Next Issue
Volume 14, August-1
Previous Issue
Volume 14, July-1
 
 

Plants, Volume 14, Issue 14 (July-2 2025) – 165 articles

Cover Story (view full-size image): Bananas and plantains (Musa spp.) are essential food sources and cash crops with an annual production of 130 million metric tons. Musa spp. fruits are known to alleviate nutrient deficiencies in humans. However, their production faces biotic and abiotic stresses, limited genetic diversity in germplasm, and insufficient access to clean planting material. In addition, triploid cultivars pose challenges to breeding programs and genetic diversity expansion efforts. As a biotechnological tool, tissue culture represents the most effective method for controlling biotic and abiotic stresses. In this study, we explored how the triploid genome background and growth regulators influence the regeneration of Musa cultivars through direct organogenesis, aiming to produce elite cultivars with triploid genomes. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 3772 KB  
Article
Phenotypic Diversity Analysis and Integrative Evaluation of Camellia oleifera Germplasm Resources in Ya’an, Sichuan Province
by Shiheng Zheng, Qingbo Kong, Hanrui Yan, Junjie Liu, Renke Tang, Lijun Zhou, Hongyu Yang, Xiaoyu Jiang, Shiling Feng, Chunbang Ding and Tao Chen
Plants 2025, 14(14), 2249; https://doi.org/10.3390/plants14142249 - 21 Jul 2025
Viewed by 526
Abstract
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen [...] Read more.
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen high-yield, high-oil germplasms. The phenotypic diversity index for fruit (H’ = 1.36–1.44) was significantly higher than for leaf (H’ = 1.31) and flower (H’ < 1), indicating genetic diversity concentrated in reproductive traits, suggesting potential genetic variability in these traits. Fruit quantitative traits (e.g., single fruit weight CV = 35.37%, fresh seed weight CV = 38.93%) showed high genetic dispersion. Principal component analysis confirmed the fruit factor and economic factor as main phenotypic differentiation drivers. Quantitative traits were classified morphologically, and correlation analysis integrated them into 13 key indicators classified using LSD and range methods. Finally, TOPSIS evaluation selected 10 excellent germplasms like TQ122 and TQ49, with fruit weight, fresh seed yield, and kernel oil content significantly exceeding the population average. This study provides data for C. oleifera DUS test guidelines and proposes a multi-trait breeding strategy, supporting high-yield variety selection and germplasm resource protection. Full article
(This article belongs to the Special Issue Genetic Diversity and Germplasm Innovation in Woody Oil Crops)
Show Figures

Figure 1

23 pages, 3556 KB  
Article
Transcriptomic and Metabolomic Joint Analysis Revealing Different Metabolic Pathways and Genes Dynamically Regulating Bitter Gourd (Momordica charantia L.) Fruit Growth and Development in Different Stages
by Boyin Qiu, Dazhong Li, Qianrong Zhang, Hui Lin, Yongping Li, Qingfang Wen and Haisheng Zhu
Plants 2025, 14(14), 2248; https://doi.org/10.3390/plants14142248 - 21 Jul 2025
Viewed by 538
Abstract
Insights into dynamic regulatory factors in various stages of growth and development can guide strategies for precision and targeted breeding. Bitter gourd, as a vegetable product with medicinal value, plays a role in both agricultural and medical fields. In this study, phenotypic observations, [...] Read more.
Insights into dynamic regulatory factors in various stages of growth and development can guide strategies for precision and targeted breeding. Bitter gourd, as a vegetable product with medicinal value, plays a role in both agricultural and medical fields. In this study, phenotypic observations, metabolomic and transcriptomic analyses, and differential gene expression patterns, along with a correlation analysis, were conducted in different stages of fruit growth and development. The results revealed that the growth rate of fruit’s fresh weight, length, diameter, and flesh thickness during the first seven days was slow, and that it then rapidly increased after the seventh day, and finally slowed once more after 17 days, indicating that the overall process followed a “slow–fast–slow” pattern. Transcriptomic and metabolomic analyses identified several differentially expressed genes and metabolites, and joint analyses revealed that each of the glycolysis/gluconeogenesis, fructose and mannose metabolism and flavonoid biosynthesis pathways individually play significant roles in the dynamic regulation of fruit growth and development during the early, middle, and late stages. Among these, 53 differentially expressed genes (DEGs) and 12 differentially expressed metabolites (DEMs) were found in these pathways. A total of 12 randomly selected DEGs were analyzed using quantitative PCR, and the results showed that gene expression levels were generally consistent with transcriptomic sequencing results, exhibiting dynamic changes with varying expression levels. Correlation analysis revealed that 11 DEMs were positively correlated with four traits except for arbutin, while eight DEGs were related to all traits, including six significantly positive and two significantly negative correlations. These findings enhance our understanding of the regulatory network governing yield and quality and provide substantial evidence to support improvements in breeding programs. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 5629 KB  
Article
Genome-Wide Identification of G3BP Family in U’s Triangle Brassica Species and Analysis of Its Expression in B. napus
by Alain Tseke Inkabanga, Qiheng Zhang, Shanshan Wang, Yanni Li, Jingyi Chen, Li Huang, Xiang Li, Zihan Deng, Xiao Yang, Mengxin Luo, Lingxia Peng, Keran Ren, Yourong Chai and Yufei Xue
Plants 2025, 14(14), 2247; https://doi.org/10.3390/plants14142247 - 21 Jul 2025
Viewed by 418
Abstract
The RasGAP SH3 domain binding protein (G3BP) is a highly conserved family of proteins in eukaryotic organisms that coordinates signal transduction and post-transcriptional gene regulation and functions in the formation of stress granules. G3BPs have important roles in abiotic/biotic stresses in mammals, and [...] Read more.
The RasGAP SH3 domain binding protein (G3BP) is a highly conserved family of proteins in eukaryotic organisms that coordinates signal transduction and post-transcriptional gene regulation and functions in the formation of stress granules. G3BPs have important roles in abiotic/biotic stresses in mammals, and recent research suggests that they have similar functions in higher plants. Brassica contains many important oilseeds, vegetables, and ornamental plants, but there are no reports on the G3BP family in Brassica species. In this study, we identified G3BP family genes from six species of the U’s triangle (B. rapa, B. oleracea, B. nigra, B. napus, B. juncea, and B. carinata) at the genome-wide level. We then analyzed their gene structure, protein motifs, gene duplication type, phylogeny, subcellular localization, SSR loci, and upstream miRNAs. Based on transcriptome data, we analyzed the expression patterns of B. napus G3BP (BnaG3BP) genes in various tissues/organs in response to Sclerotinia disease, blackleg disease, powdery mildew, dehydration, drought, heat, cold, and ABA treatments, and its involvement in seed traits including germination, α-linolenic acid content, oil content, and yellow seed. Several BnaG3BP DEGs might be regulated by BnaTT1. The qRT-PCR assay validated the inducibility of two cold-responsive BnaG3BP DEGs. This study will enrich the systematic understanding of Brassica G3BP family genes and lay a molecular basis for the application of BnaG3BP genes in stress tolerance, disease resistance, and quality improvement in rapeseed. Full article
(This article belongs to the Special Issue Plant Genetic Diversity and Molecular Evolution)
Show Figures

