Effect of Plant Topping on Seasonal Development, Physiological Changes, and Grain Yield of Soybean
Abstract
1. Introduction
2. Results
2.1. Weather Conditions
2.2. Plant Height and Stem Diameter
2.3. LAI and NDVI
2.4. Chlorophyll Concentration and Chlorophyll Fluorescence Parameters
2.5. Yield Component and Grain Yield
3. Discussion
3.1. Plant Height and Stem Diameter
3.2. LAI and NDVI
3.3. Chlorophyll Concentration and Chlorophyll Fluorescence
3.4. Yield Component and Grain Yield
4. Materials and Methods
4.1. Experimental Site and Soil Chemical Compositions
4.2. Measurements of Crop Traits
4.3. Yield Components and Yield
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ning, L.H.; Du, W.K.; Song, H.N.; Shao, H.B.; Qi, W.C.; Sheteiwy, M.S.A.; Yu, D.Y. Identification of responsive miRNAs involved in combination stresses of phosphate starvation and salt stress in soybean root. Environ. Exp. Bot. 2019, 167, 103823. [Google Scholar] [CrossRef]
- Song, W.; Yang, R.; Wu, T.; Wu, C.; Sun, S.; Zhang, S.; Jiang, B.; Tian, S.; Liu, X.; Han, T. Analyzing the effects of climate factors on soybean protein, oil contents, and composition by extensive and high-density sampling in China. J. Agric. Food Chem. 2016, 64, 4121–4130. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Tubiello, F.N.; Goldberg, R.; Mills, E.; Bloomfield, J. Increased crop damage in the US from excess precipitation under climate change. Glob. Environ. Change 2002, 12, 197–202. [Google Scholar] [CrossRef]
- Borghi, M.; Perez de Souza, L.; Yoshida, T.; Fernie, A.R. Flowers and climate change: A metabolic perspective. New Phytol. 2019, 224, 1425–1441. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.V.; Boote, K.J.; Allen, L.H., Jr.; Thomas, J.M. Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Glob. Change Biol. 2002, 8, 710–721. [Google Scholar] [CrossRef]
- Wahid, A. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J. Plant Res. 2007, 120, 219–228. [Google Scholar] [CrossRef]
- Qiao, C.; Cheng, C.; Ali, T. How climate change and international trade will shape the future global soybean security pattern. J. Clean. Prod. 2023, 422, 138603. [Google Scholar] [CrossRef]
- Korea Agricultural Statistics Service. Available online: https://kass.mafra.go.kr/ (accessed on 30 December 2024). (In Korean).
- United States Department of Agriculture-South Korea. Oilseeds and Products Annual; Foreign Agricultural Service: Seoul, Republic of Korea, 2024. [Google Scholar]
- Chu, G.; Zhang, J.; Xu, B.; Wang, C. Topping at the seedling stage changes the plant morphology and yield of unbranched type soybean. C. R. Acad. Bulg. Sci. 2023, 76, 629–636. [Google Scholar] [CrossRef]
- Hong, E.H.; Park, E.H.; Chin, M.S. Alteration of Vegetative and Agronomic Attributes of Soybeans by Terminal Bud Removal. Korean J. Crop Sci. 1987, 32, 431–435. [Google Scholar]
- Je, K.I.; Yong, S.S.; Young, N.S.; Mo, R.I.; Jung, K.T.; Hee, L.C.; Su, K.T. Effect of alternative row pinching on growth and yield in soybean. Korean J. Crop Sci. 2004, 49, 457–462. [Google Scholar]
