Synergistic Effects of Partial Substitution of Sludge with Cattle Manure and Straw on Soil Improvement and Pinus sylvestris var. mongolica Growth in Horqin Sandy Land, China
Abstract
1. Introduction
2. Results
2.1. Effects on Soil pH, Moisture Content, and Organic Carbon
2.2. Effects on Soil Total Nitrogen, Total Phosphorus, Ammonium Nitrogen, and Nitrate Nitrogen
2.3. Heavy Metal Concentrations in Amended Soils
2.4. Effects on Plant Basal Diameter, Height and Biomass
2.5. Effects of Amendments on Nutrient Content in Plant Tissues
3. Discussion
3.1. Effect of Amendment Application on Soil Properties
3.2. Influence of Amendments on the Growth of Pinus sylvestris var. mongolica
3.3. Implications for Pollution Risk Mitigation Mechanism via Partial Substitution Means
4. Materials and Methods
4.1. Study Site Description
4.2. Soil, Amendments, and Seedlings Preparation
4.3. Seedling Survey, Soil Sampling and Chemical Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, L.N.; Zhu, J.J.; Li, X.J.Y.; Wang, K.; Wang, G.C.; Sun, H.H. Transpiration of Pinus sylvestris var. mongolica trees at different positions of sand dunes in a semiarid sandy region of Northeast China. Trees–Struct. Funct. 2022, 36, 749–762. [Google Scholar] [CrossRef]
- Song, L.N.; Zhu, J.J.; Zheng, X.; Wang, K.; Zhang, J.X.; Hao, G.Y.; Wang, G.C.; Liu, J.H. Comparison of canopy transpiration between Pinus sylvestris var. mongolica and Pinus tabuliformis plantations in a semiarid sandy region of Northeast China. Agric. Forest Meteorol. 2022, 314, 108784. [Google Scholar] [CrossRef]
- Hu, Y.L.; Niu, Z.X.; Zeng, D.H.; Wang, C.Y. Soil amendment improves tree growth and soil carbon and nitrogen pools in mongolian pine plantations on post-mining land in Northeast China. Land Degrad. Dev. 2015, 26, 807–812. [Google Scholar] [CrossRef]
- Karaca, O.; Cameselle, C.; Reddy, K.R. Mine tailing disposal sites: Contamination problems, remedial options and phytocaps for sustainable remediation. Rev. Environ. Bio/Technol. 2018, 17, 205–228. [Google Scholar] [CrossRef]
- Achkir, A.; Aouragh, A.; El Mahi, M.; Lotfi, E.M.; Labjar, N.; El Bouch, M.; Ouahidi, M.L.; Badza, T.; Farhane, H.; El Moussaoui, T. Implication of sewage sludge increased application rates on soil fertility and heavy metals contamination risk. Emerg. Contam. 2023, 9, 100200. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, H.Y.; Zhang, Y.L.; Ran, D.D.; Wu, L.Q.; Wang, H.F.; Zeng, R.J. Effects of sewage sludge pretreatment methods on its use in agricultural applications. J. Hazard. Mater. 2022, 428, 128213. [Google Scholar] [CrossRef]
- Goswami, L.; Nath, A.; Sutradhar, S.; Bhattacharya, S.S.; Kalamdhad, A.; Vellingiri, K.; Kim, K.H. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. J. Environ. Manag. 2017, 200, 243–252. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Luz Cayuela, M.; Kammann, C.; Wrage-Moennig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef]
- Khan, N.; Bolan, N.; Jospeh, S.; Anh, M.T.L.; Meier, S.; Kookana, R.; Borchard, N.; Sánchez-Monedero, M.A.; Jindo, K.; Solaiman, Z.M. Complementing compost with biochar for agriculture, soil remediation and climate mitigation. Adv. Agron. 2023, 179, 1–90. [Google Scholar] [CrossRef]
- Bekchanova, M.; Campion, L.; Bruns, S.; Kuppens, T.; Lehmann, J.; Jozefczak, M.; Cuypers, A.; Malina, R. Biochar improves the nutrient cycle in sandy-textured soils and increases crop yield: A systematic review. Environ. Evid. 2024, 13, 3. [Google Scholar] [CrossRef]
- Henriques dos Santos Moraes, M.d.C.; de Medeiros, E.V.; de Andrade, D.d.S.; de Lima, L.D.; da Silva Santos, I.C.; Martins Filho, A.P. Microbial biomass and enzymatic activities in sandy soil cultivated with lettuce inoculated with plant growth promoter. Rev. Caatinga 2018, 31, 860–870. [Google Scholar] [CrossRef]
- Qian, S.X.; Zhou, X.R.; Fu, Y.K.; Song, B.; Yan, H.C.; Chen, Z.X.; Sun, Q.; Ye, H.Y.; Qin, L.; Lai, C. Biochar-compost as a new option for soil improvement: Application in various problem soils. Sci. Total Environ. 2023, 870, 162024. [Google Scholar] [CrossRef]
- Xu, Y.; Duan, X.; Wu, Y.N.; Huang, H.R.; Fu, T.C.; Chu, H.K.; Xue, S. Carbon sequestration potential and its main drivers in soils under alfalfa (Medicago sativa L.). Sci. Total Environ. 2024, 935, 17338. [Google Scholar] [CrossRef] [PubMed]
- GB 15618–2018; Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment, State Administration for Market Regulation: Beijing, China, 2018.