Figure 1

24 pages, 4780 KB  
Article
Bioinformatics and Functional Validation of CqPRX9L1 in Chenopodium quinoa
by Hongxia Guo, Linzhuan Song, Yufa Wang, Li Zhao and Chuangyun Wang
Plants 2025, 14(14), 2246; https://doi.org/10.3390/plants14142246 - 21 Jul 2025
Viewed by 488
Abstract
As a plant-specific peroxidase family, class III peroxidase (PRX) plays an important role in plant growth, development, and stress response. In this study, a preliminary functional analysis of CqPRX9L1 was conducted. Bioinformatics analysis revealed that CqPRX9L1 encodes a 349-amino acid protein belonging to [...] Read more.
As a plant-specific peroxidase family, class III peroxidase (PRX) plays an important role in plant growth, development, and stress response. In this study, a preliminary functional analysis of CqPRX9L1 was conducted. Bioinformatics analysis revealed that CqPRX9L1 encodes a 349-amino acid protein belonging to the plant-peroxidase-like superfamily, featuring a transmembrane domain and cytoplasmic localization. The promoter region of CqPRX9L1 harbors various cis-acting elements associated with stress responses, hormone signaling, light regulation, and meristem-specific expression. The tissue-specific expression pattern of the CqPRX9L1 gene and its characteristics in response to different stresses were explored using subcellular localization, quantitative real-time PCR (qRT-PCR), and heterologous transformation into Arabidopsis thaliana. The results showed that CqPRX9L1, with a transmembrane structure, was localized in the cytoplasm, which encodes 349 amino acids and belongs to the plant-peroxisome-like superfamily. The promoter region contains stress-response elements, hormone-response elements, light-response elements, and meristem expression-related elements. The expression of CqPRX9L1 was relatively higher in ears and roots at the panicle stage than in stems and leaves. CqPRX9L1 showed a dynamic expression pattern of first decreasing and then increasing under abiotic stresses such as 15% PEG 6000, low temperature, and salt damage, with differences in response time and degree. CqPRX9L1 plays an important role in response to abiotic stress by affecting the activity of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD), as well as the synthesis and decomposition of proline (Pro). CqPRX9L1 also affects plant bolting and flowering by regulating key flowering genes (such as FT and AP1) and gibberellin (GA)-related pathways. The results establish a foundation for revealing the functions and molecular mechanisms of the CqPRX9L1 gene. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 2530 KB  
Article
Development of Procymidone and Difenoconazole Resistance in Alternaria alternata, the Causal Agent of Kiwifruit Brown Spot Disease
by Yahui Liu, Manfei Bao, Yanxin Wang and Chuanqing Zhang
Plants 2025, 14(14), 2245; https://doi.org/10.3390/plants14142245 - 21 Jul 2025
Viewed by 424
Abstract
Brown spot, caused by Alternaria alternata, is the most important leaf fungal disease threatening kiwifruit production in China, and it is typically controlled through the application of fungicides, such as procymidone and difenoconazole. To date, fungicide resistance development has not yet been [...] Read more.
Brown spot, caused by Alternaria alternata, is the most important leaf fungal disease threatening kiwifruit production in China, and it is typically controlled through the application of fungicides, such as procymidone and difenoconazole. To date, fungicide resistance development has not yet been systematically reported for the pathogen of kiwifruit. A total of 135 single-conidium A. alternata isolates were collected from different cities in Zhejiang Province, China. Alternaria alternata developed prevailing resistance to procymidone and initial resistance to difenoconazole, with resistance frequencies of 60.7 and 13.3%, respectively. Positive cross-resistance was observed between procymidone and iprodione but not between procymidone and difenoconazole, tebuconazole, prochloraz, pydiflumetofen, pyraclostrobin, or thiophanate-methyl. Moreover, no cross-resistance was observed between difenoconazole and all other tested fungicides, including the two other demethylation inhibitors, tebuconazole and prochloraz. A fitness penalty was not detected in procymidone-resistant (ProR) or difenoconazole-resistant (DifR) isolates. However, double-resistant (ProR DifR) isolates had a fitness penalty, showing significantly decreased sporulation, germination, and pathogenicity. The P894L single point mutation, caused by the change from CCA to CTA at the 894th codon of Os1, was detected in ProR isolates. Molecular dynamic simulation showed that the P894L mutation significantly decreased the inhibitory activity of procymidone against AaOs1 in A. alternata. These results provide insight into the development and characteristics of fungicide resistance, offering guidance for the study and management of kiwifruit diseases. Full article
Show Figures

Figure 1

26 pages, 5079 KB  
Review
Genus Datura: An Exploration of Genetic Alterations, Bioactive Compounds, and Pharmacological Activity
by Khoirunnisa Assidqi, Nesti Fronika Sianipar, Dave Mangindaan and Chukwunwike Uchenna Enyi
Plants 2025, 14(14), 2244; https://doi.org/10.3390/plants14142244 - 21 Jul 2025
Viewed by 2000
Abstract
The genus Datura L. has pharmacological activities due to its source of bioactive compounds. The effects of bioactive compounds can vary depending on species, geographical location, and environmental conditions. The purpose of this review is to summarize the most recent progress and to [...] Read more.
The genus Datura L. has pharmacological activities due to its source of bioactive compounds. The effects of bioactive compounds can vary depending on species, geographical location, and environmental conditions. The purpose of this review is to summarize the most recent progress and to provide a comprehensive overview of studies concerning genetic alteration and bioactive compounds in the genus Datura, based on Scopus publications between 2015 and 2025. Throughout history, the genus Datura (Solanaceae) contains nine species of medicinal plants. A key component of elucidating the diversification process of congeneric species is identifying the factors that encourage species variation. A comparative gene family analysis provides an understanding of the evolutionary history of species by identifying common genetic/genomic mechanisms that are responsible for species responses to biotic and abiotic environments. The diverse range of bioactive compounds it contains contributes to its unique bioactivity. Datura contains tropane alkaloids (such as hyoscyamine and scopolamine), datumetine, withametelin, daturaolone, and atropine. Several compounds have been isolated and refined for use in treating various conditions as a result of recent progress in therapeutic development. Daturaolone, for example, is used to treat certain neurological disorders. In addition to providing renewed opportunities for the discovery of new compounds, these advancements also provide insights into the genetic basis for their biosynthesis. Our discussion also includes pitfalls as well as relevant publications regarding natural products and their pharmacological properties. The pace of discovery of bioactive compounds is set to accelerate dramatically shortly, owing to both careful perspectives and new developments. Full article
Show Figures

Figure 1

17 pages, 2071 KB  
Article
Melatonin Enhances Drought Tolerance by Regulating the Genes Underlying Photosynthesis and Antioxidant Defense in Rubber Tree (Hevea brasiliensis) Seedlings
by Dejun Li, Zhihui Xia, Xuncheng Wang, Hong Yang and Yao Li
Plants 2025, 14(14), 2243; https://doi.org/10.3390/plants14142243 - 21 Jul 2025
Viewed by 550
Abstract
Melatonin (MT) can enhance plant stress tolerance by activating the internal defense system, but its application in rubber trees has been barely reported up to now. In this study, we found that the relative electrical conductivity (REC), H2O2, and [...] Read more.
Melatonin (MT) can enhance plant stress tolerance by activating the internal defense system, but its application in rubber trees has been barely reported up to now. In this study, we found that the relative electrical conductivity (REC), H2O2, and malondialdehyde (MDA) contents were significantly higher in the leaves of rubber tree seedlings under drought stress compared to the control (water treatment), whereas chlorophyll contents were obviously lower in the leaves under drought stress compared to the control. MT partly relieves the aforementioned drought-induced adverse effects by dramatically reducing chlorophyll degradation, H2O2 accumulation, MDA content, and REC. Comparative transcriptomes among the PEG (P), MT (M), and PEG + MT (PM) treatments against the control showed that 213, 896, and 944 genes were differently expressed in rubber tree seedlings treated with M, P, and PM in contrast to the control. Among the 64 differently expressed genes (DEGs) being common among the three comparisons, the expression profiles of 25 were opposite in MH compared with PH. Intriguingly, all the KEGG pathways of the DEGs mentioned above belonged to metabolism including energy metabolism, carbohydrate metabolism, amino acid metabolism, and the metabolism of cofactors and vitamins. Exogenous application of MT mainly regulated the genes associated with photosynthesis and the anti-oxidative defense system, thereby enhancing the antioxidant protection of rubber tree seedlings under drought stress. These results suggest that exogenous melatonin application can effectively enhance drought tolerance by heightening ROS scavenging to decrease H2O2 accumulation in rubber tree seedlings. Our results elucidate the molecular mechanisms of MT’s roles in drought stress, which help to employ exogenous MT to boost drought tolerance in the rubber tree. Full article
(This article belongs to the Special Issue Metabolic Analysis of Plant Development and Defense Responses)
Show Figures