- Raza, M.A.; Gul, H.; Yang, F.; Ahmed, M.; Yang, W. Growth rate, dry matter accumulation, and partitioning in soybean (Glycine max L.) in response to defoliation under high-rainfall conditions. Plants 2021, 10, 1497. [Google Scholar] [CrossRef] [PubMed]
- Maddonni, G.; Otegui, M. Intra-specific competition in maize: Early establishment of hierarchies among plants affects final kernel set. Field Crops Res. 2004, 85, 1–13. [Google Scholar] [CrossRef]
- Seo, C.W.; Lee, S.M.; Kang, S.M.; Park, Y.G.; Kim, A.Y.; Park, H.J.; Kim, Y.; Lee, I.J. Selection of suitable plant growth regulators for augmenting resistance to waterlogging stress in soybean plants (Glycine max L.). Korean J. Crop Sci. 2017, 62, 325–332. [Google Scholar]
- Lee, I.; Seo, M.J.; Park, M.R.; Kim, N.G.; Yi, G.; Lee, Y.Y.; Kim, M.; Lee, B.W.; Yun, H.T. Yield and seed quality changes according to delayed harvest with rainfall treatment in soybean (Glycine max L.). Korean J. Crop Sci. 2020, 65, 353–364. [Google Scholar]
- Cho, S.W.; Kim, T.S.; Kwon, S.J.; Roy, S.K.; Lee, C.W.; Kim, H.S.; Woo, S.H. Characterization of Protein Function and Differential Protein Expression in Soybean under Soaking Condition. Korean J. Crop Sci. 2015, 60, 114–122. [Google Scholar] [CrossRef]
- Allen, L.H., Jr.; Zhang, L.; Boote, K.J.; Hauser, B.A. Elevated temperature intensity, timing, and duration of exposure affect soybean internode elongation, mainstem node number, and pod number per plant. Crop J. 2018, 6, 148–161. [Google Scholar] [CrossRef]
- Sathi, K.S.; Masud, A.A.C.; Anee, T.I.; Rahman, K.; Ahmed, N.; Hasanuzzaman, M. Soybean plants under waterlogging stress: Responses and adaptation mechanisms. In Managing Plant Production Under Changing Environment; Hasanuzzaman, M., Ahammed, G.J., Nahar, K., Eds.; Springer Nature: Singapore, 2022; pp. 103–134. [Google Scholar]
- Konno, T.; Homma, K. Prediction of areal soybean lodging using a main stem elongation model and a soil-adjusted vegetation index that accounts for the ratio of vegetation cover. Remote Sens. 2023, 15, 3446. [Google Scholar] [CrossRef]
- Nie, J.; Li, Z.; Zhang, Y.; Zhang, D.; Xu, S.; He, N.; Zhan, Z.; Dai, J.; Li, C.; Li, W. Plant pruning affects photosynthesis and photoassimilate partitioning in relation to the yield formation of field-grown cotton. Ind. Crops Prod. 2021, 173, 114087. [Google Scholar] [CrossRef]
- Torres, P.; Oronia, S.; Sheriff, O.; Kesoju, S.R. Effect of terminal bud clipping on growth and yield of soybean cultivars in the Pacific Northwest. Agrosyst. Geosci. Environ. 2023, 6, e20342. [Google Scholar] [CrossRef]
- Bauer, M.; Pendleton, J.; Beuerlein, J.; Ghorashy, S. Influence of Terminal Bud Removal on the Growth and Seed Yield of Soybeans 1. Agron. J. 1976, 68, 709–711. [Google Scholar] [CrossRef]