- Zhang, S.; Zhu, Q.; de Vries, W.; Ros, G.H.; Chen, X.; Muneer, M.A.; Zhang, F.; Wu, L. Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef]
- Abdalla, M.A.; Endo, T.; Maegawa, T.; Mamedov, A.; Yamanaka, N. Effectiveness of organic amendment and application thickness on properties of a sandy soil and sand stabilization. J. Arid Environ. 2020, 183, 104273. [Google Scholar] [CrossRef]
- Mattana, S.; Petrovicova, B.; Landi, L.; Gelsomino, A.; Cortes, P.; Ortiz, O.; Renella, G. Sewage sludge processing determines its impact on soil microbial community structure and function. Appl. Soil Ecol. 2014, 75, 150–161. [Google Scholar] [CrossRef]
- Prommer, J.; Wanek, W.; Hofhansl, F.; Trojan, D.; Offre, P.; Urich, T.; Schleper, C.; Sassmann, S.; Kitzler, B.; Soja, G.; et al. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS ONE 2014, 9, e86388. [Google Scholar] [CrossRef]
- Lloret, E.; Pascual, J.A.; Brodie, E.L.; Bouskill, N.J.; Insam, H.; Juarez, M.F.D.; Goberna, M. Sewage sludge addition modifies soil microbial communities and plant performance depending on the sludge stabilization process. Appl. Soil Ecol. 2016, 101, 37–46. [Google Scholar] [CrossRef]
- Dexter, A.R. Soil physical quality—Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Jiang, C.M.; Yu, W.T.; Ma, Q.; Xu, Y.G.; Zou, H. Alleviating global warming potential by soil carbon sequestration: A multi-level straw incorporation experiment from a maize cropping system in Northeast China. Soil Till. Res. 2017, 170, 77–84. [Google Scholar] [CrossRef]
- Malone, Z.; Berhe, A.A.; Ryals, R. Impacts of organic matter amendments on urban soil carbon and soil quality: A meta-analysis. J. Clean. Prod. 2023, 419, 138148. [Google Scholar] [CrossRef]
- Liang, W.; Wu, X.; Zhang, S.; Xing, Y.; Wang, R. Effect of organic amendments on soil water storage in the aeolian sandy land of Northeast China. In Proceedings of the 2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; pp. 1538–1540. [Google Scholar] [CrossRef]
- Shen, J.F.; Zhou, X.W.; Sun, D.S.; Fang, J.G.; Liu, Z.J.; Li, Z.M. Soil improvement with coal ash and sewage sludge: A field experiment. Environ. Geol. 2008, 53, 1777–1785. [Google Scholar] [CrossRef]
- Fernandez, A.L.; Sheaffer, C.C.; Wyse, D.L.; Staley, C.; Gould, T.J.; Sadowsky, M.J. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Sci. Total Environ. 2016, 566–567, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yang, G.; Ma, Y.; Qiao, S. Effects of different sand fixation plantations on soil properties in the Hunshandake Sandy Land, Eastern Inner Mongolia, China. Sci. Rep. 2024, 14, 27904. [Google Scholar] [CrossRef]
- He, P.; Fontana, S.; Sardans, J.; Peñuelas, J.; Gessler, A.; Schaub, M.; Rigling, A.; Li, H.; Jiang, Y.; Li, M.H. The biogeochemical niche shifts of Pinus sylvestris var. mongolica along an environmental gradient. Environ. Exp. Bot. 2019, 167, 103825. [Google Scholar] [CrossRef]