Figure 1

24 pages, 13745 KB  
Article
Genetic Improvement and Functional Characterization of AAP1 Gene for Enhancing Nitrogen Use Efficiency in Maize
by Mo Zhu, Ziyu Wang, Shijie Li and Siping Han
Plants 2025, 14(14), 2242; https://doi.org/10.3390/plants14142242 - 21 Jul 2025
Viewed by 514
Abstract
Nitrogen use efficiency remains the primary bottleneck for sustainable maize production. This study elucidates the functional mechanisms of the amino acid transporter ZmAAP1 in nitrogen absorption and stress resilience. Through systematic evolutionary analysis of 55 maize inbred lines, we discovered that the ZmAAP1 [...] Read more.
Nitrogen use efficiency remains the primary bottleneck for sustainable maize production. This study elucidates the functional mechanisms of the amino acid transporter ZmAAP1 in nitrogen absorption and stress resilience. Through systematic evolutionary analysis of 55 maize inbred lines, we discovered that the ZmAAP1 gene family exhibits distinct chromosomal localization (Chr7 and Chr9) and functional domain diversification (e.g., group 10-specific motifs 11/12), indicating species-specific adaptive evolution. Integrative analysis of promoter cis-elements and multi-omics data confirmed the root-preferential expression of ZmAAP1 under drought stress, mediated via the ABA-DRE signaling pathway. To validate its biological role, we generated transgenic maize lines expressing Arabidopsis thaliana AtAAP1 via Agrobacterium-mediated transformation. Three generations of genetic stability screening confirmed the stable genomic integration and root-specific accumulation of the AtAAP1 protein (Southern blot/Western blot). Field trials demonstrated that low-N conditions enhanced the following transgenic traits: the chlorophyll content increased by 13.5%, and the aboveground biomass improved by 7.2%. Under high-N regimes, the gene-pyramided hybrid ZD958 (AAP1 + AAP1) achieved a 12.3% yield advantage over conventional varieties. Our findings reveal ZmAAP1’s dual role in root development and long-distance nitrogen transport, establishing it as a pivotal target for molecular breeding. This study provides actionable genetic resources for enhancing NUE in maize production systems. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition and Novel Fertilizers—Second Edition)
Show Figures

Figure 1

14 pages, 2027 KB  
Article
The Role of Potassium and KUP/KT/HAK Transporters in Regulating Strawberry (Fragaria × ananassa Duch.) Fruit Development
by José A. Mercado-Hornos, Claudia Rodríguez-Hiraldo, Consuelo Guerrero, Sara Posé, Antonio J. Matas, Lourdes Rubio and José A. Mercado
Plants 2025, 14(14), 2241; https://doi.org/10.3390/plants14142241 - 20 Jul 2025
Viewed by 552
Abstract
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is [...] Read more.
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is largely unknown; however, the reallocation of K+ into the apoplast has been proposed as a contributing factor to the decrease in fruit turgor, contributing to fruit softening. High-affinity K+ transporters belonging to the KUP/HT/HAK transporter family have been implicated in this process in some fruits. In this study, a comprehensive genome-wide analysis of the KUP/KT/HAK family of high-affinity K+ transporters in strawberry (Fragaria × ananassa Duch.) was conducted, identifying 60 putative transporter genes. The chromosomal distribution of the FaKUP gene family and phylogenetic relationship and structure of predicted proteins were thoroughly examined. Transcriptomic profiling revealed the expression of 19 FaKUP genes within the fruit receptacle, with a predominant downregulation observed during ripening, particularly in FaKUP14, 24 and 47. This pattern suggests their functional relevance in early fruit development and turgor maintenance. Mineral composition analyses confirmed that K+ is the most abundant macronutrient in strawberry fruits, exhibiting a slight decrease as ripening progressed. Membrane potential (Em) and diffusion potentials (ED) at increasing external K+ concentrations were measured by electrophysiology in parenchymal cells of green and white fruits. The results obtained suggest a significant diminution in cytosolic K+ levels in white compared to green fruits. Furthermore, the slope of change in ED at increasing external K+ concentration indicated a lower K+ permeability of the plasma membrane in white fruits, aligning with transcriptomic data. This study provides critical insights into the regulatory mechanisms of K+ transport during strawberry ripening and identifies potential targets for genetic modifications aimed at enhancing fruit firmness and shelf life. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

19 pages, 4907 KB  
Article
Genome-Wide Analysis of GmMYB S20 Transcription Factors Reveals Their Critical Role in Soybean Nodulation
by Junchen Leng, Ruobing Xu, Yanshuang Liu, Tianshu Jiang, Haiying Hu, Zhaojun Ding and Shaojun Dai
Plants 2025, 14(14), 2240; https://doi.org/10.3390/plants14142240 - 20 Jul 2025
Viewed by 471
Abstract
Soybean relies on symbiotic nitrogen fixation (SNF) to support sustainable agriculture. In this study, we conducted a comprehensive analysis of the GmMYB transcription factor subfamily 20, with a focus on GmMYB62a and GmMYB62b. Phylogenetic and structural analyses revealed that these genes are [...] Read more.
Soybean relies on symbiotic nitrogen fixation (SNF) to support sustainable agriculture. In this study, we conducted a comprehensive analysis of the GmMYB transcription factor subfamily 20, with a focus on GmMYB62a and GmMYB62b. Phylogenetic and structural analyses revealed that these genes are evolutionarily conserved among legumes and possess distinct domain architectures. Expression profiling and GUS staining showed that GmMYB62a and GmMYB62b are constitutively expressed in nodules. Functional analyses revealed that loss of GmMYB62s function significantly reduced nodule density, while overexpression promoted nodulation. Transcriptomic analysis (RNA-seq) further demonstrated that GmMYB62s regulate key pathways, including hormone signaling, immune responses, and cell wall metabolism, thereby coordinating symbiotic interactions. Collectively, our findings identify GmMYB62a and GmMYB62b as critical molecular regulators of nodulation in soybean, providing promising targets for improving symbiotic nitrogen fixation efficiency in legume crops. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 1692 KB  
Article
Species- and Age-Dependent Prenyllipid Accumulation in Hypericum Species’ Leaves
by Danija Lazdiņa, Ieva Miķelsone, Inga Mišina, Krists Dukurs, Ana M. Benítez-González, Carla M. Stinco, Antonio J. Meléndez-Martínez and Paweł Górnaś
Plants 2025, 14(14), 2239; https://doi.org/10.3390/plants14142239 - 20 Jul 2025
Viewed by 512
Abstract
Carotenoid, chlorophyll and tocochromanol biosynthesis and accumulation are interrelated and age-dependent in plants. Model plants produce tocopherols, but do not produce significant amounts of tocotrienols; consequently, the regulation of tocotrienol biosynthesis in plants has been scarcely studied. The Hypericum genus produces a variety [...] Read more.
Carotenoid, chlorophyll and tocochromanol biosynthesis and accumulation are interrelated and age-dependent in plants. Model plants produce tocopherols, but do not produce significant amounts of tocotrienols; consequently, the regulation of tocotrienol biosynthesis in plants has been scarcely studied. The Hypericum genus produces a variety of prenyllipids naturally in all parts of the plant, allowing for a glimpse into the relationship between them without genetic or other interference. Consequently, five Hypericum species’ leaves of different ages were investigated—H. androsaemum, H. pseudohenryi, H. hookerianum, H. patulum and one hybrid H. × inodorum (H. androsaemum × H. hircinum). The leaves contained predominantly α-tocopherol, γ-tocotrienol and δ-tocotrienol (30.9–212.8, 8.13–22.43 and 1.87–20.8 mg 100 g−1, respectively). Higher quantities of tocochromanols, a lower chlorophyll content and a higher a/b ratio were observed in the bottom (older) leaves. The predominant carotenoids were lutein (semi-quantitative) and β-carotene (7.60–28.63 and 2.33–12.43 mg 100 g−1, respectively). Carotenoid contents were lower in bottom leaves than in middle or top leaves, and the highest carotenoid content was observed in H. hookerianum and H. patulum. Leaf tocopherol, tocotrienol, chlorophyll and carotenoid accumulation were section and leaf age-dependent, and distinct relationships can be observed between the accumulation of some prenyl lipids, but not others. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

