Functional Identification Reveals That TaTGA16-2D Promotes Drought and Heat Tolerance
Abstract
1. Introduction
2. Results
2.1. Identification of TaTGA Gene Family Members
2.2. Phylogenetic and Sequence Analyses of TaTGA Members
2.3. Chromosomal Location and Duplication Events of TaTGA Genes
2.4. Analysis of Gene Structures and Conserved Motifs of TaTGA Members
2.5. Analysis of Promoter Cis-Elements of TaTGA Members
2.6. Expression Pattern Analysis of TaTGA Genes
2.7. TaTGAs Are Involved in Abiotic Stress Responses
2.8. TaTGA16-2D Was Located in the Nucleus
2.9. TaTGA16-2D Enhances Drought Tolerance in Arabidopsis
2.10. TaTGA16-2D Increases Heat Tolerance in Arabidopsis
3. Discussion
4. Materials and Methods
4.1. Identification of TGA Genes in Wheat
4.2. Phylogenetic Analysis of the TaTGA Gene Family
4.3. Analysis of Conserved Motifs and Cis-Acting Elements in Wheat TaTGA Genes
4.4. Chromosome Localization, Gene Duplication, and Collinearity Analysis of TaTGA Gene Family
4.5. Transcriptome Analysis of TaTGA Gene Family in Different Tissue Types and Under Abiotic Stress
4.6. TaTGA Expression Profiling and Real-Time PCR (qRT-PCR)
4.7. Subcellular Localization
4.8. Generation of Transgenic Arabidopsis
4.9. Abiotic Stress Treatments of Transgenic Arabidopsis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kajla, M.; Roy, A.; Singh, I.K.; Singh, A. Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. Front. Plant Sci. 2023, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, F.; Lam, E.; Chua, N.H. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 1989, 340, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.; Boden, E.; Arias, J. Salicylic acid and npr1 induce the recruitment of trans-activating tga factors to a defense gene promoter in arabidopsis. Plant Cell 2003, 15, 1846–1858. [Google Scholar] [CrossRef]
- Lu, C.; Liu, X.; Tang, Y.; Zhang, Y.; Yang, J.; Li, L.; Zhu, P.; Dong, Z.; Pan, D. A comprehensive review of TGA transcription factors in plant growth, stress responses, and beyond. J. Integr. Plant. Biol. 2024, 258, 258. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.; Benfey, P.N.; Gilmartin, P.M.; Fang, R.X.; Chua, N.H. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc. Natl. Acad. Sci. USA 1989, 86, 7890–7894. [Google Scholar] [CrossRef]
- Buttner, M.; Singh, K.B. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element bindingprotein. Proc. Natl. Acad. Sci. USA 1997, 94, 5961–5966. [Google Scholar] [CrossRef]
- Choi, J.; Huh, S.U.; Kojima, M.; Sakakibara, H.; Paek, K.H.; Hwang, I. The cytokinin-activated transcription factor arr2 promotes plant immunity via tga3/npr1-dependent salicylic acid signaling in arabidopsis. Dev. Cell. 2010, 19, 284–295. [Google Scholar] [CrossRef]
- Wang, Y.; Salasini, B.C.; Khan, M.; Devi, B.; Bush, M.; Subramaniam, R.; Hepworth, S. Clade i tgacg-motif binding basic leucine zipper transcription factors mediate blade-on-petiole-dependent regulation of development. Plant Physiol. 2019, 180, 937–951. [Google Scholar] [CrossRef]
- Xu, X.; Xu, J.; Yuan, C.; Hu, Y.; Qin, C. Characterization of genes associated with TGA7 during the floral transition. BMC Plant Biol. 2021, 21, 367. [Google Scholar] [CrossRef]
- Hu, X.; Yang, L.; Ren, M.; Liu, L.; Fu, J.; Cui, H. TGA factors promote plant root growth by modulating redox homeostasis or response. J. Integr. Plant Biol. 2022, 64, 1543–1559. [Google Scholar] [CrossRef]
- Ding, C.; Lin, X.; Zuo, Y.; Yu, Z.; Baerson, S.R.; Pan, Z.; Zeng, R.; Song, Y. Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice. Plant J. 2021, 108, 1346–1364. [Google Scholar] [CrossRef]