- Lei, Z.; Yu, D.; Zhou, F.; Zhang, Y.; Yu, D.; Zhou, Y.; Han, Y. Changes in soil organic carbon and its influencing factors in the growth of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land, Northeast China. Sci. Rep. 2019, 9, 16453. [Google Scholar] [CrossRef]
- Amend, A.S.; Matulich, K.L.; Martiny, J.B.H. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities. Front. Microbiol. 2015, 6, 109. [Google Scholar] [CrossRef]
- Eckstrom, K.; Barlow, J.W. Resistome metagenomics from plate to farm: The resistome and microbial composition during food waste feeding and composting on a Vermont poultry farm. PLoS ONE 2019, 14, e0219807. [Google Scholar] [CrossRef]
- Li, Q.; Ji, H.; Zhang, C.; Cui, Y.; Peng, C.; Chang, S.X.; Cao, T.; Shi, M.; Li, Y.; Wang, X.; et al. Biochar amendment alleviates soil microbial nitrogen and phosphorus limitation and increases soil heterotrophic respiration under long-term nitrogen input in a subtropical forest. Sci. Total Environ. 2024, 951, 175867. [Google Scholar] [CrossRef]
- Yahya, K.E.; Jia, Z.; Luo, W.; He, Y.; Ame, M.A. Enhancing salt leaching efficiency of saline-sodic coastal soil by rice straw and gypsum amendments in Jiangsu coastal area. Ain Shams Eng. J. 2022, 13, 101721. [Google Scholar] [CrossRef]
- Bai, J.; Sun, X.K.; Xu, C.B.; Ma, X.P.; Huang, Y.; Fan, Z.P.; Cao, X.Y. Effects of sewage sludge application on plant growth and soil characteristics at a Pinus sylvestris var. mongolica plantation in Horqin sandy land. Forests 2022, 13, 984. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, Y.; Yang, C.; Shen, Q.; Zhou, J.; Yang, L. Soil enzymatic activity and growth of rice and barley as influenced by organic manure in an anthropogenic soil. Geoderma 2003, 115, 149–160. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Souza, M.F.d.; Wang, X.; Chafik, Y.; Morabito, D.; Ronsse, F.; Ok, Y.S.; Meers, E. Dynamic performance of combined biochar from co-pyrolysis of pig manure with invasive weed: Effect of natural aging on Pb and As mobilization in polluted mining soil. Sci. Total Environ. 2024, 935, 173424. [Google Scholar] [CrossRef]
- Gul, I.; Manzoor, M.; Kallerhoff, J.; Arshad, M. Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery. Chemosphere 2020, 258, 127405. [Google Scholar] [CrossRef]
- Thongchai, A.; Meeinkuirt, W.; Taeprayoon, P.; Chelong, I.a. Effects of soil amendments on leaf anatomical characteristics of marigolds cultivated in cadmium-spiked soils. Sci. Rep. 2021, 11, 15909. [Google Scholar] [CrossRef]
- Wiafe, S.; Boahen, C.; Bandoh, T. Enhanced phytoremediation of heavy metals by soil-applied organic and inorganic amendments: Heavy metal phytoavailability, accumulation, and metal recovery. Soil Sediment Contamin. 2025, 34, 634–658. [Google Scholar] [CrossRef]