17 pages, 1722 KB  
Article
Rhizospheric Bacterial Distribution Influencing the Accumulation of Isoflavones, Phenolics, Flavonoids, and Antioxidant Activity in Soybean Roots Within Hydroponic System
by Du Yong Cho, Mu Yeun Jang, Hee Yul Lee, Jong Bin Jeong, Da Hyun Kim, Do Yun Bang, Hye Rim Kim, Ye Rim Jeong, Md. Azizul Haque, Jin Hwan Lee and Kye Man Cho
Plants 2025, 14(14), 2238; https://doi.org/10.3390/plants14142238 - 19 Jul 2025
Viewed by 566
Abstract
This study investigates how root color in soybeans affects isoflavone composition, rhizosphere bacterial diversity, total phenolics, total flavonoids, and antioxidant activity under a hydroponic cultivation system. Notably, soybean-brown roots (SBRs) accumulated significantly higher contents of isoflavones, exhibiting approximately a 14.9-fold increase in total [...] Read more.
This study investigates how root color in soybeans affects isoflavone composition, rhizosphere bacterial diversity, total phenolics, total flavonoids, and antioxidant activity under a hydroponic cultivation system. Notably, soybean-brown roots (SBRs) accumulated significantly higher contents of isoflavones, exhibiting approximately a 14.9-fold increase in total glycosides (141.75 to 2121.59 µg/g), 7.3-fold increase in total malonyl-β-glycosides (127.52 to 930.45 µg/g), 2.8-fold increase in total aglycones (1825.90 to 5145.21 µg/g), and 3.9-fold increase in total isoflavones (2095.16 to 8197.26 µg/g) than soybean-white roots (SWRs). Isolated rhizosphere bacteria profiling revealed γ-Proteobacteria as the predominant class in both root types, constituting 77.6% and 73.9% of the bacterial community in SWRs and SBRs, respectively. However, SBRs supported a more diverse bacterial ecosystem, harboring thirteen genera compared to only eight genera in SWRs. Enhanced total phenolics, total flavonoids, and radical scavenging activity were also associated with the SBRs. These findings shed light on the dynamic interplay between root traits, bacterial interactions, and secondary metabolite biosynthesis in hydroponically grown soybeans. This work not only advances our understanding of plant root–microbiome–metabolite relationships but also offers a novel approach to exploring the potential of enhancing secondary metabolites in soybean plants through precision cultivation. Full article
Show Figures

Figure 1

12 pages, 1033 KB  
Article
Hydration-Dehydration Effects on Germination Tolerance to Water Stress of Eight Cistus Species
by Belén Luna
Plants 2025, 14(14), 2237; https://doi.org/10.3390/plants14142237 - 19 Jul 2025
Viewed by 452
Abstract
Seeds in soil are often exposed to cycles of hydration and dehydration, which can prime them by triggering physiological activation without leading to germination. While this phenomenon has been scarcely studied in wild species, it may play a critical role in enhancing drought [...] Read more.
Seeds in soil are often exposed to cycles of hydration and dehydration, which can prime them by triggering physiological activation without leading to germination. While this phenomenon has been scarcely studied in wild species, it may play a critical role in enhancing drought resilience and maintaining seed viability under the warmer conditions predicted by climate change. In this study, I investigated the effects of hydration–dehydration cycles on germination response under water stress in eight Cistus species typical of Mediterranean shrublands. First, seeds were exposed to a heat shock to break physical dormancy, simulating fire conditions. Subsequently, they underwent one of two hydration–dehydration treatments (24 or 48 h) and were germinated under a range of water potentials (0, –0.2, –0.4, –0.6, and –0.8 MPa). Six out of eight species showed enhanced germination responses following hydration–dehydration treatments, including higher final germination percentages, earlier germination onset (T0), or increased tolerance to water stress. These findings highlight the role of water availability as a key factor regulating germination in Cistus species and evidence a hydration memory mechanism that may contribute in different ways to post-fire regeneration in Mediterranean ecosystems. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 17948 KB  
Article
Temporal Transcriptome Analysis Reveals Core Pathways and Orphan Gene EARLY FLOWERING 1 Regulating Floral Transition in Chinese Cabbage
by Hong Lang, Yuting Zhang, Shouhe Zhao, Kexin Li, Xiaonan Li and Mingliang Jiang
Plants 2025, 14(14), 2236; https://doi.org/10.3390/plants14142236 - 19 Jul 2025
Cited by 1 | Viewed by 440
Abstract
The floral transition in Chinese cabbage (Brassica rapa ssp. pekinensis) is governed by a complex interplay of gene expression and hormonal regulation. Temporal transcriptome profiling was conducted across three developmental stages: pre-bolting (PBS), bolting (BS), and flowering stages (FS), to investigate [...] Read more.
The floral transition in Chinese cabbage (Brassica rapa ssp. pekinensis) is governed by a complex interplay of gene expression and hormonal regulation. Temporal transcriptome profiling was conducted across three developmental stages: pre-bolting (PBS), bolting (BS), and flowering stages (FS), to investigate the underlying molecular mechanisms. A total of 7092 differentially expressed genes (DEGs) were identified, exhibiting distinct expression trajectories during the transition. Moreover, functional enrichment analyses revealed strong associations with plant hormone signaling, MAPK pathways, and developmental regulation processes. Key flowering-related genes, such as BrFLM, BrAP2, BrFD, BrFT, and BrSOC1s displayed antagonistic expression patterns. Hormonal pathways involving auxin, ABA, ET, BR, GA, JA, CK, and SA showed stage-dependent modulation. Further, orphan genes (OGs), especially EARLY FLOWERING 1 (EF1), showed significant upregulation during the transition, which exhibited 1.84-fold and 1.93-fold increases at BS and FS compared to PBS, respectively (p < 0.05). Functional validation through EF1 overexpression (EF1OE) in Arabidopsis consistently promoted early flowering. The expression levels of AtFT and AtSOC1 were significantly upregulated in EF1OE lines compared to wild-type (WT) plants. The findings contribute to understanding the coordinated genetic and hormonal events driving floral development in Chinese cabbage, suggesting EF1 as a candidate for bolting resistance breeding. This work also expands the existing regulatory framework through the successful integration of OGs into the complex floral induction system of Brassica crops. Full article
Show Figures

Figure 1

19 pages, 1578 KB  
Article
Decreased Nitrogen and Carbohydrate Metabolism Activity Leads to Grain Yield Reduction in Qingke Under Continuous Cropping
by Zhiqi Ma, Chaochao He, Jianxin Tan, Tao Jin and Shuijin Hua
Plants 2025, 14(14), 2235; https://doi.org/10.3390/plants14142235 - 19 Jul 2025
Viewed by 345
Abstract
Qingke (Hordeum vulgare L. var. nudum Hook. f.), a staple crop in the Tibetan Plateau, suffers from severe yield reduction under continuous cropping (by 38.67%), yet the underlying mechanisms remain unclear. This study systematically investigated the effects of 23-year continuous cropping (23y-CC) [...] Read more.
Qingke (Hordeum vulgare L. var. nudum Hook. f.), a staple crop in the Tibetan Plateau, suffers from severe yield reduction under continuous cropping (by 38.67%), yet the underlying mechanisms remain unclear. This study systematically investigated the effects of 23-year continuous cropping (23y-CC) on the nutrient dynamics, carbohydrate metabolism, and enzymatic activities in Qingke leaves across five developmental stages (T1: seedling; T2: tillering; T3: jointing; T4: flowering; T5: filling). Compared to the control (first-year planting), 23y-CC significantly reduced leaf nitrogen (N), phosphorus (P), and potassium (K) contents by 60.94%, 47.96%, and 60.82%, respectively, at early growth stages. Key nitrogen-metabolizing enzymes, including glutamate synthase (GOGAT), glutamine synthase (GS), and nitrate reductase (NR), exhibited reduced activities under 23y-CC, indicating impaired nitrogen assimilation. Carbohydrate profiling revealed lower starch and glucose contents but higher sucrose accumulation in later stages (T4–T5) under 23y-CC, accompanied by the dysregulation of sucrose synthase (SS) and invertase activities. These findings elucidate how continuous cropping disrupts nutrient homeostasis and carbon allocation, ultimately compromising Qingke productivity. This study provides novel insights into agronomic strategies for mitigating continuous cropping obstacles in Qingke. Full article
(This article belongs to the Special Issue Influence of Management Practices on Plant Growth)
Show Figures

