Euphorbia marginata Alleviate Heavy Metal Ni-Cu Combined Stress by Regulating the Synthesis of Signaling Factors and Flavonoid Organisms
Abstract
1. Introduction
2. Results
2.1. Effect of Different Concentrations of Cu2+ and Ni2+ on Growth Indicators and Heavy Metal Content of E. marginata
2.2. Effect of Different Concentrations of Cu2+ and Ni2+ on Oxidation, Osmosis, and Photosystems of E. marginata
2.3. Redundancy and Interaction Analyses of Physiological Indicators Affecting Growth Changes Under Different Concentrations of Ni2+ and Cu2+ Treatments
2.4. Transcriptomic Analysis of the Response of E. marginata to Single and Combined Ni-Cu Stresses
2.4.1. Transcriptome Sequencing Data and Quality Evaluation
2.4.2. Quantitative Analysis of Differentially Expressed Genes
2.4.3. GO and KEGG Enrichment Analysis
2.5. Secondary Metabolic Pathway Gene Transcript Levels
2.5.1. Differential Genes and Enrichment Pathways Analysis
2.5.2. Plant–Pathogen Interaction and MAPK Signaling Pathway—Plant
2.5.3. Phenylpropanoid Biosynthesis, Flavonoid Biosynthesis, and Stilbenoid, Diarylheptanoid, and Gingerol Biosynthesis
2.6. Correlation Analysis of Physiological Indicators and Genes Under Different Ni-Cu Stresses
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growing Conditions
4.2. Experimental Designs
4.3. Indicator Measurement
4.3.1. Measurement of Growth Indicators
4.3.2. Measurement of Physiological Indicators
4.3.3. Determination of Heavy Metal Content
4.3.4. Transcriptomics Analysis
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-O.; Safdar, M.; Kang, H.; Kim, J. Glycine-Rich RNA-Binding Protein AtGRP7 Functions in Nickel and Lead Tolerance in Arabidopsis. Plants 2024, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Elshkaki, A.; Reck, B.K.; Graedel, T.E. Anthropogenic nickel supply, demand, and associated energy and water use. Resour. Conserv. Recycl. 2017, 125, 300–307. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Jiang, S.; Yuan, Z.; Chen, J. Global copper cycles in the anthroposphere since the 1960s. Resour. Conserv. Recycl. 2023, 199, 107294. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Z.; Wang, X.; Wan, S.; Chen, W.; Huang, W.; Wang, M.; Wang, R.; Zhang, H. Environmental copper exposure, placental cuproptosis, and miscarriage. Environ. Pollut. 2024, 348, 123847. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, M.; Wang, J.; Zhang, Z.; Duan, C.; Wang, X.; Zhao, S.; Bai, X.; Li, Z.; Li, Z.; et al. A global meta-analysis of heavy metal(loid)s pollution in soils near copper mines: Evaluation of pollution level and probabilistic health risks. Sci. Total Environ. 2022, 835, 155441. [Google Scholar] [CrossRef]
- Yan, K.; Wang, H.; Lan, Z.; Zhou, J.; Fu, H.; Wu, L.; Xu, J. Heavy metal pollution in the soil of contaminated sites in China: Research status and pollution assessment over the past two decades. J. Clean. Prod. 2022, 373, 133780. [Google Scholar] [CrossRef]
- Khan, D.; Yang, X.; He, G.; Khan, R.A.A.; Usman, B.; Hui, L.; Khokhar, A.A.; Zaman, Q.U.; Wang, H.-F. Comparative Physiological and Transcriptomics Profiling Provides Integrated Insight into Melatonin Mediated Salt and Copper Stress Tolerance in Selenicereus undatus L. Plants 2024, 13, 3602. Plants 2024, 13, 3602. [Google Scholar] [CrossRef]