- Hu, X.J.; Liu, J.J.; Liang, A.Z.; Li, L.J.; Yao, Q.; Yu, Z.H.; Li, Y.S.; Jin, J.; Liu, X.B.; Wang, G.H. Conventional and conservation tillage practices affect soil microbial co-occurrence patterns and are associated with crop yields. Agric. Ecosyst. Environ. 2021, 319, 107534. [Google Scholar] [CrossRef]
- Lu, J.Y.; Yang, J.F.; Keitel, C.; Yin, L.M.; Wang, P.; Cheng, W.X.; Dijkstra, F.A. Belowground carbon efficiency for nitrogen and phosphorus acquisition varies between Lolium perenne and Trifolium repens and depends on phosphorus fertilization. Front. Plant Sci. 2022, 13, 927435. [Google Scholar] [CrossRef]
- Zhao, S.; van der Heijden, M.G.A.; Banerjee, S.; Liu, J.J.; Gu, H.D.; Zhou, N.; Yin, C.H.; Peng, B.; Liu, X.; Wang, B.Z.; et al. The role of halophyte-induced saline fertile islands in soil microbial biogeochemical cycling across arid ecosystems. Commun. Biol. 2024, 7, 1061. [Google Scholar] [CrossRef]
- Liu, Z.X.; Gu, H.D.; Liang, A.Z.; Li, L.J.; Yao, Q.; Xu, Y.X.; Liu, J.J.; Jin, J.; Liu, X.B.; Wang, G.H. Conservation tillage regulates the assembly, network structure and ecological function of the soil bacterial community in black soils. Plant Soil 2022, 472, 207–223. [Google Scholar] [CrossRef]
- Jing, H.; Liu, Y.; Wang, G.L.; Liu, G.B. Contrasting effects of nitrogen addition on rhizosphere soil CO2, N2O, and CH4 emissions of fine roots with different diameters from Pinus tabulaeformis forest using laboratory incubation. Sci. Total Environ. 2021, 780, 146298. [Google Scholar] [CrossRef]
- Wang, L.F.; Zhou, Y.; Chen, Y.M.; Xu, Z.F.; Zhang, J.; Liu, Y. Home-field advantage and ability alter labile and recalcitrant litter carbon decomposition in an alpine forest ecotone. Plant Soil 2023, 485, 213–225. [Google Scholar] [CrossRef]
- Hefner, M.; Baliga, V.; Amphay, K.; Ramos, D.; Hegde, V. Cardiometabolic modification of amyloid beta in alzheimer’s disease pathology. Front. Aging Neurosci. 2021, 13, 721858. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Cui, M.H.; Ren, Y.G.; Guo, J.C.; Zheng, Z.Y.; Liu, H. Towards understanding the mechanism of heavy metals immobilization in biochar derived from co-pyrolysis of sawdust and sewage sludge. Bull. Environ. Contam. Toxicol. 2020, 104, 489–496. [Google Scholar] [CrossRef]
- Lin, Y.X.; Ye, G.P.; Kuzyakov, Y.; Liu, D.Y.; Fan, J.B.; Ding, W.X. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 2019, 134, 187–196. [Google Scholar] [CrossRef]
- Qiu, S.D.; Zhang, D.D.; Ma, L.Y.; Li, Q.Y.; Wang, L.Y.; Wang, Y.D.; Wang, Y.C.; Xiong, S.Y.; Tan, L. Associations of metabolic syndrome with risks of dementia and cognitive impairment: A systematic review and meta-analysis. J. Alzheimers Dis. 2025, 105, 15–27. [Google Scholar] [CrossRef]
- Ye, G.P.; Lin, Y.X.; Luo, J.F.; Di, H.J.; Lindsey, S.; Liu, D.Y.; Fan, J.B.; Ding, W.X. Responses of soil fungal diversity and community composition to long-term fertilization: Field experiment in an acidic Ultisol and literature synthesis. Appl. Soil Ecol. 2020, 145, 103305. [Google Scholar] [CrossRef]
- Medynska-Juraszek, A.; Cwielag-Piasecka, I. Effect of biochar application on heavy metal mobility in soils impacted by copper smelting processes. Pol. J. Environ. Stud. 2020, 29, 1749–1757. [Google Scholar] [CrossRef]
- Zhou, G.P.; Chang, D.N.; Gao, S.J.; Liang, T.; Liu, R.; Cao, W.D. Co-incorporating leguminous green manure and rice straw drives the synergistic release of carbon and nitrogen, increases hydrolase activities, and changes the composition of main microbial groups. Biol. Fertil. Soils 2021, 57, 547–561. [Google Scholar] [CrossRef]
- Gajda, A.M.; Czyz, E.A.; Dexter, A.R.; Furtak, K.M.; Grzadziel, J.; Stanek-Tarkowska, J. Effects of different soil management practices on soil properties and microbial diversity. Int. Agrophys. 2018, 32, 81–91. [Google Scholar] [CrossRef]
- Li, H.Y.; Li, X.J.; Zhang, D.D.; Xu, Y. Addition of exogenous microbial agents increases hydrogen sulfide emissions during aerobic composting of kitchen waste by improving bio-synergistic effects. Bioresour. Technol. 2023, 384, 129334. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.R.; Hou, L.Y.; Ding, C.J.; Su, X.H.; Zhang, W.X.; Pang, Z.Y.; Zhang, Y.L.; Sun, Q.W. Effects of stand age and soil microbial communities on soil respiration throughout the growth cycle of poplar plantations in northeastern China. Front. Microbiol. 2024, 15, 1477571. [Google Scholar] [CrossRef] [PubMed]
Heavy Metal Concentration (mg·kg−1) | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
Cd | 0.138 ± 0.14 a | 0.091 ± 0.08 c | 0.101 ± 0.11 b | 0.105 ± 0.10 bc | 0.063 ± 0.06 d |
Cu | 13.60 ± 0.16 a | 12.50 ± 0.16 b | 9.82 ± 0.01 d | 11.70 ± 0.01 c | 8.83 ± 0.01 e |
Pb | 19.30 ± 0.01 b | 18.20 ± 0.01 d | 19.90 ± 0.02 a | 19.20 ± 0.01 c | 16.95 ± 0.01 e |
Zn | 23.90 ± 0.01 a | 21.10 ± 0.07 b | 18.20 ± 0.01 d | 20.90 ± 0.08 c | 17.30 ± 0.01 e |
Parameter | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
Basal diameter (cm) | 5.83 ± 0.34 b | 8.44 ± 0.44 a | 9.66 ± 2.38 a | 7.80 ± 1.47 ab | 7.74 ± 1.21 ab |
Height (cm) | 26.40 ± 4.62 b | 34.20 ± 2.95 a | 32.20 ± 4.82 ab | 31.00 ± 2.65 ab | 29.80 ± 4.02 ab |
Biomass (g) | 40.97 ± 3.90 b | 56.15 ± 6.66 a | 53.49 ± 4.45 a | 52.84 ± 7.40 a | 49.96 ± 5.71 a |
Parameter | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
TN in the roots (g·kg−1) | 5.12 ± 0.24 c | 6.79 ± 0.36 b | 8.15 ± 1.04 a | 6.77 ± 1.74 b | 6.12 ± 0.41 bc |
TN in the branches (g·kg−1) | 8.36 ± 0.42 b | 9.07 ± 0.47 a | 9.25 ± 0.77 a | 7.80 ± 0.25 b | 7.89 ± 0.35 b |
TN in the leaves (g·kg−1) | 15.43 ± 1.364 c | 17.01 ± 0.35 b | 17.95 ± 1.74 b | 21.04 ± 1.57 a | 17.66 ± 0.58 b |
TP in the root (g·kg−1) | 0.68 ± 0.06 cd | 0.75 ± 0.02 bc | 1.08 ± 0.15 a | 0.62 ± 0.10 d | 0.81 ± 0.06 b |
TP in the branches (g·kg−1) | 1.21 ± 0.10 b | 1.10 ± 0.06 bc | 1.51 ± 0.30 a | 1.07 ± 0.05 bc | 1.01 ± 0.05 c |
TP in leaves (g·kg−1) | 1.65 ± 0.17 a | 1.70 ± 0.07 b | 1.82 ± 0.14 b | 1.78 ± 0.24 b | 1.73 ± 0.04 b |