Figure 1

24 pages, 1349 KB  
Review
Chemotaxonomy, an Efficient Tool for Medicinal Plant Identification: Current Trends and Limitations
by Adnan Amin and SeonJoo Park
Plants 2025, 14(14), 2234; https://doi.org/10.3390/plants14142234 - 19 Jul 2025
Viewed by 1083
Abstract
This review highlights the critical role of chemotaxonomy in the identification, authentication, and discovery of bioactive compounds in medicinal plants. By analyzing secondary metabolites using techniques like UV spectroscopy, FTIR, HPLC, GC-MS, NMR, LC-MS-Qtof, and MALDI-TOF MS, chemotaxonomy ensures accurate plant identification, supporting [...] Read more.
This review highlights the critical role of chemotaxonomy in the identification, authentication, and discovery of bioactive compounds in medicinal plants. By analyzing secondary metabolites using techniques like UV spectroscopy, FTIR, HPLC, GC-MS, NMR, LC-MS-Qtof, and MALDI-TOF MS, chemotaxonomy ensures accurate plant identification, supporting the safe and effective use of plants in herbal medicine. Key secondary metabolites used in chemotaxonomic identification include alkaloids, flavonoids, terpenoids, phenolics, tannins, and plant peptides. Chemotaxonomy also facilitates the discovery of novel compounds with therapeutic potential, contributing to drug development. The integration of chemotaxonomy with genomics and proteomics allows a deeper understanding of plant biosynthesis and the mechanisms behind bioactive compound production. However, challenges due to variability in metabolite profiles and the lack of standardized methods remain, and future research should focus on developing global databases, improving standardization, and incorporating artificial intelligence and machine learning to enhance plant identification and bioactive compound discovery. The integration of chemotaxonomy with personalized medicine offers the potential to tailor plant-based therapies to individual genetic profiles, advancing targeted treatments. This review underscores chemotaxonomy’s importance in bridging traditional knowledge and modern science, offering sustainable solutions for medicinal plant use and drug development. Full article
(This article belongs to the Special Issue Plant Phylogeny, Taxonomy and Evolution)
Show Figures

Figure 1

26 pages, 3919 KB  
Article
Impacts of Various Straw Mulching Strategies on Soil Water, Nutrients, Thermal Regimes, and Yield in Wheat–Soybean Rotation Systems
by Chaoyu Liao, Min Tang, Chao Zhang, Meihua Deng, Yan Li and Shaoyuan Feng
Plants 2025, 14(14), 2233; https://doi.org/10.3390/plants14142233 - 19 Jul 2025
Cited by 1 | Viewed by 527
Abstract
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In [...] Read more.
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In this study, we systematically examined the combined effects of straw mulching at the seedling and jointing stages of winter wheat, as well as varying mulching thicknesses and soybean planting densities, on soil properties and crop yields through field experiments. The experimental design included straw mulching treatments during the seedling stage (T1) and the jointing stage (T2) of winter wheat, with soybean planting densities classified as low (D1, 1.8 × 105 plants·ha−1) and high (D2, 3.6 × 105 plants·ha−1). Mulching thicknesses were set at low (S1, 2830.19 kg·ha−1), medium (S2, 8490.57 kg·ha−1), and high (S3, 14,150.95 kg·ha−1), in addition to a no-mulch control (CK) for each treatment. The results demonstrated that (1) straw mulching significantly increased soil water content in the order S3 > S2 > S1 > CK and exerted a temperature-buffering effect. This resulted in increases in soil organic carbon, available phosphorus, and available potassium by 1.88−71.95%, 1.36−165.8%, and 1.92−36.34%, respectively, while decreasing available nitrogen content by 1.42−17.98%. (2) The T1 treatments increased wheat yields by 1.22% compared to the control, while the T2 treatments resulted in a 23.83% yield increase. Soybean yields increased by 23.99% under D1 and by 36.22% under D2 treatments. (3) Structural equation modeling indicated that straw mulching influenced yields by modifying interactions among soil organic carbon, available nitrogen, available phosphorus, available potassium, bulk density, soil temperature, and soil water content. Wheat yields were primarily regulated by the synergistic effects of soil temperature, water content, and available potassium, whereas soybean yields were determined by the dynamic balance between organic carbon and available potassium. This study provides empirical evidence to inform the optimization of straw return practices in wheat–soybean rotation systems. Full article
Show Figures

Figure 1

15 pages, 5045 KB  
Article
Transpiration and Water Use Efficiency of Mediterranean Eucalyptus Genotypes Under Contrasting Irrigation Regimes
by Juan C. Valverde, Rafael A. Rubilar, Alex Medina, Matías Pincheira, Verónica Emhart, Yosselin Espinoza, Daniel Bozo and Otávio C. Campoe
Plants 2025, 14(14), 2232; https://doi.org/10.3390/plants14142232 - 19 Jul 2025
Viewed by 484
Abstract
Water scarcity is a key constraint for commercial Eucalyptus plantations, particularly given the increasing frequency of droughts driven by climate change. This study assessed annual transpiration (Tr) and water use efficiency (WUE) across eight genotypes subjected to contrasting irrigation regimes (WR). A split-plot [...] Read more.
Water scarcity is a key constraint for commercial Eucalyptus plantations, particularly given the increasing frequency of droughts driven by climate change. This study assessed annual transpiration (Tr) and water use efficiency (WUE) across eight genotypes subjected to contrasting irrigation regimes (WR). A split-plot design was implemented, comprising two irrigation levels: high (maintained above 75% of field capacity) and low (approximately 25% above the permanent wilting point). The genotypes included Eucalyptus globulus (EgH, EgL), E. nitens × globulus (EngH, EngL), E. nitens (En), E. camaldulensis × globulus (Ecg), E. badjensis (Eb), and E. smithii (Es). Between stand ages of 7 and 9 years (2020–2023), we measured current annual increment (CAI), leaf area index (LAI), Tr, and WUE. Under high WR, CAI ranged from 8 to 36 m3 ha−1 yr−1, Tr from 520 to 910 mm yr−1, and WUE from 0.7 to 2.9 kg m−3. Low irrigation reduced CAI by 5–25% and Tr by 10–35%, while WUE responses varied across genotypes, ranging from a 12% decrease to a 48% increase. Based on their functional responses, genotypes were grouped as follows: (i) stable performers (Es, Ecg, Eb) exhibited high WUE and consistent Tr under both WR; (ii) partially plastic genotypes (EgH, EngH) combined moderate reductions in Tr with improved WUE; and (iii) water-sensitive genotypes (EgL, EngL, En) showed substantial declines in Tr alongside variable WUE gains. These findings underscore the importance of selecting genotypes with adaptive water-use traits to improve the resilience and long-term sustainability of Eucalyptus plantations in Mediterranean environments. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

23 pages, 12625 KB  
Article
Genome-Wide Identification and Expression Analysis of Auxin-Responsive GH3 Gene Family in Pepper (Capsicum annuum L.)
by Qiao-Lu Zang, Meng Wang, Lu Liu, Xiao-Mei Zheng and Yan Cheng
Plants 2025, 14(14), 2231; https://doi.org/10.3390/plants14142231 - 18 Jul 2025
Viewed by 611
Abstract
As an auxin-responsive gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids in plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but the characteristics of pepper (Capsicum annuum L.) [...] Read more.
As an auxin-responsive gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids in plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but the characteristics of pepper (Capsicum annuum L.) GH3 (CaGH3) gene family members in response to multiple stimulants are largely unknown. In this study, we systematically identified the CaGH3 gene family at the genome level and identified eight members on four chromosomes in pepper. CaGH3s were divided into two groups (I and III) and shared conserved motifs, domains, and gene structures. Moreover, CaGH3s had close evolutionary relationships with tomato (Solanum lycopersicum L.), and the promoters of most CaGH3 genes contained hormone and abiotic stress response elements. A protein interaction prediction analysis demonstrated that the CaGH3-3/3-6/3-7/3-8 proteins were possibly core members of the CaGH3 family interaction. In addition, qRT-PCR results showed that CaGH3 genes were differentially expressed in pepper tissues and could be induced by phytohormones (IAA, ABA, and MeJA) and abiotic stresses (salt, low temperature, and drought) with different patterns. In addition, CaGH3-5 and CaGH3-7 were cloned, and the sequences showed a high degree of conservation. Moreover, the results of subcellular localization indicated that they were located in the membrane and chloroplast. Notably, after overexpressing CaGH3-7 in tomato, RNA-seq was performed on wild-type and transgenic lines, and the differentially expressed genes were mainly enriched in response to external stimuli. This study not only lays the foundation for a comprehensive understanding of the function of the CaGH3 gene family during plant growth and stress responses but also provides potential genetic resources for pepper resistance breeding. Full article
Show Figures