- Dai, J.; Tian, L.; Zhang, Y.; Zhang, D.; Xu, S.; Cui, Z.; Li, Z.; Li, W.; Zhan, L.; Li, C. Plant topping effects on growth, yield, and earliness of field-grown cotton as mediated by plant density and ecological conditions. Field Crops Res. 2022, 275, 108337. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Ali, B.; El-Keblawy, A.; Ksiksi, T.; El-Esawi, M.A.; Jośko, I.; Ulhassan, Z.; Sheteiwy, M.S. Effect of source–sink ratio manipulation on growth, flowering, and yield potential of soybean. Agriculture 2021, 11, 926. [Google Scholar] [CrossRef]
- Fang, R.; Wu, Y.; Huang, X.; Hou, Z.; Zhang, J.; Wang, L.; Wang, Y.; Li, Y.; Chen, L.; Yang, H. Effects of decapitation on yield-related traits of total node number per plant in soybean. Field Crops Res. 2025, 321, 109664. [Google Scholar] [CrossRef]
- Kakiuchi, J. Effects of pinching on growth and yield of different soybean cultivars. Jpn. J. Crop Sci. 2021, 90, 414–422. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Kalaji, M.H.; Goltsev, V.N.; Żuk-Gołaszewska, K.; Zivcak, M.; Brestic, M. Chlorophyll Fluorescence: Understanding Crop Performance—Basics and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Rastogi, A.; Kovar, M.; He, X.; Zivcak, M.; Kataria, S.; Kalaji, H.; Skalicky, M.; Ibrahimova, U.; Hussain, S.; Mbarki, S. JIP-test as a tool to identify salinity tolerance in sweet sorghum genotypes. Photosynthetica 2020, 58, 518–528. [Google Scholar] [CrossRef]
- Mun, J.H.; Lee, I.H.; Shon, J.Y.; Chung, N.J. Plant Early Growth and Chlorophyll Fluorescence of Seven Varieties of Italian Ryegrass Under Various Salt Stress Conditions. Korean J. Crop Sci. 2024, 69, 181–197. [Google Scholar]
- Tayo, T. The response of two soya-bean varieties to the loss of apical dominance at the vegetative stage of growth. J. Agric. Sci. 1980, 95, 409–416. [Google Scholar] [CrossRef]
- Ongaro, V.; Leyser, O. Hormonal control of shoot branching. J. Exp. Bot. 2008, 59, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Konno, T.; Homma, K. Impact assessment of main stem elongation and wind speed on lodging of soybean cultivar ‘Miyagishirome’. Plant Prod. Sci. 2024, 27, 185–196. [Google Scholar] [CrossRef]
- Shan, F.; Sun, K.; Gong, S.; Wang, C.; Ma, C.; Zhang, R.; Yan, C. Effects of shading on the internode critical for soybean (Glycine max) lodging. Agronomy 2022, 12, 492. [Google Scholar] [CrossRef]
- Inthapan, P.; Fukai, S. Growth and yield of rice cultivars under sprinkler irrigation in south-eastern Queensland. 2. Comparison with maize and grain sorghum under wet and dry conditions. Aust. J. Exp. Agric. 1988, 28, 243–248. [Google Scholar] [CrossRef]
- Boote, K.; Loomis, R. Modeling Crop Photosynthesis—From Biochemistry to Canopy; Wiley Online Library: Hoboken, NJ, USA, 1991; pp. 41–55. [Google Scholar]
- Yin, X.; Struik, P.C. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: From leaf biochemistry to canopy physiology and crop ecology. J. Exp. Bot. 2015, 66, 6535–6549. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Yin, X.; Yang, J.; Struik, P.C. Roles of canopy architecture and nitrogen distribution in the better performance of an aerobic than a lowland rice cultivar under water deficit. Field Crops Res. 2021, 271, 108257. [Google Scholar] [CrossRef]
