Comprehensive Study of Sexual Reproduction in Nicotiana tabacum Plants Overexpressing H2O2-Producing Enzymes: Superoxide Dismutase and Choline Oxidase
Abstract
1. Introduction
2. Results
2.1. FeSOD and CodA Influence Organ Lenght
2.2. FeSOD Enhances Male Fertility, Whereas CodA Reduces It
2.3. CodA Does Not Increase Pollination Success, While FeSOD Does
3. Discussion
4. Materials and Methods
4.1. Plant Cultivation and Pollination In Vivo
4.2. Evaluation of Pollen Germination In Vivo and Fertilization Success (Seed Set)
4.3. Pollen Germination In Vitro
4.4. Organ Measurements
4.5. ROS Measurements
4.6. Cell Length Measurements and Counting Cells
4.7. Fluorescence Microscopy
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nascimento, F.d.S.; Rocha, A.d.J.; Soares, J.M.d.S.; Mascarenhas, M.S.; Ferreira, M.d.S.; Morais Lino, L.S.; Ramos, A.P.d.S.; Diniz, L.E.C.; Mendes, T.A.d.O.; Ferreira, C.F.; et al. Gene editing for plant resistance to abiotic factors: A systematic review. Plants 2023, 12, 305. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, N.; Shen, G.; Zhang, H. Genetic manipulation for abiotic stress resistance traits in crops. Front. Plant Sci. 2022, 13, 1011985. [Google Scholar] [CrossRef] [PubMed]
- Julián-Chávez, B.; Solano-Ornelas, S.; Rascón-Cruz, Q.; Siqueiros-Cendón, T.S.; Iglesias-Figueroa, B.F.; Arévalo-Gallegos, S.; Sinagawa-García, S.R.; Torres-Castillo, J.A.; González-Barriga, C.D.; Espino, H.S. Nuclear and Plastid Engineering in Agricultural Crops. In Sustainable Agricultural Production Systems; Apple Academic Press: Waretown, NJ, USA, 2025; pp. 139–166. [Google Scholar]
- Mittler, R.; Blumwald, E. Genetic engineering for modern agriculture: Challenges and perspectives. Annu. Rev. Plant Biol. 2010, 61, 443–462. [Google Scholar] [CrossRef]
- Zhu, J.; Jeong, J.C.; Zhu, Y.; Sokolchik, I.; Miyazaki, S.; Zhu, J.-K.; Hasegawa, P.M.; Bohnert, H.J.; Shi, H.; Yun, D.-J. Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc. Natl. Acad. Sci. USA 2008, 105, 4945–4950. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.-K. Epigenetic regulation of stress responses in plants. Curr. Opin. Plant Biol. 2009, 12, 133–139. [Google Scholar] [CrossRef]
- Bond, D.M.; Wilson, I.W.; Dennis, E.S.; Pogson, B.J.; Jean Finnegan, E. VERNALIZATION INSENSITIVE 3 (VIN3) is required for the response of Arabidopsis thaliana seedlings exposed to low oxygen conditions. Plant J. 2009, 59, 576–587. [Google Scholar] [CrossRef]
- Jarin, A.; Ghosh, U.K.; Hossain, M.S.; Mahmud, A.; Khan, M.A.R. Glycine betaine in plant responses and tolerance to abiotic stresses. Discov. Agric. 2024, 2, 127. [Google Scholar] [CrossRef]
- Kathuria, H.; Giri, J.; Nataraja, K.N.; Murata, N.; Udayakumar, M.; Tyagi, A.K. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol. J. 2009, 7, 512–526. [Google Scholar] [CrossRef]
- Gadda, G. Choline oxidases. In Enzymes; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 47, pp. 137–166. ISBN 9780128201374. [Google Scholar]
- Park, E.-J.; Jeknic, Z.; Pino, M.-T.; Murata, N.; Chen, T.H.-H. Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant. Cell Environ. 2007, 30, 994–1005. [Google Scholar] [CrossRef]
- Giri, J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav. 2011, 6, 1746–1751. [Google Scholar] [CrossRef]
- Huang, J.; Hirji, R.; Adam, L.; Rozwadowski, K.L.; Hammerlindl, J.K.; Keller, W.A.; Selvaraj, G. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: Metabolic limitations. Plant Physiol. 2000, 122, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.H.H.; Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant. Cell Environ. 2011, 34, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhury, A.; Banerjee, A. Endogenous glycine betaine accumulation mediates abiotic stress tolerance in plants. Trop. Plant Res. 2016, 3, 105–111. [Google Scholar]
- Mittler, R. ROS are good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef]
- Demidchik, V. Reactive Oxygen Species, Oxidative Stress and Plant Ion Channels. In Ion Channels and Plant Stress Responses; Springer: Berlin/Heidelberg, Germany, 2010; pp. 207–232. ISBN 978-3-642-10493-0. [Google Scholar]
- Martin, R.E.; Postiglione, A.E.; Muday, G.K. Reactive oxygen species function as signaling molecules in controlling plant development and hormonal responses. Curr. Opin. Plant Biol. 2022, 69, 102293. [Google Scholar] [CrossRef]
- Van Camp, W.; Capiau, K.; Van Montagu, M.; Inze, D.; Slooten, L. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 1996, 112, 1703–1714. [Google Scholar] [CrossRef]
- Badawi, G.H.; Yamauchi, Y.; Shimada, E.; Sasaki, R.; Kawano, N.; Tanaka, K.; Tanaka, K. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci. 2004, 166, 919–928. [Google Scholar] [CrossRef]
- Van Breusegem, F.; Slooten, L.; Stassart, J.-M.; Moens, T.; Botterman, J.; Van Montagu, M.; Inzé, D. Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol. 1999, 40, 515–523. [Google Scholar] [CrossRef]
- Zhou, L.-Z.; Dresselhaus, T. Multiple roles of ROS in flowering plant reproduction. In Oxidative Stress Response in Plants; Mittler, R., Van Breusegem, F., Eds.; Academic Press: Oxford, UK, 2023; Volume 105, pp. 139–176. ISBN 0065-2296. [Google Scholar]
- Franklin-Tong, N.; Bosch, M. Plant biology: Stigmatic ROS decide whether pollen is accepted or rejected. Curr. Biol. 2021, 31, R904–R906. [Google Scholar] [CrossRef]
- Smirnova, A.; Matveyeva, N.; Yermakov, I. Reactive oxygen species are involved in regulation of pollen wall cytomechanics. Plant Biol. 2013, 16, 252–257. [Google Scholar] [CrossRef]
- McInnis, S.M.; Desikan, R.; Hancock, J.T.; Hiscock, S.J. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: Potential signalling crosstalk? New Phytol. 2006, 172, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Zafra, A.; Rejón, J.D.; Hiscock, S.J.; Alché, J.D.D. Patterns of ROS accumulation in the stigmas of angiosperms and visions into their multi-functionality in plant reproduction. Front. Plant Sci. 2016, 7, 1112. [Google Scholar] [CrossRef] [PubMed]
- Breygina, M.; Schekaleva, O.; Klimenko, E.; Luneva, O. The balance between different ROS on tobacco stigma during flowering and its role in pollen germination. Plants 2022, 11, 993. [Google Scholar] [CrossRef] [PubMed]
- Schekaleva, O.; Luneva, O.; Klimenko, E.; Shaliukhina, S.; Breygina, M. Dynamics of ROS production, SOD, POD and CAT activity during stigma maturation and pollination in Nicotiana tabacum and Lilium longiflorum. Plant Biol. 2024, 26, 1240–1246. [Google Scholar] [CrossRef]
- Baranova, E.N.; Kononenko, N.V.; Lapshin, P.V.; Nechaeva, T.L.; Khaliluev, M.R.; Zagoskina, N.V.; Smirnova, E.A.; Yuorieva, N.O.; Raldugina, G.N.; Chaban, I.A.; et al. Superoxide dismutase premodulates oxidative stress in plastids for protection of tobacco plants from cold damage ultrastructure damage. Int. J. Mol. Sci. 2024, 25, 5544. [Google Scholar] [CrossRef]
- Raldugina, G.N.; Bogoutdinova, L.R.; Shelepova, O.V.; Kondrateva, V.V.; Platonova, E.V.; Nechaeva, T.L.; Kazantseva, V.V.; Lapshin, P.V.; Rostovtseva, H.I.; Aniskina, T.S.; et al. Heterologous codA Gene Expression Leads to Mitigation of Salt Stress Effects and Modulates Developmental Processes. Int. J. Mol. Sci. 2023, 24, 13998. [Google Scholar] [CrossRef]
- Raldugina, G.N.; Evsukov, S.V.; Bogoutdinova, L.R.; Gulevich, A.A.; Baranova, E.N. Morpho-physiological testing of NaCl sensitivity of tobacco plants overexpressing choline oxidase gene. Plants 2021, 10, 1102. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Ju, Y.; Kessler, S.A. Reactive Oxygen Species as Mediators of Gametophyte Development and Double Fertilization in Flowering Plants. Front. Plant Sci. 2020, 11, 1199. [Google Scholar] [CrossRef]
- McInnis, S.M.; Emery, D.C.; Porter, R.; Desikan, R.; Hancock, J.T.; Hiscock, S.J. The role of stigma peroxidases in flowering plants: Insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). J. Exp. Bot. 2006, 57, 1835–1846. [Google Scholar] [CrossRef]
- Hraška, M.; Rakouský, S.; Čurn, V. Tracking of the CaMV-35S promoter performance in GFP transgenic tobacco, with a special emphasis on flowers and reproductive organs, confirmed its predominant activity in vascular tissues. Plant Cell Tissue Organ Cult. 2008, 94, 239–251. [Google Scholar] [CrossRef]
- Petrov, V.D.; Van Breusegem, F. Hydrogen peroxide—A central hub for information flow in plant cells. AoB Plants 2012, 12, pls014. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef]
- Gupta, K.; Sengupta, A.; Chakraborty, M.; Gupta, B. Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses. Front. Plant Sci. 2016, 7, 1343. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Rameshwari, R.; Chapadgaonkar, S.S. Choline oxidase: An enzyme of immense industrial potential. Asia-Pac. J. Mol. Biol. Biotechnol. 2022, 30, 37–50. [Google Scholar] [CrossRef]
- Breygina, M.; Luneva, O.; Schekaleva, O.; Lazareva, N.; Babushkina, K.; Kirilyuk, I.A. Pattern of ROS generation and interconversion on wet stigmas in basal and divergent angiosperms. Plant Growth Regul. 2023, 101, 463–472. [Google Scholar] [CrossRef]
- Smirnova, A.V.; Matveyeva, N.P.; Polesskaya, O.G.; Yermakov, I.P. Generation of reactive oxygen species during pollen grain germination. Russ. J. Dev. Biol. 2009, 40, 345–353. [Google Scholar] [CrossRef]
- Zhang, M.J.; Zhang, X.S.; Gao, X.-Q. ROS in the Male–Female Interactions During Pollination: Function and Regulation. Front. Plant Sci. 2020, 11, 177. [Google Scholar] [CrossRef]
- Figueroa-Soto, C.G.; Valenzuela-Soto, E.M. Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie 2018, 147, 89–97. [Google Scholar] [CrossRef]
- Firon, N.; Nepi, M.; Pacini, E. Water status and associated processes mark critical stages in pollen development and functioning. Ann. Bot. 2012, 109, 1201–1213. [Google Scholar] [CrossRef]
- Taylor, L.P.; Hepler, P.K. Pollen germination and tube growth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 461–491. [Google Scholar] [CrossRef]
- Nepi, M.; Franchi, G.G.; Pacini, E. Pollen hydration status at dispersal: Cytophysiological features and strategies. Protoplasma 2001, 216, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Pacini, E. From anther and pollen ripening to pollen presentation. In Pollen and Pollination; Dafni, A., Hesse, M., Pacini, E., Eds.; Springer: Vienna, Austria, 2000; pp. 19–43. ISBN 978-3-7091-6306-1. [Google Scholar]
- Nagy, F.; Odell, J.T.; Morelli, G.; Chua, N.-H. Properties of expression of the 35S promoter from CaMV in transgenic tobacco plants. In Biotechnology in Plant Science: Relevance to Agriculture in the Eighties; Academic Press: Orlando, FL, USA, 1985; pp. 227–235. [Google Scholar]
- Nitsch, J.P. Deux espaces photoperiodiques de jours courts: Plumbago indica L. et P. zeyelanica. Bull. Bot. Fr. 1965, 112, 517–522. [Google Scholar] [CrossRef]
- Parre, E.; Geitmann, A. More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol. 2005, 137, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Fukuyasu, Y.; Yoshida, S.; Fukuda, M.; Saeki, K.; Matsuno, H.; Yamauchi, Y.; Yoshida, K.; Hirata, K.; Miyamoto, K. Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angew. Chem. Int. Ed. 2004, 43, 2389–2391. [Google Scholar] [CrossRef]
Genotype | Filament | Style |
---|---|---|
WT | 219.5 ± 6.8 | 261 ± 7.2 |
FeSOD | 214.5 ± 5.8 | 271.7 ± 7.3 |
CodA | 223.6 ± 4.7 | 268.3 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podobedova, A.; Baranova, E.N.; Gulevich, A.A.; Chaban, I.A.; Breygina, M. Comprehensive Study of Sexual Reproduction in Nicotiana tabacum Plants Overexpressing H2O2-Producing Enzymes: Superoxide Dismutase and Choline Oxidase. Plants 2025, 14, 2103. https://doi.org/10.3390/plants14142103
Podobedova A, Baranova EN, Gulevich AA, Chaban IA, Breygina M. Comprehensive Study of Sexual Reproduction in Nicotiana tabacum Plants Overexpressing H2O2-Producing Enzymes: Superoxide Dismutase and Choline Oxidase. Plants. 2025; 14(14):2103. https://doi.org/10.3390/plants14142103
Chicago/Turabian StylePodobedova, Anna, Ekaterina N. Baranova, Alexander A. Gulevich, Inna A. Chaban, and Maria Breygina. 2025. "Comprehensive Study of Sexual Reproduction in Nicotiana tabacum Plants Overexpressing H2O2-Producing Enzymes: Superoxide Dismutase and Choline Oxidase" Plants 14, no. 14: 2103. https://doi.org/10.3390/plants14142103
APA StylePodobedova, A., Baranova, E. N., Gulevich, A. A., Chaban, I. A., & Breygina, M. (2025). Comprehensive Study of Sexual Reproduction in Nicotiana tabacum Plants Overexpressing H2O2-Producing Enzymes: Superoxide Dismutase and Choline Oxidase. Plants, 14(14), 2103. https://doi.org/10.3390/plants14142103