Figure 1

11 pages, 1354 KB  
Article
Source of Explant and Light Spectrum Influence in Adventitious Shoot Regeneration of Prunus salicina Lindl. (Japanese plum)
by Carmen López-Sierra, José E. Cos-Terrer, Miriam Romero-Muñoz and Margarita Pérez-Jiménez
Plants 2025, 14(14), 2230; https://doi.org/10.3390/plants14142230 - 18 Jul 2025
Viewed by 454
Abstract
Light influence on shoot regeneration in Prunus salicina is a complex interaction that has been studied for the first time. Japanese plum plants were regenerated from calli and seeds of the scion cultivar ‘Victoria’. The effect of four different light spectra (white, blue, [...] Read more.
Light influence on shoot regeneration in Prunus salicina is a complex interaction that has been studied for the first time. Japanese plum plants were regenerated from calli and seeds of the scion cultivar ‘Victoria’. The effect of four different light spectra (white, blue, red, and mixed), along with three 6-benzyladenine (BA) concentrations (1, 1.5, and 2 mg L−1), was studied in these two sources of explants. Organogenic calli were derived from the base of stem explants of the scion cultivar ‘Victoria’, whereas cotyledons and embryogenic axis slices were used as seed explants. Calli cultured with 2 mg L−1 of BA and mixed light or 2.5 mg L−1 of BA and control light showed the highest regeneration rates, with no significant differences compared to other treatments. Seed explants exposed to 2.5 mg L−1 of BA and red light exhibited significantly higher organogenesis. In comparison, those in 1.5 mg L−1 of BA with blue light or 2.5 mg L−1 of BA with mixed/control light showed no regeneration. BA concentration did not have a significant effect in the induction of somatic shoots from any explant source. In contrast, a strong interaction between light and BA was noticed. This work presents a protocol that can be applied in transformation and editing research as light spectrum studies continue to advance. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration)
Show Figures

Figure 1

20 pages, 1949 KB  
Article
Hormone Fluctuation and Gene Expression During Early Stages of the Hickory Grafting Process
by Qiaoyu Huang, Haixia Liu, Qinyuan Shen, Huwei Yuan, Fuqiang Cui, Daoliang Yan, Wona Ding, Xiaofei Wang and Bingsong Zheng
Plants 2025, 14(14), 2229; https://doi.org/10.3390/plants14142229 - 18 Jul 2025
Cited by 1 | Viewed by 493
Abstract
Grafting involves complex hormonal interactions at graft interfaces that are not yet fully understood. In this study, we analyzed hormone fluctuations and gene expression during callus proliferation and vascular tissue differentiation in hickory (Carya cathayensis Sarg.) grafts. Cytokinin and ethylene precursor ACC [...] Read more.
Grafting involves complex hormonal interactions at graft interfaces that are not yet fully understood. In this study, we analyzed hormone fluctuations and gene expression during callus proliferation and vascular tissue differentiation in hickory (Carya cathayensis Sarg.) grafts. Cytokinin and ethylene precursor ACC levels steadily increased after grafting. The biosynthetic genes for these hormones (IPT3, ACS1, ACO1, and ACO5) exhibited heightened expression. Genes related to cytokinin signaling (RR3, ARR4, and ZFP5) and ethylene signaling (MKK9, ESE1, and ESE3) were similarly upregulated. Conversely, genes associated with jasmonic acid, abscisic acid, and strigolactone pathways were downregulated, including synthesis genes (AOC4 and AOS) and those involved in signal transduction (NAC3, WRKY51, and SMAX1). Correspondingly, JA-Ile and 5-deoxystrigol levels significantly decreased. Indole-3-acetic acid (IAA) levels also dropped during the early stages of graft union formation. These results suggest that low auxin concentrations may be essential in the initial stages after grafting to encourage callus proliferation, followed by an increase at later stages to facilitate vascular bundle differentiation. These findings imply that maintaining a balance between low auxin levels and elevated cytokinin and ethylene levels may be critical to support cell division and callus formation during the initial proliferation phase. Later, during the vascular differentiation phase, a gradual rise in auxin levels, accompanied by elevated ethylene, may facilitate the differentiation of vascular bundles in hickory grafts. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

39 pages, 9572 KB  
Article
Influence and Optimization of Landscape Elements on Outdoor Thermal Comfort in University Plazas in Severely Cold Regions
by Zhiyi Tao, Guoqiang Xu, Guo Li, Xiaochen Zhao, Zhaokui Gao and Xin Shen
Plants 2025, 14(14), 2228; https://doi.org/10.3390/plants14142228 - 18 Jul 2025
Viewed by 614
Abstract
Universities in severely cold regions face the dual challenge of adapting to seasonal climate variations while enhancing outdoor thermal comfort in outdoor leisure plazas. This study takes a university in Hohhot as a case study. Through field investigations conducted in summer and winter, [...] Read more.
Universities in severely cold regions face the dual challenge of adapting to seasonal climate variations while enhancing outdoor thermal comfort in outdoor leisure plazas. This study takes a university in Hohhot as a case study. Through field investigations conducted in summer and winter, thermal benchmarks were established. Based on this, an orthogonal experimental design was developed considering greenery layout, plant types, and surface albedo. ENVI-met was used to simulate and analyze the seasonal regulatory effects of landscape elements on the microclimate. The results show that: (1) the lower limit of the neutral PET range in Hohhot in winter is −11.3 °C, and the upper limit in summer is 31.3 °C; (2) the seasonal contribution of landscape elements to PET ranks as follows: plant types > greenery layout > surface albedo; and (3) the proposed optimization plan achieved a weighted increase of 6.0% in the proportion of activity area within the neutral PET range in both summer and winter. This study is the first to construct outdoor thermal sensation categories for both summer and winter in Hohhot and to establish a thermal comfort optimization evaluation mechanism that considers both diurnal and seasonal weightings. It systematically reveals the comprehensive regulatory effects of landscape elements on the thermal environment in severely cold regions and provides a nature-based solution for the climate-responsive design of campus plazas in such areas. Full article
(This article belongs to the Special Issue Sustainable Plants and Practices for Resilient Urban Greening)
Show Figures

Graphical abstract

20 pages, 3905 KB  
Article
Antimicrobial Properties of Daucus nebrodensis Strobl.: A Multifunctional Essential Oil Against Bacterial Pathogens
by Giusy Castagliuolo, Antonella Porrello, Maddalena Cerasola, Giuseppe Bazan, Dario Antonini, Mario Varcamonti, Maurizio Bruno, Anna Zanfardino and Natale Badalamenti
Plants 2025, 14(14), 2227; https://doi.org/10.3390/plants14142227 - 18 Jul 2025
Viewed by 420
Abstract
Daucus is a large genus of the Apiaceae family, comprising around forty-five accepted species, that has a worldwide distribution. Species of this genus have been reported to have several traditional medicinal uses, and some of them are also largely used as food and [...] Read more.
Daucus is a large genus of the Apiaceae family, comprising around forty-five accepted species, that has a worldwide distribution. Species of this genus have been reported to have several traditional medicinal uses, and some of them are also largely used as food and spices. Daucus nebrodensis Strobl. is an endemic species of Sicily growing in the montane environments of the Madonie and the Nebrodi Mountains. In this work, the essential oil of D. nebrodensis (DnEO), collected wild near Messina (Italy), was chemically and biologically investigated. The hydrodistilled essential oil (yield 0.15%), obtained from fresh aerial parts, was evaluated by GC-MS, and It was particularly rich in monoterpene hydrocarbons, with sabinene (33.6%), α-pinene (17.2%), γ-terpinene (9.8%), and α-terpinene (7.6%) as the main metabolites. DnEO, and its main constituents, have been tested to evaluate their biological properties. Given the current problem of antibiotic resistance, it is of great interest to identify alternative molecules that could counteract the its progression. Therefore, DnEO was tested against Gram-negative species, such as E. coli DH5α and P. aeruginosa PAOI, and Gram-positive species, such as S. aureus ATCC6538P, B. subtilis AZ54, and M. smegmatis MC2155, showing notable antibacterial activity. The MIC for Bacillus subtilis, the most sensitive strain, was 18 mg/mL, while the MIC for Pseudomonas aeruginosa, the least sensitive strain, was 30 mg/mL. Moreover, interesting antibiofilm activity was observed against Mycobacterium smegmatis with a 55% inhibition. Its ability to form biofilms contributes to its persistence and resistance in clinical settings. These findings highlight the potential of D. nebrodensis EO as a source of bioactive compounds with promising antimicrobial and antibiofilm properties. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds, Functional Components and Functions)
Show Figures