- Murmu, J.; Bush, M.J.; DeLong, C.; Li, S.; Xu, M.; Khan, M.; Malcolmson, C.; Fobert, P.R.; Zachgo, S.; Hepworth, S.R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol. 2010, 154, 1492–1504. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, T.; Christov, N.K.; Djilianov, D. Identification of desiccation-regulated genes by cDNA-AFLP in Haberlea rhodopensis: A resurrection plant. Acta Physiol. Plant. 2012, 34, 1055–1066. [Google Scholar] [CrossRef]
- Fang, H.; Liu, Z.; Long, Y.; Liang, Y.; Pei, Y. The Ca/calmodulin2-binding transcription factor TGA3 elevates LCD expression and H S production to bolster Cr tolerance in Arabidopsis. Plant J. 2017, 91, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Chen, D.; Min, D.; Li, W.; Xu, Z.; Zhou, Y.; Li, L.; Chen, M.; Ma, Y. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2015, 457, 433–439. [Google Scholar] [CrossRef]
- Lee, K.H.; Piao, H.L.; Kim, H.Y.; Choi, S.M.; Jiang, F.; Hartung, W.; Hwang, I.; Kwak, J.M.; Lee, I.J.; Hwang, I. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 2006, 126, 1109–1120. [Google Scholar] [CrossRef]
- Li, B.; Liu, Y.; Cui, X.Y.; Fu, J.D.; Zhou, Y.B.; Zheng, W.J.; Lan, J.H.; Jin, L.G.; Chen, M.; Ma, Y.Z.; et al. Genome-Wide characterization and expression analysis of soybean TGA transcription factors identified a novel TGA gene involved in drought and salt tolerance. Front. Plant Sci. 2019, 10, 549. [Google Scholar] [CrossRef] [PubMed]
- Stracke, R.; Favory, J.-J.; Gruber, H.; Bartelniewoehner, L.; Bartels, S.; Binkert, M.; Funk, M.; Weisshaar, B.; Ulm, R. The arabidopsis bZIP transcription factor HY5 regulates expression of thePFG1/MYB12gene in response to light and ultraviolet-B radiation. Plant Cell Environ. 2010, 33, 88–103. [Google Scholar]
- Du, X.; Du, B.; Chen, X.; Zhang, S.; Zhang, Z.; Qu, S. Overexpression of the MhTGA2 gene from crab apple (Malus hupehensis) confers increased tolerance to salt stress in transgenic apple (Malus domestica). J. Agric. Sci. 2014, 152, 634–641. [Google Scholar] [CrossRef]
- Su, P.; Guo, X.; Fan, Y.; Wang, L.; Yu, G.; Ge, W.; Zhao, L.; Ma, X.; Wu, J.; Li, A.; et al. Application of Brachypodium genotypes to the analysis of type II resistance to Fusarium head blight (FHB). Plant Sci. 2018, 272, 255–266. [Google Scholar] [CrossRef]
- Guo, S.; Ren, H.; Zhang, Y.; Feng, C.; Feng, H.; Wang, X.; Kang, Z.; Zhang, X. Characterization and functional analyses of wheat disease resistance-related gene TaTGA2.2 in the interaction between wheat and stripe rust. J. Triticeae Crops. 2020, 40, 645–655. [Google Scholar]
- Xu, Z.; Zhang, H.; Mo, Q.; Lv, S.; Ji, W. Expression analysis of wheat transcription factor TaTGA1 gene responding to infection of powdery mildew. Acta Phytopathol. Sin. 2018, 48, 766–777. [Google Scholar]
- Xu, D.; Lin, D.; Li, S.; Adan, L.; Han, Y.; Zhang, Y.; Liu, T.; Qi, H. Research progress on the role of TGA transcription factor in regulating plant stress response and growth and development. Plant Physiol. J. 2024, 60, 1079–1086. [Google Scholar]
- Christiane, G. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol. Plant-Microbe Interact. MPMI 2013, 26, 151–159. [Google Scholar]
- Gao, P.; Zhang, H.; Yan, H.; Chen, Y.; Fan, Y.; Yan, B.; Qiu, X. Analysis of gene structure of TGAs and function of RcTGA2 in Rosa chinensis Jacq. Old Blush against Botrytis cinerea. Plant Physiol. J. 2021, 22, 1157–1166. [Google Scholar]
- Liu, Y.; Huang, Y.; Li, Z.; Feng, M.; Ge, W.; Zhong, C.; Xue, R. Genome-wide identification of the TGA genes in common bean (Phaseolus vulgaris) and revealing their functions in response to fusarium oxysporum f. sp. phaseoli infection. Front. Genet. 2023, 14, 1137634. [Google Scholar] [CrossRef]
- Ullah, I.; Magdy, M.; Wang, L.; Liu, M.; Li, X. Genome-wide identification and evolutionary analysis of TGA transcription factors in soybean. Sci. Rep. 2019, 9, 11186. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Zhang, L.; Wang, Y.; Wang, J. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. J. Shanghai Univ. (Engl. Ed.) 2009, 13, 174–182. [Google Scholar] [CrossRef]
- Thurow, C.; Schiermeyer, A.; Krawczyk, S.; Butterbrodt, T.; Nickolov, K.; Gatz, C. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J. 2005, 44, 100–113. [Google Scholar] [CrossRef]
- Qi, P.; Huang, M.; Hu, X.; Zhang, Y.; Wang, Y.; Li, P.; Chen, S.; Zhang, D.; Cao, S.; Zhu, W.; et al. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. Plant Cell 2022, 34, 1666–1683. [Google Scholar] [CrossRef]
- Gaudinier, A.; Rodriguez-Medina, J.; Zhang, L.; Olson, A.; Liseron-Monfils, C.; Bågman, A.M.; Foret, J.; Abbitt, S.; Tang, M.; Li, B.; et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 2018, 563, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Lescot, M.; Dehais, p.; Thijs, G.; Marchal, K. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Ramirez-Gonzalez, R.H.; Borrill, P.; Lang, D.; Harrington, S.A.; Brinton, J.; Venturini, L.; Davey, M.; Jacobs, J.; van Ex, F.; Pasha, A.; et al. The transcriptional landscape of polyploid wheat. Science 2018, 361, eaar6089. [Google Scholar] [CrossRef] [PubMed]
- Borrill, P.; Ramirez-Gonzalez, R.; Uauy, C. expVIP: A Customizable RNA-seq Data Analysis and Visualization Platform. Plant Physiol. 2016, 170, 2172–2186. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xin, M.; Qin, J.; Peng, H.; Ni, Z.; Yao, Y.; Sun, Q. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol. 2015, 15, 152. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, Q.; Shen, W.; Cram, D.; Fowler, D.B.; Wei, Y.; Zou, J. Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants. Plant Cell 2015, 27, 86–103. [Google Scholar] [CrossRef]
- Enrico, P.; Tanzarella, O.A.; Paolacci, A.R.; Mario, C. Identification and validation of reference genes for quantitative rt-pcr normalization in wheat. BMC Mol. Biol. 2009, 10, 1. [Google Scholar]
- Udvardi, M.K.; Czechowski, T.; Scheible, W.R. Eleven golden rules of quantitative RT-PCR. Plant Cell 2008, 20, 1736–1737. [Google Scholar] [CrossRef]
- Liu, P.; Xu, Z.S.; Pan-Pan, L.; Hu, D.; Chen, M.; Li, L.C.; Ma, Y.Z. A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. J. Exp. Bot. 2013, 64, 2915–2927. [Google Scholar] [CrossRef] [PubMed]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium—Mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Rasband, W.; Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ru, J.; Hao, J.; Ji, X.; Hao, B.; Yang, J.; Wang, H.; Quan, B.; Guo, P.; Zhao, J.; Wang, C.; et al. Functional Identification Reveals That TaTGA16-2D Promotes Drought and Heat Tolerance. Plants 2025, 14, 2125. https://doi.org/10.3390/plants14142125
Ru J, Hao J, Ji X, Hao B, Yang J, Wang H, Quan B, Guo P, Zhao J, Wang C, et al. Functional Identification Reveals That TaTGA16-2D Promotes Drought and Heat Tolerance. Plants. 2025; 14(14):2125. https://doi.org/10.3390/plants14142125
Chicago/Turabian StyleRu, Jingna, Jiamin Hao, Xiaoqian Ji, Bingqing Hao, Jiale Yang, Hongtao Wang, Baoquan Quan, Pengyan Guo, Jiping Zhao, Chao Wang, and et al. 2025. "Functional Identification Reveals That TaTGA16-2D Promotes Drought and Heat Tolerance" Plants 14, no. 14: 2125. https://doi.org/10.3390/plants14142125
APA StyleRu, J., Hao, J., Ji, X., Hao, B., Yang, J., Wang, H., Quan, B., Guo, P., Zhao, J., Wang, C., Shi, H., & Xu, Z. (2025). Functional Identification Reveals That TaTGA16-2D Promotes Drought and Heat Tolerance. Plants, 14(14), 2125. https://doi.org/10.3390/plants14142125