- Willcott, J.; Herbert, S.; Zhi-Yi, L. Leaf area display and light interception in short-season soybeans. Field Crops Res. 1984, 9, 173–182. [Google Scholar] [CrossRef]
- Monsi, M.; Saeki, T. On the factor light in plant communities and its importance for matter production. Ann. Bot. 2005, 95, 549–567. [Google Scholar] [CrossRef]
- Nie, J.; Sun, L.; Zhan, L.; Li, X.; Hou, W.; Zhang, Y.; Li, W.; Zhang, D.; Cui, Z.; Li, Z. Terminal removal at first square enhances vegetative branching to increase seedcotton yield at low plant density. Field Crops Res. 2023, 302, 109096. [Google Scholar] [CrossRef]
- Egli, D.; Zhen-wen, Y. Crop growth rate and seeds per unit area in soybean. Crop Sci. 1991, 31, 439–442. [Google Scholar] [CrossRef]
- Basuchaudhuri, P. Source-sink relationships in soybean. Indian J. Plant Sci. 2016, 5, 19–25. [Google Scholar]
- Board, J.; Harville, B. Explanations for greater light interception in narrow-vs. wide-row. Crop Sci. 1992, 32, 198–202. [Google Scholar] [CrossRef]
- Tagliapietra, E.L.; Streck, N.A.; da Rocha, T.S.M.; Richter, G.L.; da Silva, M.R.; Cera, J.C.; Guedes, J.V.C.; Zanon, A.J. Optimum leaf area index to reach soybean yield potential in subtropical environment. Agron. J. 2018, 110, 932–938. [Google Scholar] [CrossRef]
- Farias, G.D.; Bremm, C.; Bredemeier, C.; de Lima Menezes, J.; Alves, L.A.; Tiecher, T.; Martins, A.P.; Fioravanço, G.P.; da Silva, G.P.; de Faccio Carvalho, P.C. Normalized Difference Vegetation Index (NDVI) for soybean biomass and nutrient uptake estimation in response to production systems and fertilization strategies. Front. Sustain. Food Syst. 2023, 6, 959681. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; Hou, W.; Li, R.; Xu, S.; Li, Z.; Zhang, D.; Dai, J.; Cui, Z.; Zhan, L. Genome-wide identification of isopentenyl transferase genes in cotton and their roles in regulating vegetative branching after topping. Ind. Crops Prod. 2025, 223, 119853. [Google Scholar] [CrossRef]
- Gomes, M.T.G.; da Luz, A.C.; dos Santos, M.R.; Batitucci, M.d.C.P.; Silva, D.M.; Falqueto, A.R. Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Sci. Hortic. 2012, 142, 49–56. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, D.; Soni, V. Performance of chlorophyll a fluorescence parameters in Lemna minor under heavy metal stress induced by various concentration of copper. Sci. Rep. 2022, 12, 10620. [Google Scholar] [CrossRef]
- Argall, J.; Stewart, K. Effects of decapitation and benzyladenine on growth and yield of cowpea [Vigna unguiculata (L.) Walp.]. Ann. Bot. 1984, 54, 439–444. [Google Scholar] [CrossRef]
- Cho, J.W.; Park, M.S.; Lee, J.J.; Lee, M.J.; So, J.D.; Kim, T.S.; Lee, S.B. Topping effect on growth and yield of soybean growth in paddy field. Korean J. Crop Sci. 2003, 48, 96–102. [Google Scholar]
- Fehr, W.; Caviness, C.; Vorst, J. Response of Indeterminate and Determinate Soybean Cultivars to Defoliation and Half-plant Cut-off 1. Crop Sci. 1977, 17, 913–917. [Google Scholar] [CrossRef]