Figure 1

20 pages, 7004 KB  
Article
Molecular Insights into the Diversification and Biogeographic History of Six Astragalus L. Sections in the Turkish Flora
by Mevlüde Alev Ateş, Seher Karaman, Zeki Aytaç and Zeki Kaya
Plants 2025, 14(14), 2226; https://doi.org/10.3390/plants14142226 - 18 Jul 2025
Viewed by 715
Abstract
With 493 taxa and 63 sections, Astragalus L. is the largest genus in Türkiye. Most of these are narrow endemics and usually found in marginal habitats or require edaphic specializations (about 42% of the species are endemic). Due to the genus’s extensive diversity [...] Read more.
With 493 taxa and 63 sections, Astragalus L. is the largest genus in Türkiye. Most of these are narrow endemics and usually found in marginal habitats or require edaphic specializations (about 42% of the species are endemic). Due to the genus’s extensive diversity of species and common economic use, numerous scientific studies have concentrated on specific species. Taxonomic categorization based on morphological characteristics is insufficient to distinguish certain taxonomic groups. However, there is no systematic molecular phylogenetic analysis of Turkish species that deals with speciation in this genus. To concentrate on molecular-level speciation, fresh leaves from 152 samples representing 30 species across six sections native to Türkiye were collected over several months of comprehensive field studies and analyzed with regard to the internal transcribed spacer (ITS) of nrDNA and the trn L5′-L3′ + L3′-F(GAA) + mat K of cpDNA regions. Additionally, molecular clock estimations and biogeographical histories were analyzed to clearly understand the species’ divergence. Based on all studied regions, the Poterion section was found to be the newest and most divergent section, while the Megalocystis Bunge and Halicacabus Bunge sections were the closest and older ones. Furthermore, A. vaginans from section Hymenocoleus Bunge were included not only in this section but also in several other lineages. It is noteworthy that A. dipodurus and A. oleaefolius species from the section Macrophyllium Bunge are usually put together in a distinct sub-branch from other species members of the section in phylogenetic trees generated using both researched cpDNA and nrDNA regions. Moreover, some of the species are divided by the Anatolian diagonal, and the speciation of a significant number of species began during the Pleistocene geological time period. Geographical isolations or other weak isolation mechanisms preceded speciation in Astragalus, which requires more research in the future. Full article
(This article belongs to the Special Issue Plant Diversity and Classification)
Show Figures

Figure 1

22 pages, 2291 KB  
Article
The Effects of Soil Cover Thickness on Leaf Functional Traits of Vine Plants in Mining Areas Depend on Soil Enzyme Activities and Nutrient Cycling
by Ren Liu, Yun Sun, Zongming Cai, Ping He, Yunxia Song, Longhua Yu, Huacong Zhang and Yueqiao Li
Plants 2025, 14(14), 2225; https://doi.org/10.3390/plants14142225 - 18 Jul 2025
Viewed by 421
Abstract
Understanding the interplay between plant leaf functional traits and plant and soil factors under different soil thicknesses is significant for quantifying the interaction between plant growth and the environment. However, in the context of ecological restoration of vegetation in mining areas, there has [...] Read more.
Understanding the interplay between plant leaf functional traits and plant and soil factors under different soil thicknesses is significant for quantifying the interaction between plant growth and the environment. However, in the context of ecological restoration of vegetation in mining areas, there has been a lot of research on trees, shrubs, and grasses, but the characteristics and correlations of leaf functional traits of vines have not been fully studied to a large extent. Here, we report the differences in leaf functional traits of six vine plants (Parthenocissus quinquefolia, Pueraria lobata, Hedera nepalensis, Campsis grandiflora, Mucuna sempervirens, and Parthenocissus tricuspidata) with distinct growth forms in different soil cover thicknesses (20 cm, 40 cm, and 60 cm). In addition, soil factor indicators under different soil cover thicknesses were measured to elucidate the linkages between leaf functional traits of vine plants and soil factors. We found that P. lobata showed a resource acquisition strategy, while H. nepalensis demonstrated a resource conservation strategy. C. grandiflora and P. tricuspidata shifted toward more conservative resource allocation strategies as the soil cover thickness increased, whereas M. sempervirens showed the opposite trend. In the plant trait–trait relationships, there were synergistic associations between specific leaf area (SLA) and leaf nitrogen content (LNC); leaf moisture content (LMC) and leaf nitrogen-to-phosphorus ratio (LN/P); and leaf specific dry weight (LSW), leaf succulence degree (LSD), and leaf dry matter content (LDMC). Trade-offs were observed between SLA and LSW, LSD, and LDMC; between leaf phosphorus content (LPC) and LN/P; and between LMC, LSW, and LDMC. In the plant trait–environment relationships, soil nutrients (pH, soil total phosphorus content (STP), and soil ammonium nitrogen content (SAN)) and soil enzyme activities (cellulase (CB), leucine aminopeptidase (LAP), enzyme C/N activity ratio, and enzyme N/P activity ratio) were identified as the primary drivers of variation in leaf functional traits. Interestingly, nitrogen deficiency constrained the growth of vine plants in the mining area. Our study revealed that the responses of leaf functional traits of different vines under different soil thicknesses have significant species specificity, and each vine shows different resource acquisition and conservation strategies. Furthermore, soil cover thickness primarily influences plant functional traits by directly affecting soil enzyme activities and nutrients. However, the pathways through which soil thickness impacts these traits differ among various functional traits. Our findings provide a theoretical basis and practical reference for selecting vine plants and optimizing soil cover techniques for ecological restoration in mining areas. Full article
Show Figures

Graphical abstract

15 pages, 1491 KB  
Article
Impact of Plant Developmental Stage on Photosynthetic Acclimation to Elevated [CO2] in Durum Wheat
by Fernando Torralbo, Sergi Munné-Bosch, Carmen González-Murua and Iker Aranjuelo
Plants 2025, 14(14), 2224; https://doi.org/10.3390/plants14142224 - 18 Jul 2025
Viewed by 446
Abstract
The response of plants to elevated atmospheric [CO2] is highly dynamic and influenced by developmental stage, yet its role in photosynthetic acclimation remains underexplored. This study examines the physiological and molecular responses of wheat (Triticum durum, var. Amilcar) to [...] Read more.
The response of plants to elevated atmospheric [CO2] is highly dynamic and influenced by developmental stage, yet its role in photosynthetic acclimation remains underexplored. This study examines the physiological and molecular responses of wheat (Triticum durum, var. Amilcar) to elevated [CO2] (700 ppm vs. 400 ppm) at two distinct developmental stages: the vegetative stage at the end of the elongation stage and the reproductive stage at the beginning of ear emergence (Z39 and Z51, respectively). Wheat plants at the developmental stage Z39, cultivated under elevated [CO2], maintained photosynthetic rates despite a carbohydrate build-up. However, at Z51, photosynthetic acclimation became more evident as the decline in Rubisco carboxylation capacity (Vcmax) persisted, but also stomatal conductance and diffusion were decreased. This was accompanied by the up-regulation of the CA1 and CA2 genes, likely as a compensatory mechanism to maintain CO2 supply. Additionally, hormonal adjustments under elevated [CO2], including increased auxin and bioactive cytokinins (zeatin and isopentenyl adenine), may have contributed to delayed senescence and nitrogen remobilization, sustaining carbon assimilation despite biochemical constraints. These findings highlight the developmental regulation of photosynthetic acclimation, emphasizing the need for the stage-specific assessments of crop responses to future atmospheric conditions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