OC in the root (g·kg−1) | 56.72 ± 1.69 b | 51.97 ± 0.72 c | 71.96 ± 2.84 a | 70.70 ± 3.90 a | 73.26 ± 0.61 a |
OC in branches (g·kg−1) | 70.07 ± 0.59 a | 70.33 ± 1.60 a | 67.96 ± 2.82 a | 53.42 ± 2.39 c | 57.72 ± 6.14 b |
OC in the leaves (g·kg−1) | 164.59 ± 2.38 c | 168.05 ± 2.50 b | 142.77 ± 1.90 e | 148.34 ± 2.50 d | 193.97 ± 3.36 a |
Parameter | Soil | SS | CM | MS |
---|---|---|---|---|
pH | 7.86 ± 0.04 | 6.74 ± 0.03 | 7.95 ± 0.03 | - |
Moisture content (%) | 17.23 ± 0.45 | 10.51 ± 0.10 | 5.77 ± 0.36 | 4.29 ± 0.30 |
TN (g·kg−1) | 0.44 ± 0.01 | 39.32 ± 1.58 | 11.44 ± 2.86 | 5.05 ± 0.19 |
TP (g·kg−1) | 0.26 ± 0.01 | 10.74 ± 0.38 | 2.58 ± 0.55 | 0.51 ± 0.00 |
OC (g·kg−1) | 4.30 ± 0.35 | 317.46 ± 14.53 | 374.73 ± 17.67 | 495.87 ± 21.80 |
Cu (mg·kg−1) | 11.90 ± 0.04 | 105.00 ± 0.49 | 19.30 ± 0.01 | 9.86 ± 0.02 |
Cd (mg·kg−1) | 0.10 ± 0.01 | 0.69 ± 0.01 | 0.12 ± 0.02 | 0.22 ± 0.03 |
Pb (mg·kg−1) | 20.60 ± 0.01 | 29.00 ± 0.03 | 5.43 ± 0.01 | 3.06 ± 0.01 |
Zn (mg·kg−1) | 17.70 ± 0.07 | 570.00 ± 0.71 | 43.60 ± 0.07 | 7.25 ± 0.01 |
Treatments | Compositions | Source and Preparing of Organic Amendments |
---|---|---|
CK | Soil without amendment | The SS is consistent with those described by Bai et al. [33]. The CM and the MS were collected from a farm located near the Red Flag Township in October 2023, air-dried, and ground to pass through a 2 mm sieve. |
T1 | 30.0 kg soil + 0.3 kg SS | |
T2 | 30.0 kg soil + 0.15 kg SS + 0.15 kg CM | |
T3 | 30 kg soil + 0.15 kg SS + 0.15 kg MS | |
T4 | 30 kg soil + 0.10 kg SS + 0.10 kg CM + 0.10 kg MS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, D.; Zhang, M.; Chang, Y.; Bai, J.; Ai, G.; Peng, Y.; Pang, Z.; Sun, X. Synergistic Effects of Partial Substitution of Sludge with Cattle Manure and Straw on Soil Improvement and Pinus sylvestris var. mongolica Growth in Horqin Sandy Land, China. Plants 2025, 14, 2067. https://doi.org/10.3390/plants14132067
Su D, Zhang M, Chang Y, Bai J, Ai G, Peng Y, Pang Z, Sun X. Synergistic Effects of Partial Substitution of Sludge with Cattle Manure and Straw on Soil Improvement and Pinus sylvestris var. mongolica Growth in Horqin Sandy Land, China. Plants. 2025; 14(13):2067. https://doi.org/10.3390/plants14132067
Chicago/Turabian StyleSu, Dan, Meiqi Zhang, Yao Chang, Jie Bai, Guiyan Ai, Yanhui Peng, Zhongyi Pang, and Xuekai Sun. 2025. "Synergistic Effects of Partial Substitution of Sludge with Cattle Manure and Straw on Soil Improvement and Pinus sylvestris var. mongolica Growth in Horqin Sandy Land, China" Plants 14, no. 13: 2067. https://doi.org/10.3390/plants14132067
APA StyleSu, D., Zhang, M., Chang, Y., Bai, J., Ai, G., Peng, Y., Pang, Z., & Sun, X. (2025). Synergistic Effects of Partial Substitution of Sludge with Cattle Manure and Straw on Soil Improvement and Pinus sylvestris var. mongolica Growth in Horqin Sandy Land, China. Plants, 14(13), 2067. https://doi.org/10.3390/plants14132067