- Board, J.; Kumudini, S.; Omielan, J.; Prior, E.; Kahlon, C. Yield response of soybean to partial and total defoliation during the seed-filling period. Crop Sci. 2010, 50, 703–712. [Google Scholar] [CrossRef]
- Board, J.E. Soybean cultivar differences on light interception and leaf area index during seed filling. Agron. J. 2004, 96, 305–310. [Google Scholar] [CrossRef]
- Li, X.; An, P.; Inanaga, S.; Eneji, A.E.; Ali, A.M. Mechanisms promoting recovery from defoliation in determinate and indeterminate soybean cultivars. J. Food Agric. Environ. 2005, 3, 178. [Google Scholar]
- Bulyaba, R.; Lenssen, A.W. Nutritional composition of grain legume leaves and the impact of leaf removal on yield. Agrosyst. Geosci. Environ. 2019, 2, 1–10. [Google Scholar] [CrossRef]
- RDA. Manual for Soybean Production; Rural Development Administration: Suwon, Republic of Korea, 2003.
- RDA. Information on Cultivars and Agricultural Materials; Rural Development Administration: Suwon, Republic of Korea, 2022. (In Korean)
- RDA. Soybean Handbook; Rural Development Administration: Suwon, Republic of Korea, 2021. (In Korean)
- Janeeshma, E.; Johnson, R.; Amritha, M.; Noble, L.; Aswathi, K.R.; Telesiński, A.; Kalaji, H.M.; Auriga, A.; Puthur, J.T. Modulations in chlorophyll a fluorescence based on intensity and spectral variations of light. Int. J. Mol. Sci. 2022, 23, 5599. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
Jun. | Jul. | Aug. | Sep. | Oct. | Total | ||
---|---|---|---|---|---|---|---|
Mean temperature (°C) | 2021 | 22.2 | 26.2 | 26.0 | 21.9 | 15.9 | - |
2022 | 22.7 | 26.5 | 26.3 | 21.8 | 15.1 | - | |
Total rainfall (mm) | 2021 | 101 | 359 | 320 | 122 | 46 | 948 |
2022 | 121 | 218 | 157 | 167 | 22 | 685 | |
GDDs (°C) * | 2021 | 376 | 516 | 517 | 369 | 173 | 1951 |
2022 | 394 | 526 | 515 | 365 | 96 | 1896 | |
Total amount of solar radiation (MJ m−2) | 2021 | 586 | 590 | 525 | 370 | 449 | 2520 |
2022 | 574 | 596 | 481 | 443 | 433 | 2527 | |
Duration of sunshine (h) | 2021 | 207 | 228 | 196 | 140 | 238 | 1009 |
2022 | 206 | 224 | 174 | 176 | 231 | 1011 |
Plant Height (cm) | ||||||||
---|---|---|---|---|---|---|---|---|
V6 | R1 | R3 | ||||||
Year | Cultivar | Before topping | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2021 | Daechan | 35.1 C † | 54.8 Ba | 45.9 Ab | 50.3 B | 72.6 § | 63.1 | 67.9 BC |
Daewon | 43.2 A | 66.1 Aa | 49.4 Ab | 57.7 A | 82.4 | 67.3 | 74.8 A | |
Jinpung | 38.4 B | 56.1 Ba | 46.0 Ab | 51.0 B | 74.9 | 66.7 | 70.8 AB | |
Taegwang | 38.8 B | 57.1 Ba | 46.1 Ab | 51.6 B | 70.0 | 54.6 | 62.3 C | |
Mean | 58.5 a ‡ | 46.8 b | 75.0 a | 62.9 b | ||||
V6 | R1 | R2 | ||||||
Year | Cultivar | Before topping | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2022 | Daechan | 30.0 C | 52.5 Ca | 40.5 Bb | 46.5 C | 75.1 | 62.6 | 68.9 C |
Daewon | 41.1 A | 78.1 Aa | 53.8 Ab | 65.9 A | 99.6 | 83.0 | 91.3 A | |
Jinpung | 34.4 B | 60.4 Ba | 52.0 Ab | 56.2 B | 80.3 | 73.4 | 76.9 B | |
Taegwang | 36.7 B | 73.2 Aa | 55.7 Ab | 64.4 A | 95.7 | 80.6 | 88.2 A | |
Mean | 66.0 a | 50.5 b | 87.7 a | 74.9 b |
Stem Diameter (mm) | ||||||||
---|---|---|---|---|---|---|---|---|
V6 | R1 | R3 | ||||||
Year | Cultivar | Before topping | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2021 | Daechan | 7.2 † | 10.3 | 9.6 | 10.0 | 12.5 | 12.4 | 12.4 |
Daewon | 6.7 | 9.1 | 8.8 | 9.0 | 12.0 | 11.1 | 11.5 | |
Jinpung | 7.0 | 9.9 | 9.0 | 9.5 | 11.9 | 11.3 | 11.6 | |
Taegwang | 7.3 | 9.5 | 9.4 | 9.4 | 11.4 | 11.7 | 11.5 | |
Mean | 9.7 | 9.2 | 11.9 | 11.6 | ||||
V6 | R1 | R2 | ||||||
Year | Cultivar | Before topping | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2022 | Daechan | 5.9 C ‡ | 8.8 Ba | 7.3 Cb | 8.0 C | 10.9 | 10.6 | 10.8 C |
Daewon | 6.9 A | 9.9 Aa | 8.7 ABb | 9.3 A | 12.4 | 11.7 | 12.1 AB | |
Jinpung | 6.1 BC | 9.3 ABa | 8.2 Bb | 8.8 B | 11.7 | 11.4 | 11.6 B | |
Taegwang | 6.6 AB | 9.1 Ba | 9.5 Aa | 9.3 A | 12.6 | 12.5 | 12.5 A | |
Mean | 9.3 a § | 8.4 b | 11.9 | 11.6 |
R2 | R4 | R6 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2021 | Daechan | 5.4 † | 4.7 | 5.0 | 6.6 | 5.8 | 6.2 A § | 6.1 | 5.2 | 5.7 A |
Daewon | 4.9 | 4.1 | 4.5 | 6.2 | 5.2 | 5.7 B | 5.9 | 4.9 | 5.4 A | |
Jinpung | 5.4 | 4.8 | 5.1 | 6.6 | 5.9 | 6.3 A | 6.1 | 5.4 | 5.7 A | |
Taegwang | 5.3 | 4.4 | 4.8 | 6.0 | 5.2 | 5.6 B | 5.1 | 4.4 | 4.8 B | |
Mean | 5.3 a ‡ | 4.5 b | 6.4 a | 5.5 b | 5.8 a | 5.0 b | ||||
R1 | R3 | R5 | ||||||||
Year | Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2022 | Daechan | 4.9 | 4.7 | 4.8 B | 5.6 | 5.1 | 5.4 C | 5.6 | 4.4 | 5.0 B |
Daewon | 5.1 | 3.9 | 4.5 B | 6.0 | 5.5 | 5.7 BC | 6.1 | 4.9 | 5.5 B | |
Jinpung | 5.9 | 5.3 | 5.6 A | 6.8 | 5.7 | 6.2 AB | 6.4 | 6.1 | 6.3 A | |
Taegwang | 6.6 | 5.9 | 6.2 A | 6.7 | 7.0 | 6.8 A | 6.2 | 5.0 | 5.6 B | |
Mean | 5.6 a | 5.0 b | 6.3 | 5.8 | 6.1 a | 5.1 b |
V7 | R2 | R4 | ||||||
---|---|---|---|---|---|---|---|---|
Year | Cultivar | Before topping | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2021 | Daechan | 0.798 † | 0.863 | 0.865 | 0.864 BC ‡ | 0.871 | 0.876 | 0.873 D |
Daewon | 0.845 | 0.896 | 0.892 | 0.894 A | 0.894 | 0.897 | 0.896 B | |
Jinpung | 0.827 | 0.887 | 0.883 | 0.885 AB | 0.901 | 0.902 | 0.901 A | |
Taegwang | 0.850 | 0.869 | 0.845 | 0.857C | 0.886 | 0.895 | 0.891 C | |
Mean | 0.879 | 0.871 | 0.888 b § | 0.893 a | ||||
V6 | R1 | R3 | ||||||
Year | Cultivar | Before topping | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2022 | Daechan | 0.840 | 0.868 | 0.871 | 0.869 B | 0.895 | 0.890 | 0.892 C |
Daewon | 0.842 | 0.899 | 0.886 | 0.893 A | 0.916 | 0.919 | 0.917 B | |
Jinpung | 0.727 | 0.902 | 0.901 | 0.902 A | 0.925 | 0.927 | 0.926 A | |
Taegwang | 0.647 | 0.898 | 0.898 | 0.898 A | 0.919 | 0.920 | 0.920 B | |
Mean | 0.892 | 0.889 | 0.914 | 0.914 |
Chlorophyll Concentration (mg m−2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
R1 | R3 | R6 | ||||||||
Year | Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2021 | Daechan | 286.8 † | 256.5 | 271.6 B § | 272.5 | 286.8 | 279.6 C | 377.0 | 369.5 | 373.3 |
Daewon | 307.8 | 278.8 | 293.3 A | 348.0 | 368.5 | 358.3 A | 425.5 | 399.3 | 412.4 | |
Jinpung | 288.3 | 275.0 | 281.6 AB | 268.0 | 283.5 | 275.8 C | 450.5 | 423.5 | 437.0 | |
Taegwang | 308.3 | 280.8 | 294.5 A | 309.8 | 297.5 | 303.6 B | 397.0 | 382.8 | 389.9 | |
Mean | 297.8 a ‡ | 272.8 b | 299.6 | 309.1 | 412.5 | 393.8 | ||||
R1 | R2 | R4 | ||||||||
Year | Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2022 | Daechan | 335.8 | 342.8 | 339.3 | 327.3 | 336.2 | 324.6 | 311.8 | 328.5 | 320.1 |
Daewon | 362.3 | 341.3 | 351.8 | 337.3 | 338.0 | 337.6 | 331.0 | 339.0 | 335.0 | |
Jinpung | 352.3 | 345.3 | 348.8 | 334.8 | 326.3 | 330.5 | 314.8 | 307.8 | 311.3 | |
Taegwang | 348.8 | 349.0 | 348.9 | 345.5 | 335.8 | 340.6 | 333.3 | 335.8 | 334.5 | |
Mean | 349.8 | 344.6 | 336.2 | 330.5 | 322.7 | 327.8 |
Fv/Fm | PIABS | ABS/RC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2021 | Daechan | 0.673 † | 0.692 | 0.683 | 1.909 | 2.504 | 2.207 | 2.048 A ‡ a § | 1.941 Ba | 1.995 |
Daewon | 0.667 | 0.657 | 0.662 | 1.728 | 2.153 | 1.940 | 2.186 Aa | 1.776 Bb | 1.981 | |
Jinpung | 0.656 | 0.690 | 0.673 | 1.611 | 1.935 | 1.773 | 1.914 Aa | 1.985 Ba | 1.950 | |
Taegwang | 0.709 | 0.667 | 0.688 | 2.569 | 1.805 | 2.187 | 1.919 Ab | 2.329 Aa | 2.124 | |
Mean | 0.676 | 0.676 | 1.954 | 2.099 | 2.017 | 2.008 | ||||
TR0/RC | DI0/CS | ET0/RC | ||||||||
Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean | |
Daechan | 0.314 ABa | 0.296 Ba | 0.305 | 0.671 Aa | 0.598 Ba | 0.635 | 0.891 | 0.899 | 0.895 | |
Daewon | 0.338 Aa | 0.275 Bb | 0.307 | 0.736 Aa | 0.578 Ba | 0.657 | 0.902 | 0.741 | 0.822 | |
Jinpung | 0.295 Ba | 0.309 ABa | 0.302 | 0.659 Aa | 0.647 ABa | 0.653 | 0.765 | 0.828 | 0.797 | |
Taegwang | 0.293 Bb | 0.339 Aa | 0.316 | 0.589 Ab | 0.828 Aa | 0.708 | 0.890 | 0.959 | 0.924 | |
Mean | 0.310 | 0.305 | 0.664 | 0.663 | 0.862 | 0.857 | ||||
2022 | Fv/Fm | PIABS | ABS/RC | |||||||
Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean | |
Daechan | 0.790 | 0.782 | 0.786 | 8.307 | 7.024 | 7.665 B | 1.550 | 1.633 | 1.592 | |
Daewon | 0.787 | 0.780 | 0.784 | 7.733 | 7.380 | 7.556 B | 1.672 | 1.601 | 1.637 | |
Jinpung | 0.789 | 0.797 | 0.793 | 8.947 | 8.434 | 8.691 AB | 1.483 | 1.639 | 1.561 | |
Taegwang | 0.789 | 0.794 | 0.792 | 8.986 | 10.251 | 9.619 A | 1.527 | 1.392 | 1.459 | |
Mean | 0.789 | 0.788 | 8.493 | 8.272 | 1.558 | 1.566 | ||||
TR0/RC | DI0/CS | ET0/RC | ||||||||
Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean | |
Daechan | 0.218 | 0.239 | 0.229 | 0.325 | 0.358 | 0.341 | 0.940 | 0.954 | 0.947 | |
Daewon | 0.238 | 0.233 | 0.236 | 0.357 | 0.354 | 0.355 | 0.999 | 0.933 | 0.966 | |
Jinpung | 0.208 | 0.237 | 0.222 | 0.314 | 0.335 | 0.324 | 0.900 | 0.993 | 0.946 | |
Taegwang | 0.212 | 0.194 | 0.203 | 0.320 | 0.288 | 0.304 | 0.931 | 0.851 | 0.891 | |
Mean | 0.219 | 0.226 | 0.329 | 0.333 | 0.943 | 0.933 |
Branch No. (Plant−1) | Node No. (Plant−1) | 100-Grains Weight (g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean |
2021 | Daechan | 0.55 † | 1.29 | 0.92 | 14.5 | 10.4 | 12.4 AB § | 32.1 | 31.3 | 31.7 A |
Daewon | 0.65 | 1.20 | 0.93 | 13.7 | 10.6 | 12.2 B | 33.8 | 30.0 | 31.9 A | |