25 pages, 6525 KB  
Article
Response of Anatomical Structure and Active Component Accumulation in Apocynum venetum L. (Apocynaceae) Under Saline Stress and Alkali Stress
by Yanlei Zhang, Shaowei Hu, Xiaxia Wang, Jie Yue, Dongmei Chen, Mingzhi Han, Wanmin Qiao, Yifan Wang and Haixia Wang
Plants 2025, 14(14), 2223; https://doi.org/10.3390/plants14142223 - 18 Jul 2025
Viewed by 417
Abstract
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) [...] Read more.
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) and alkali (Na2CO3 and NaHCO3) stress on the growth, anatomical adaptations, and metabolite accumulation of A. venetum (Apocynum venetum L.). Results showed that alkali stress (100 mM Na2CO3 and 50 mM NaHCO3) inhibited growth more than saline stress (NaCl 240 mM), reducing plant height by 29.36%. Anatomical adaptations included a 40.32% increase in the root cortex-to-diameter ratio (100 mM Na2CO3 and 50 mM NaHCO3), a 101.52% enlargement of xylem vessel diameter (NaCl 240 mM), and a 68.69% thickening of phloem fiber walls in the stem (NaCl 240 mM), enhancing water absorption, salt exclusion, and structural support. Additionally, leaf palisade tissue densification (44.68% increase at NaCl 160 mM), along with epidermal and wax layer adjustments, balanced photosynthesis and water efficiency. Metabolic responses varied with stress conditions. Root soluble sugar content increased 49.28% at NaCl 160 mM. Flavonoid accumulation in roots increased 53.58% at Na2CO3 100 mM and NaHCO3 50 mM, enhancing antioxidant defense. However, chlorophyll content and photosynthetic efficiency declined with increasing stress intensity. This study emphasizes the coordinated adaptations of A. venetum, providing valuable insights for the development of salt-tolerant crops. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

18 pages, 4639 KB  
Article
High Stubble Height Enhances Ratoon Rice Yield by Optimizing Light–Temperature Resource Utilization and Photothermal Quotient
by Yin Zhang, Tian Sheng, Liyan Shang, Beiyou Zhang, Long Jin, Fangfang Hou, Matthew Tom Harrison, Liying Huang, Zhaoqiang Jin, Xiaohai Tian, Ke Liu, Shijie Shi, Yunbo Zhang and Dayong Li
Plants 2025, 14(14), 2222; https://doi.org/10.3390/plants14142222 - 18 Jul 2025
Viewed by 399
Abstract
Ratoon rice is a sustainable planting model, and its yield is closely linked to the light and temperature use efficiency. The photothermal quotient (PQ), a key parameter for evaluating the light and temperature use efficiency, significantly influences ratoon rice yield. However, research on [...] Read more.
Ratoon rice is a sustainable planting model, and its yield is closely linked to the light and temperature use efficiency. The photothermal quotient (PQ), a key parameter for evaluating the light and temperature use efficiency, significantly influences ratoon rice yield. However, research on how different stubble heights affect PQ and the utilization efficiency of light and temperature resources remains limited. Here, we conducted a two-year field experiment to investigate the radiation use efficiency (RUE), effective accumulated temperature use efficiency (TUE), PQ, interception percentage (IP), intercepted photosynthetically active radiation (IPAR), and total dry weight (TDW) of six ratoon rice varieties under two stubble height treatments (HS: high stubble, LS: low stubble) during the ratoon season. This study aimed to analyze how different stubble heights impact ratoon rice yield by evaluating light and temperature resource utilization efficiency and investigates the relationship between PQ and ratoon rice yield. The results showed that the HS treatment significantly increased ratoon season yield compared to LS treatment, with average yield increases of 21.2% and 28.1% in 2022 and 2023, respectively. This yield enhancement was attributed to improved TDW under HS treatment, driven by increased IP, IPAR, RUE, and TUE. Notably, PQ was significantly lower under HS than under LS treatment. This reduction was primarily attributed to the decreased duration available for light and heat accumulation, consequently lowering PQ. Correlation analysis revealed a significant positive association between main season yield and PQ, while ratoon season yield exhibited a negative correlation with PQ. In conclusion, the HS treatment increased IP and IPAR, enhanced TUE and RUE, and reduced PQ, collectively contributing to higher ratoon season yields. Importantly, our findings indicate that PQ can more effectively predict yield changes in the ratoon season under HS treatment, providing a theoretical basis for optimizing light and temperature resource utilization in ratoon rice. Full article
Show Figures

Figure 1

17 pages, 2166 KB  
Article
Effects of Fertilizer Application on Growth and Stoichiometric Characteristics of Nitrogen, Phosphorus, and Potassium in Balsa Tree (Ochroma lagopus) Plantations at Different Slope Positions
by Jialan Chen, Weisong Zhu, Yuanxi Liu, Gang Chen, Juncheng Han, Wenhao Zhang and Junwen Wu
Plants 2025, 14(14), 2221; https://doi.org/10.3390/plants14142221 - 18 Jul 2025
Viewed by 361
Abstract
Ochroma lagopus, a fast-growing tropical tree species, faces fertilization challenges due to slope heterogeneity in plantations. This study examined 3-year-old Ochroma lagopus at upper and lower slope positions under five treatments: CK (no fertilizer), F1 (600 g/plant), F2 (800 g/plant), F3 (1000 [...] Read more.
Ochroma lagopus, a fast-growing tropical tree species, faces fertilization challenges due to slope heterogeneity in plantations. This study examined 3-year-old Ochroma lagopus at upper and lower slope positions under five treatments: CK (no fertilizer), F1 (600 g/plant), F2 (800 g/plant), F3 (1000 g/plant), and F4 (1200 g/plant) of secondary macronutrient water-soluble fertilizer. Growth parameters and N-P-K stoichiometry were analyzed. Key results: (1) Height increased continuously with fertilizer dosage at both slopes, while DBH peaked and then declined. (2) At upper slopes (nutrient-poor soil), fertilization elevated leaf P but reduced branch N/K and increased root P/K. At lower slopes (nutrient-rich soil), late-stage leaf N increased significantly, with roots accumulating P/K via a “storage strategy”. Stoichiometric thresholds indicated N-K co-limitation (early-mid stage) shifting to P limitation (late stage) on upper slopes and persistent N-K co-limitation on lower slopes. (3) PCA identified F4 (1200 g/plant) and F1 (600 g/plant) as optimal for upper and lower slopes, respectively. This research provides a theoretical basis for precision fertilization in Ochroma lagopus plantations, emphasizing slope-specific nutrient status and element interactions for dosage optimization. Full article
Show Figures

Figure 1

13 pages, 2991 KB  
Review
Bracts, Buds, and Biases: Uncovering Gaps in Trichome Density Quantification and Cannabinoid Concentration in Cannabis sativa L.
by Thaís Alberti, Fardad Didaran, Shiksha Sharma, Rodrigo De Sarandy Raposo, Andre A. Diatta, Marcelo Maraschin and Jose F. Da Cunha Leme Filho
Plants 2025, 14(14), 2220; https://doi.org/10.3390/plants14142220 - 18 Jul 2025
Viewed by 1784
Abstract
Trichomes in cannabis (Cannabis sativa L.) are specialized structures responsible for cannabinoid and terpene biosynthesis, making their density a critical parameter for both research and industrial applications. However, consistent trichome density assessment remains challenging due to anatomical variability and the absence of [...] Read more.
Trichomes in cannabis (Cannabis sativa L.) are specialized structures responsible for cannabinoid and terpene biosynthesis, making their density a critical parameter for both research and industrial applications. However, consistent trichome density assessment remains challenging due to anatomical variability and the absence of standardized methodologies. This review critically examines the existing literature on trichome quantification across key floral structures—such as bracts, sugar leaves, calyxes, and the main cola—to identify the most reliable sites and practices for accurate evaluation. Evidence suggests that bracts represent the most consistent sampling unit, given their homogeneous trichome distribution and elevated cannabinoid concentration. Whilst sugar leaves and calyxes are also frequently analyzed, their morphological variability requires cautious interpretation. Furthermore, trichome shape, size, maturity, and vegetal surface expansion/shrinkage during stress must be considered when correlating density with secondary metabolite production. We also highlight the advantages of using more than only one floral structure and integrating microscopic imaging and software-assisted analysis to enhance reproducibility and accuracy. By synthesizing current methodologies and proposing pathways for standardization, this review aims to support more robust trichome assessment protocols, ultimately improving cannabinoid yield optimization, quality control, broader cannabis research frameworks, and an important aesthetic parameter for consumers. Future research efforts should focus on advancing imaging methodologies and optimizing sampling protocols to further improve the precision and reproducibility of trichome density and cannabinoid analyses. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop