaluation of cotton N nutrition status based on critical N dilution curve, N uptake and residual under different drip fertigation regimes in Southern Xinjiang of China. Agric. Water Manag. 2021, 256, 107134. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, L.; Xu, P.; Liu, D.; Hao, Y.; Wang, K.; Fan, H. Increasing nitrogen supply during limited irrigation improves drip-irrigated sugar beet growth, yield, and net return in arid areas. Field Crops Res. 2024, 299, 109646. [Google Scholar] [CrossRef]
- Nassah, H.; Zitouni, A.; Tibssirte, O.; Daghor, L.; Chatoui, H.; Midhat, L. Irrigation water needs analysis and management strategies in the Tadla irrigation zone: A case study of sugar beet plots. Ecol. Eng. Environ. Technol. 2025, 26, 200563. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, X.; Miao, Y.; Zhang, F.; Sun, Q. On-farm evaluation of the improved soil Nmin-based nitrogen management for summer maize in North China Plain. Agron. J. 2008, 100, 517–525. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Huang, G.; Zhang, R.; Yang, H. Nitrate nitrogen accumulation and leaching pattern at a winter wheat: Summer maize cropping field in the North China Plain. Environ. Earth Sci. 2016, 75, 118. [Google Scholar] [CrossRef]
- Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A. Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy. Environ. Pollut. 2022, 296, 118755. [Google Scholar] [CrossRef]
- Brye, K.R.; Norman, J.M.; Gower, S.T.; Bundy, L.G. Methodological limitations and N-budget differences among a restored tallgrass prairie and maize agroecosystems. Agric. Ecosyst. Environ. 2003, 97, 181–198. [Google Scholar] [CrossRef]
- Su, J.; Zhou, H.; Wang, K.; Fan, H.; Hou, Z. Effects of nitrogen fertilizer management on dry matter accumulation and yield of drip-irrigated sugar beet in arid areas. Agronomy 2024, 14, 1010. [Google Scholar] [CrossRef]
- Laufer, D.; Nielsen, O.; Wilting, P.; Koch, H.J.; Märländer, B. Yield and nitrogen use efficiency of fodder and sugar beet (Beta vulgaris L.) in contrasting environments of northwestern. Europe. Eur. J. Agron. 2016, 73, 124–132. [Google Scholar] [CrossRef]
- Brauns, B.; Bjerg, P.L.; Song, X.F.; Jakobsen, R. Field scale interaction and nutrition exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain. J. Environ. Sci. 2016, 45, 60–75. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, F.; Fan, X.; Fan, J.; Wang, Y.; Zou, H.; Wang, H.; Li, G. Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China. Agric. Water Manag. 2020, 243, 106440. [Google Scholar] [CrossRef]
- Kiymaz, S.; Ertek, A. Yield and quality of sugar beet (Beta vulgaris L.) at different water and nitrogen levels under the climatic conditions of Krsehir, Turkey. Agric. Water Manag. 2015, 158, 156–165. [Google Scholar] [CrossRef]
- Olfs, H.-W.; Blankenau, K.; Brentrup, F.; Jasper, J.; Link, A.; Lammel, J. Soil- and plant-based nitrogen-fertilizer recommendations in arable farming. J. Plant Nutr. Soil Sci. 2005, 168, 414–431. [Google Scholar] [CrossRef]
- Kunrath, T.R.; Lemaire, G.; Sadras, V.O.; Gastal, F. Water use efficiency in perennial forage species: Interactions between nitrogen nutrition and water deficit. Field Crops Res. 2018, 222, 1–11. [Google Scholar] [CrossRef]
- Tognetti, R.; Palladino, M.; Minnocci, A.; Delfine, S.; Alvino, A. The response of sugar beet to drip and low-pressure sprinkler irrigation in southern Italy. Agric. Water Manag. 2003, 60, 135–155. [Google Scholar] [CrossRef]
- Topak, R.; Acar, B.; Uyanöz, R.; Ceyhan, E. Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area. Agric. Water Manag. 2016, 176, 180–190. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, L.; Xu, P.; Liu, D.; Hao, Y.; Wang, K.; Fan, H. Silicon drip fertigation improved sugar beet root and canopy growth and alleviated water deficit stress in arid areas. Eur. J. Agron. 2024, 152, 127236. [Google Scholar] [CrossRef]
- Vamerali, T.; Guarise, M.; Ganis, A.; Mosca, G. Effects of water and nitrogen management on fibrous root distribution and turnover in sugar beet. Eur. J. Agron. 2009, 31, 69–76. [Google Scholar] [CrossRef]
- Tian, H.; Shi, S.; Wang, H.; Li, F.; Li, Z.; Alva, A.; Zhang, Z. Estimation of sugar beet aboveground biomass by band depth optimization of hyperspectral canopy reflectance. J. Indian Soc. Remote 2016, 45, 795–803. [Google Scholar] [CrossRef]
- King, B.A.; Tarkalson, D.; Bjorneberg, D. Evaluation of canopy temperature based crop water stress index for deficit irrigation management of sugar beet in semi-arid climate. Appl. Eng. Agric. 2024, 40, 15822. [Google Scholar] [CrossRef]
- Kiymaz, S.; Ertek, A. Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes. Agric. Water Manag. 2015, 158, 225–234. [Google Scholar] [CrossRef]
- Li, Z. The Physiological Effects on Coupling of Water and Nitrogen in Sugar Beets (Beta Vulgaris L.) with Drip Irrigation Under Plastic Mulch. Doctoral Dissertation, Inner Mongolia Agricultural University, Hohhot, China, 2018. (In Chinese). [Google Scholar]
- Bu, H.; Sharma, L.K.; Denton, A.; Franzen, D.W. Sugar beet yield and quality prediction at multiple harvest dates using active-optical sensors. Agron. J. 2016, 108, 273–284. [Google Scholar] [CrossRef]
- Bu, H.; Sharma, L.K.; Denton, A.; Franzen, D.W. Comparison of satellite imagery and ground-based active optical sensors as yield predictors in sugar beet, spring wheat, corn, and sunflower. Agron. J. 2017, 109, 299–308. [Google Scholar] [CrossRef]
- Greenwood, D.J.; Gastal, F.; Lemaire, G.; Draycott, A.; Millard, P.; Neeteson, J.J. Growth rate and %N of field grown crops: Theory and experiments. Ann Bot. 1991, 67, 181–190. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Z.; Ata-UI-Karim, S.T.; Xiao, J.; Liu, Z.; Qi, A.; Ning, D.; Nan, J.; Duan, A. Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements. Field Crops Res. 2016, 185, 59–68. [Google Scholar] [CrossRef]
- Soratto, R.P.; Sandaña, P.; Sousa, W.S.; Fernandes, A.M.; Ciampitti, I. Critical nitrogen dilution curve for estimating nitrogen nutrition index of common beans. Field Crops Res. 2025, 299, 109713. [Google Scholar] [CrossRef]
- Justes, E.; Mary, B.; Meynard, J.M.; Machet, J.M.; Thelierhuche, L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot. 1994, 74, 397–407. [Google Scholar] [CrossRef]
- Qiang, S.; Zhang, F.; Miles, D.; Zhang, Y.; Xiang, Y.; Fan, J. Determination of critical nitrogen dilution curve based on leaf area index for winter wheat in the Guanzhong Plain, Northwest China. J. Integr. Agr. 2019, 18, 2–13. [Google Scholar] [CrossRef]
- Ravier, C.; Quemada, M.; Jeuffroy, M.H. Use of a chlorophyll meter to assess nitrogen nutrition index during the growth cycle in winter wheat. Field Crops Res. 2017, 214, 73–82. [Google Scholar] [CrossRef]
- Greenwood, D.J.; Lemaire, G.; Gosse, G.; Cruz, P.; Draycott, A.; Neeteson, J.J. Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot. 1990, 66, 425–436. [Google Scholar] [CrossRef]
- Lemaire, G.; Gastal, F. N uptake and distribution in plant canopies. In Diagnosis of the Nitrogen Status in Crops; Lemaire, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 3–43. [Google Scholar]
- Lu, J.; Hu, T.; Li, Y.; Cui, X.; Cheng, M.; Yan, S.; Xiang, Y.; Fan, J.; Zhang, F.; Xiong, Y. Effects of different water management strategies on critical nitrogen concentration dilution curves, nitrogen accumulation, and grain yield in winter wheat. Agric. Commun. 2024, 2, 100052. [Google Scholar] [CrossRef]
- Li, W.; He, P.; Jin, J. Critical nitrogen curve and nitrogen nutrition index for spring maize in north-east China. J. Plant Nutr. 2012, 35, 1747–1761. [Google Scholar] [CrossRef]
- Yue, S.; Sun, F.; Meng, Q.; Zhao, R.; Li, F.; Chen, X.; Zhang, F.; Cui, Z. Validation of a critical nitrogen curve for summer maize in the North China Plain. Pedosphere 2014, 24, 76–83. [Google Scholar] [CrossRef]
- Yao, X.; Ata-Ul-Karim, S.T.; Zhu, Y.; Tian, Y.; Liu, X.; Cao, W. Development of critical nitrogen dilution curve in rice based on leaf dry matter. Eur. J. Agron. 2014, 55, 20–28. [Google Scholar] [CrossRef]
- Giletto, C.M.; Echeverría, H.E. Critical nitrogen dilution curve for processing potato in Argentinean humid pampas. Am. J. Potato Res. 2012, 89, 102–110. [Google Scholar] [CrossRef]
- Tei, F.; Benincasa, P.; Guiducci, M. Critical nitrogen concentration in processing tomato. Eur. J. Agron. 2002, 18, 45–55. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, F.; Fan, J.; Hou, X.; Bai, W.; Liu, X.; Wang, Y.; Pan, X. Optimization of irrigation and nitrogen fertilization increases ash salt accumulation and ions absorption of drip-fertigated sugar beet in saline-alkali soils. Field Crops Res. 2021, 271, 108247. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Li, Y.; Zhou, M. Projections of water requirements of cotton and sugar beet in Xinjiang based on statistical downscaling model. Trans. Chin. Soc. Agric. Eng. 2014, 30, 70–79. [Google Scholar]
- Mahmoud, E.A.; Hassanin, M.A.; Borham, T.I.; Emara, E.I.R. Tolerance of some sugar beet varieties to water stress. Agric. Water Manag. 2018, 201, 144–151. [Google Scholar] [CrossRef]
- Ebmeyer, H.; Hoffmann, C.M. Efficiency of nitrogen uptake and utilization in sugar beet genotypes. Field Crops Res. 2021, 274, 108334. [Google Scholar] [CrossRef]
- Chilundo, M.; Joel, A.; Wesström, I.; Brito, R.; Messing, I. Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil. Agric. Water Manag. 2018, 199, 120–137. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G.; Durand, J.L.; Louarn, G. Chapter 8—Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In Crop Physiology; Academic Press: Cambridge, MA, USA, 2015; pp. 161–206. [Google Scholar]
- Fitzgerald, G.; Rodriguez, D.; Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index-The canopy chlorophyll content index (CCCI). Field Crops Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Ata-Ul-Karim, S.T.; Zhu, Y.; Yao, X.; Cao, W.X. Determination of critical nitrogen dilution curve based on leaf area index in rice. Field Crops Res. 2014, 167, 76–85. [Google Scholar] [CrossRef]
- Lemaire, G.; Jeuffroy, M.H.; Grancois, F. Diagnosis tool for plant and crop Nstatus in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Weeden, B.R. Potential of Sugar Beet on the Atherton Tableland: A Report for the Rural Industries Research and Development Corporation; RIRDC: Wagga Wagga, Australia, 2000. [Google Scholar]
- Ghimire, D.; Maharjan, B. Optimizing nitrogen management to enhance irrigated sugar beet yield and quality. Agron. J. 2024, 116, 2564–2572. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Milford, G.F.J.; Pocock, T.O.; Last, P.J.; Day, W. The dynamics of nitrogen uptake and its remobilization during the growth of sugar beet. J. Agric. Sci. 1986, 107, 145–154. [Google Scholar] [CrossRef]
- Quiñones, A.; Martínez-Alcántara, B.; Legaz, F. Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees. Agric. Ecosyst. Environ. 2007, 122, 399–409. [Google Scholar] [CrossRef]
- Rathke, G.; Behrens, T.; Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 2006, 117, 80–108. [Google Scholar] [CrossRef]
- Gorska, A.; Qing, Y.; Holbrook, N.M.; Zwieniecki, M.A. Nitrate control of root hydraulic properties in Plants: Translating local information to whole plant response. Plant Physiol. 2008, 148, 1159–1167. [Google Scholar] [CrossRef]
- Guo, J.; Fan, J.; Zhang, F.; Yan, S.; Zheng, J.; Wu, Y.; Li, J.; Wang, Y.; Sun, X.; Liu, X.; et al. Blending urea and slow-release nitrogen fertilizer increases dryland maize yield and nitrogen use efficiency while mitigating ammonia volatilization. Sci. Total Environ. 2021, 790, 148058. [Google Scholar] [CrossRef]
- Singh, A.; Rudnick, D.; Snow, D.; Misar, C.; Birru, G.; Proctor, C.; Puntel, L.; Iqbal, J. Intra-and inter-annual variability of nitrogen and irrigation management effects on nitrate leaching and maize yield in the Bazile Groundwater Management Area, Nebraska. Agric. Ecosyst. Environ. 2025, 381, 109463. [Google Scholar] [CrossRef]
- Badr, M.A.; Hussein, S.D.A.; Eltohamy, W.A.; Gruda, N. Nutrient uptake and yield of tomato under various methods of fertilizer application and levels of fertigation in arid lands. Gesunde Pflanzen 2010, 62, 11–19. [Google Scholar] [CrossRef]
- Ziadi, N.; Bélanger, G.; Claessens, A.; Lefebvre, L.; Cambouris, A.N.; Tremblay, N.; Parent, L.É. Determination of a critical nitrogen dilution curve for spring wheat. Agron. J. 2010, 102, 241–250. [Google Scholar] [CrossRef]
- Ziadi, N.; Brassard, M.; Bélanger, G.; Cambouris, A.N.; Tremblay, N.; Nolin, M.C.; Claessens, A.; Parent, L.É. Critical nitrogen curve and nitrogen nutrition index for corn in eastern Canada. Agron. J. 2008, 100, 271–276. [Google Scholar] [CrossRef]
- Fabbri, C.; Mancini, M.; Marta, A.D.; Orlandini, S.; Napoli, M. Integrating satellite data with a nitrogen nutrition curve for precision top-dress fertilization of durum wheat. Eur. J. Agron. 2020, 120, 126148. [Google Scholar] [CrossRef]
- Malnou, C.S.; Jaggard, K.W.; Sparkes, D.L. Nitrogen fertilizer and the efficiency of the sugar beet crop in late summer. Eur. J. Agron. 2008, 28, 47–56. [Google Scholar] [CrossRef]
- Qiang, S.; Zhang, F.; Xiang, Y.; Zhang, Y.; Yan, S.; Xing, Y. Simulation and validation of critical nitrogen dilution curve for summer maize in Guanzhong Plain during different rainfall years. Trans. Chin. Soc. Agric. Eng. 2015, 31, 168–175. [Google Scholar]
- Cheng, M.; He, J.; Wang, H.; Fan, J.; Xiang, Y.; Liu, X.; Liao, Z.; Tang, Z.; Abdelghany, A.E.; Zhang, F. Establishing critical nitrogen dilution curves based on leaf area index and aboveground biomass for greenhouse cherry tomato: A Bayesian analysis. Eur. J. Agron. 2022, 141, 126615. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yan, F.; Fan, J.; Zhang, F. Optimization of Irrigation Amount and Nitrogen Rate of Drip-Fertigated Sugar Beet Based on Sugar Yield, Nitrogen Use Efficiency, and Critical Nitrogen Dilution Curve in the Arid Southern Xinjiang of China. Plants 2025, 14, 2055. https://doi.org/10.3390/plants14132055
Wang Y, Yan F, Fan J, Zhang F. Optimization of Irrigation Amount and Nitrogen Rate of Drip-Fertigated Sugar Beet Based on Sugar Yield, Nitrogen Use Efficiency, and Critical Nitrogen Dilution Curve in the Arid Southern Xinjiang of China. Plants. 2025; 14(13):2055. https://doi.org/10.3390/plants14132055
Chicago/Turabian StyleWang, Ying, Fulai Yan, Junliang Fan, and Fucang Zhang. 2025. "Optimization of Irrigation Amount and Nitrogen Rate of Drip-Fertigated Sugar Beet Based on Sugar Yield, Nitrogen Use Efficiency, and Critical Nitrogen Dilution Curve in the Arid Southern Xinjiang of China" Plants 14, no. 13: 2055. https://doi.org/10.3390/plants14132055
APA StyleWang, Y., Yan, F., Fan, J., & Zhang, F. (2025). Optimization of Irrigation Amount and Nitrogen Rate of Drip-Fertigated Sugar Beet Based on Sugar Yield, Nitrogen Use Efficiency, and Critical Nitrogen Dilution Curve in the Arid Southern Xinjiang of China. Plants, 14(13), 2055. https://doi.org/10.3390/plants14132055