Jinpung | 1.95 | 0.85 | 1.40 | 14.7 | 13.2 | 13.9 A | 28.5 | 28.2 | 28.4 B | |
Taegwang | 1.45 | 1.55 | 1.50 | 13.5 | 9.3 | 11.4 B | 28.8 | 28.8 | 28.8 B | |
Mean | 1.15 | 1.22 | 14.1 a ‡ | 10.9 b | 30.8 | 29.6 | ||||
Pod no. (plant−1) | Grain no. (plant−1) | Grain yield (kg ha−1) | ||||||||
Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean | |
Daechan | 81.6 | 80.8 | 81.2 | 133.0 | 140.2 | 136.6 | 3380 Aa | 3520 Aa | 3450 A | |
Daewon | 96.0 | 81.9 | 88.9 | 152.8 | 127.9 | 140.3 | 3661 Aa | 3200 Aa | 3430 A | |
Jinpung | 99.5 | 77.4 | 88.4 | 163.7 | 132.2 | 148.0 | 2701 Bb | 3621 Aa | 3161 A | |
Taegwang | 75.7 | 76.3 | 76.0 | 114.3 | 118.4 | 116.3 | 2731 Ba | 2470 Ba | 2601 B | |
Mean | 88.2 | 79.1 | 140.9 | 129.7 | 3120 | 3201 | ||||
2022 | Branch no. (plant−1) | Node no. (plant−1) | 100-grains weight (g) | |||||||
Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean | |
Daechan | 0.85 | 0.55 | 0.70 B | 13.9 ABa | 13.5 Aa | 13.7 A | 29.4 | 28.0 | 28.7 | |
Daewon | 1.45 | 2.15 | 1.80 A | 13.9 ABa | 10.2 Bb | 12.0 B | 31.6 | 30.3 | 31.0 | |
Jinpung | 2.05 | 1.58 | 1.81 A | 15.1 Aa | 14.4 Aa | 14.7 A | 25.9 | 26.0 | 25.9 | |
Taegwang | 1.99 | 1.86 | 1.93 A | 12.6 Ba | 10.0 Bb | 11.3 B | 29.6 | 31.1 | 30.4 | |
Mean | 1.58 | 1.53 | 13.9 a | 12.0 b | 29.1 | 28.9 | ||||
Pod no. (plant−1) | Grain no. (plant−1) | Grain yield (kg ha−1) | ||||||||
Cultivar | Non-topping | Topping | Mean | Non-topping | Topping | Mean | Non-topping | Topping | Mean | |
Daechan | 67.1 Ba | 67.7 Aa | 67.4 BC | 95.5 | 97.7 | 96.6 B | 1590 | 1741 | 1661 B | |
Daewon | 109.5 Aa | 76.3 Ab | 92.9 A | 139.4 | 118.8 | 129.1 A | 2431 | 2670 | 2550 A | |
Jinpung | 91.1 Aa | 63.6 Ab | 77.4 B | 130.1 | 112.2 | 121.2 A | 2620 | 2780 | 2700 A | |
Taegwang | 55.3 Ba | 61.8 Aa | 58.5 C | 64.3 | 84.3 | 74.3 B | 1500 | 1650 | 1571 B | |
Mean | 80.7a | 67.4 b | 107.3 | 103.2 | 2031 | 2210 |
pH | EC | OM | Available P2O5 | K | Ca | Mg |
---|---|---|---|---|---|---|
(1:5) † | (dS m−1) | (g kg−1) | (mg kg−1) | Exchangeable (mg kg−1) | ||
5.88 | 0.13 | 10.13 | 88.13 | 0.17 | 2.64 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Jo, C.; Choi, M.; Lee, J.; Choi, N.; Na, C. Effect of Plant Topping on Seasonal Development, Physiological Changes, and Grain Yield of Soybean. Plants 2025, 14, 2068. https://doi.org/10.3390/plants14132068
Lee S, Jo C, Choi M, Lee J, Choi N, Na C. Effect of Plant Topping on Seasonal Development, Physiological Changes, and Grain Yield of Soybean. Plants. 2025; 14(13):2068. https://doi.org/10.3390/plants14132068
Chicago/Turabian StyleLee, Sora, Chaelin Jo, Miri Choi, Jihyeon Lee, Nayoung Choi, and Chaein Na. 2025. "Effect of Plant Topping on Seasonal Development, Physiological Changes, and Grain Yield of Soybean" Plants 14, no. 13: 2068. https://doi.org/10.3390/plants14132068
APA StyleLee, S., Jo, C., Choi, M., Lee, J., Choi, N., & Na, C. (2025). Effect of Plant Topping on Seasonal Development, Physiological Changes, and Grain Yield of Soybean. Plants, 14(13), 2068. https://doi.org/10.3390/plants14132068