- Saleh, M.A. Nickel toxicity mitigation by supplementation of acetylcholine in wheat: Growth, photosynthetic and antioxidant activities. S. Afr. J. Bot. 2024, 164, 231–241. [Google Scholar] [CrossRef]
- Qin, C.; Shen, J.; Ahanger, M.A. Supplementation of nitric oxide and spermidine alleviates the nickel stress-induced damage to growth, chlorophyll metabolism, and photosynthesis by upregulating ascorbate–glutathione and glyoxalase cycle functioning in tomato. Front. Plant Sci. 2022, 13, 1039480. [Google Scholar] [CrossRef]
- Soliman, M.; Alhaithloul, H.A.; Hakeem, K.R.; Alharbi, B.M.; El-Esawi, M.; Elkelish, A. Exogenous Nitric Oxide Mitigates Nickel-Induced Oxidative Damage in Eggplant by Upregulating Antioxidants, Osmolyte Metabolism, and Glyoxalase Systems. Plants 2019, 8, 562. [Google Scholar] [CrossRef] [PubMed]
- Marastoni, L.; Tauber, P.; Pii, Y.; Valentinuzzi, F.; Astolfi, S.; Simoni, A.; Brunetto, G.; Cesco, S.; Mimmo, T. The potential of two different Avena sativa L. cultivars to alleviate Cu toxicity. Ecotoxicol. Environ. Saf. 2019, 182, 109430. [Google Scholar] [CrossRef]
- Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Natasha; Murtaza, G.; Dumat, C.; Shahid, M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020, 259, 127436. [Google Scholar] [CrossRef] [PubMed]
- Crizel, R.L.; Perin, E.C.; Vighi, I.L.; Woloski, R.; Seixas, A.; da Silva Pinto, L.; Rombaldi, C.V.; Galli, V. Genome-wide identification, and characterization of the CDPK gene family reveal their involvement in abiotic stress response in Fragaria x ananassa. Sci. Rep. 2020, 10, 11040. [Google Scholar] [CrossRef]
- Ahmad, P.; Ahanger, M.A.; Alyemeni, M.N.; Wijaya, L.; Alam, P. Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 2017, 255, 79–93. [Google Scholar] [CrossRef]
- Steinhorst, L.; Kudla, J. Signaling in cells and organisms—Calcium holds the line. Curr. Opin. Plant Biol. 2014, 22, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Chen, Y.; Chen, C.; Ma, K.; Tian, E.; Wang, Y.; Liu, H.; Sun, Z. Endophytic Bacillus altitudinis WR10 alleviates Cu toxicity in wheat by augmenting reactive oxygen species scavenging and phenylpropanoid biosynthesis. J. Hazard. Mater. 2021, 405, 124272. [Google Scholar] [CrossRef]
- Kaur, R.; Yadav, P.; Sharma, A.; Kumar Thukral, A.; Kumar, V.; Kaur Kohli, S.; Bhardwaj, R. Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd(II) toxicity. Ecotoxicol. Environ. Saf. 2017, 145, 466–475. [Google Scholar] [CrossRef]
- An, Q.; Wen, C.; Yan, C. Meta-analysis reveals the combined effects of microplastics and heavy metal on plants. J. Hazard. Mater. 2024, 476, 135028. [Google Scholar] [CrossRef]
- Goff, J.L.; Chen, Y.; Thorgersen, M.P.; Hoang, L.T.; Poole, F.L.; Szink, E.G.; Siuzdak, G.; Petzold, C.J.; Adams, M.W.W. Mixed heavy metal stress induces global iron starvation response. ISME J. 2023, 17, 382–392. [Google Scholar] [CrossRef]
- Ahmad, J.; Qamar, S.; Nida; Khan, F.; Haq, I.; Al-Huqail, A.; Qureshi, M.I. Differential impact of some metal(loid)s on oxidative stress, antioxidant system, sulfur compounds, and protein profile of Indian mustard (Brassica juncea L.). Protoplasma 2020, 257, 1667–1683. [Google Scholar] [CrossRef]
- Cao, D.-j.; Xie, P.-p.; Deng, J.-w.; Zhang, H.-m.; Ma, R.-x.; Liu, C.; Liu, R.-j.; Liang, Y.-g.; Li, H.; Shi, X.-d. Effects of Cu2+ and Zn2+ on growth and physiological characteristics of green algae, Cladophora. Environ. Sci. Pollut. Res. 2015, 22, 16535–16541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Z.; Li, H.; Wang, Z.; Zhou, L.D. Accumulation Characteristics of Copper and Cadmium in Greenhouse Vegetable Soils in Tongzhou District of Beijing. Procedia Environ. Sci. 2011, 10, 289–294. [Google Scholar] [CrossRef]
- Xu, L.; Xing, X.; Peng, J.; Ji, M.; Sovago, I. Estimation of Copper and Cadmium Bioavailability in Contaminated Soil Remediated by Different Plants and Micron Hydroxyapatite. Bioinorg. Chem. Appl. 2022, 2022, 3565550. [Google Scholar] [CrossRef] [PubMed]
- Moyne, A.L.; Souq, F.; Yean, L.H.; Brown, S.C.; Boulay, M.; Sangwan-Norreel, B.S. Relationship between cell ploidy and regeneration capacity of long term Rosa hybrida cultures. Plant Sci. 1993, 93, 159–168. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, W.; Yan, J.; Yang, X.; Chen, M.; Jiang, P.; Yu, G. Physiological responses of Leersia hexandra Swart to Cu and Ni Co-contamination: Implications for phytoremediation. Environ. Technol. Innov. 2025, 37, 103924. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, P.; Zhang, X.; Sunahara, G.I.; Liu, J.; Yu, G. Physiological and biochemical responses of Leersia hexandra Swartz to nickel stress: Insights into antioxidant defense mechanisms and metal detoxification strategies. J. Hazard. Mater. 2024, 466, 133578. [Google Scholar] [CrossRef]
- He, G.; Xie, H.; Tan, B.; Chen, M.; Wu, Z.; Dai, Z.; Sun, R.; He, L.; Li, C. Effects of microplastics and heavy metal stress on the growth and physiological characteristics of pioneer plant Avicennia marina. Mar. Pollut. Bull. 2025, 216, 117929. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Z.; Ren, Y.; Jiang, Z.; Chen, H.; Hu, W.; Tang, M. The alleviation mechanisms of cadmium toxicity in Broussonetia papyrifera by arbuscular mycorrhizal symbiosis varied with different levels of cadmium stress. J. Hazard. Mater. 2023, 459, 132076. [Google Scholar] [CrossRef]
- Zarattini, M.; Farjad, M.; Launay, A.; Cannella, D.; Soulié, M.-C.; Bernacchia, G.; Fagard, M.; Noctor, G. Every cloud has a silver lining: How abiotic stresses affect gene expression in plant-pathogen interactions. J. Exp. Bot. 2021, 72, 1020–1033. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Gao, Q.; He, S.; Xu, Y.; Luo, Z.; Liu, P.; Wu, M.; Xu, X.; Ma, L.; et al. The transcription factor NtERF13a enhances abiotic stress tolerance and phenylpropanoid compounds biosynthesis in tobacco. Plant Sci. 2023, 334, 111772. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Lv, A.; Wen, W.; Fan, N.; Li, J.; Gao, L.; Zhou, P.; An, Y. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis. Plant J. 2022, 112, 756–771. [Google Scholar] [CrossRef]
- Raja, V.; Majeed, U.; Kang, H.; Andrabi, K.I.; John, R. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 2017, 137, 142–157. [Google Scholar] [CrossRef]
- Zhao, M.; Ren, Y.; Li, Z. Transcriptome profiling of Jerusalem artichoke seedlings (Helianthus tuberosus L.) under polyethylene glycol-simulated drought stress. Ind. Crops Prod. 2021, 170, 113696. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Gao, X.; Lan, J.; Fu, B. Comparative Physiological and Transcriptome Analysis Reveal the Molecular Mechanism of Melatonin in Regulating Salt Tolerance in Alfalfa (Medicago sativa L.). Front. Plant Sci. 2022, 13, 919177. [Google Scholar] [CrossRef]
- Xiong, L.; Yang, Y. Disease Resistance and Abiotic Stress Tolerance in Rice Are Inversely Modulated by an Abscisic Acid–Inducible Mitogen-Activated Protein Kinase. Plant Cell 2003, 15, 745–759. [Google Scholar] [CrossRef]
- Kim, S.H.; Bahk, S.; Nguyen, N.T.; Pham, M.L.A.; Kadam, U.S.; Hong, J.C.; Chung, W.S. Phosphorylation of the auxin signaling transcriptional repressor IAA15 by MPKs is required for the suppression of root development under drought stress in Arabidopsis. Nucleic Acids Res. 2022, 50, 10544–10561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.-Q.; Wang, Y.-S.; Lou, Z.-P.; Dong, J.-D. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 2007, 67, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Cao, X.; An, R.; Ding, H.; Wang, W.; Zhou, Y.; Wu, C.; Cao, Y.; Wang, H.; Li, C.; et al. Physiological Adaptation to Different Heavy Metal Stress in Seedlings of Halophyte Suaeda liaotungensis. Biology 2025, 14, 260. [Google Scholar] [CrossRef]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci. Rep. 2019, 9, 5658. [Google Scholar] [CrossRef]
- Téllez Vargas, J.; Rodríguez-Monroy, M.; López Meyer, M.; Montes-Belmont, R.; Sepúlveda-Jiménez, G. Trichoderma asperellum ameliorates phytotoxic effects of copper in onion (Allium cepa L.). Environ. Exp. Bot. 2017, 136, 85–93. [Google Scholar] [CrossRef]
- Zaheer, I.E.; Ali, S.; Rizwan, M.; Farid, M.; Shakoor, M.B.; Gill, R.A.; Najeeb, U.; Iqbal, N.; Ahmad, R. Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol. Environ. Saf. 2015, 120, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Habiba, U.; Ali, S.; Farid, M.; Shakoor, M.B.; Rizwan, M.; Ibrahim, M.; Abbasi, G.H.; Hayat, T.; Ali, B. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ. Sci. Pollut. Res. 2014, 22, 1534–1544. [Google Scholar] [CrossRef]
- Rehman, M.; Liu, L.; Bashir, S.; Saleem, M.H.; Chen, C.; Peng, D.; Siddique, K.H.M. Influence of rice straw biochar on growth, antioxidant capacity and copper uptake in ramie (Boehmeria nivea L.) grown as forage in aged copper-contaminated soil. Plant Physiol. Biochem. 2019, 138, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Chao, D.Y.; Zhao, Y. How plants sense and respond to osmotic stress. J. Integr. Plant Biol. 2024, 66, 394–423. [Google Scholar] [CrossRef]
- Soares, C.; de Sousa, A.; Pinto, A.; Azenha, M.; Teixeira, J.; Azevedo, R.A.; Fidalgo, F. Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ. Exp. Bot. 2016, 122, 115–125. [Google Scholar] [CrossRef]
- Yuce, M.; Ekinci, M.; Turan, M.; Agar, G.; Aydin, M.; Ilhan, E.; Yildirim, E. Chrysin mitigates copper stress by regulating antioxidant enzymes activity, plant nutrient and phytohormones content in pepper. Sci. Hortic. 2024, 328, 112887. [Google Scholar] [CrossRef]
- Shaheen, S.; Ahmad, R.; Mahmood, Q.; Pervez, A.; Maroof Shah, M.; Hafeez, F. Gene expression and biochemical response of giant reed under Ni and Cu stress. Int. J. Phytoremediation 2019, 21, 1474–1485. [Google Scholar] [CrossRef]
- Shang, C.; Zhou, Q.; Nkoh, J.N.; Liu, J.; Wang, J.; Hu, Z.; Hussain, Q. Integrated physiological, biochemical, and transcriptomic analyses of Bruguiera gymnorhiza leaves under long-term copper stress: Stomatal size, wax crystals and composition. Ecotoxicol. Environ. Saf. 2024, 281, 116609. [Google Scholar] [CrossRef]
- Hawco, N.J.; Saito, M.A. Competitive inhibition of cobalt uptake by zinc and manganese in a pacific Prochlorococcus strain: Insights into metal homeostasis in a streamlined oligotrophic cyanobacterium. Limnol. Oceanogr. 2018, 63, 2229–2249. [Google Scholar] [CrossRef]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- dos Santos Silva, J.V.; Baligar, V.C.; Ahnert, D.; Pirovani, C.P.; Mora-Ocampo, I.Y.; de Vasconcelos, L.M.; de Almeida, A.-A.F. Proteomic and transcriptional regulations in Theobroma cacao L., in response to Ni toxicity, reveal temporal and metabolic reprogramming. J. Hazard. Mater. 2025, 495, 138971. [Google Scholar] [CrossRef] [PubMed]
- Sirhindi, G.; Mir, M.A.; Abd-Allah, E.F.; Ahmad, P.; Gucel, S. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max Under Nickel Toxicity. Front. Plant Sci. 2016, 7, 591. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-J.; Yao, B.-T.; Zhang, Q.; Feng, Y.-X.; Xiang, L. Biochemical insights into proline metabolism and its contribution to the endurant cell wall structure under metal stress. Ecotoxicol. Environ. Saf. 2024, 282, 116725. [Google Scholar] [CrossRef]
- Jalmi, S.K.; Bhagat, P.K.; Verma, D.; Noryang, S.; Tayyeba, S.; Singh, K.; Sharma, D.; Sinha, A.K. Traversing the Links Between Heavy Metal Stress and Plant Signaling. Front. Plant Sci. 2018, 9, 12. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; He, F.; Li, M.; Zi, Y.; Long, R.; Zhao, G.; Zhu, L.; Hong, L.; Wang, S.; et al. Genome-wide identification and analysis of abiotic stress responsiveness of the mitogen-activated protein kinase gene family in Medicago sativa L. BMC Plant Biol. 2024, 24, 800. [Google Scholar] [CrossRef] [PubMed]
- Manna, M.; Rengasamy, B.; Sinha, A.K. Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement. Plant Cell Environ. 2023, 46, 2277–2295. [Google Scholar] [CrossRef]
- Pitzschke, A.; Djamei, A.; Bitton, F.; Hirt, H. A Major Role of the MEKK1–MKK1/2–MPK4 Pathway in ROS Signalling. Mol. Plant 2009, 2, 120–137. [Google Scholar] [CrossRef]
- Kovtun, Y.; Chiu, W.-L.; Tena, G.; Sheen, J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 2000, 97, 2940–2945. [Google Scholar] [CrossRef]
- Zeng, H.; Zhu, Q.; Yuan, P.; Yan, Y.; Yi, K.; Du, L. Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. Plant Cell Environ. 2023, 46, 3680–3703. [Google Scholar] [CrossRef]
- Yang, J.; Ji, L.; Liu, S.; Jing, P.; Hu, J.; Jin, D.; Wang, L.; Xie, G.; Nakamura, Y. The CaM1-associated CCaMK–MKK1/6 cascade positively affects lateral root growth via auxin signaling under salt stress in rice. J. Exp. Bot. 2021, 72, 6611–6627. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Rao, M.J.; Zheng, B. The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals. Antioxidants 2025, 14, 74. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Huang, M.; Wisniewski, M.; Li, H.; Zhang, M.; Tao, X.; Liu, Y.; Zou, Y. Transcriptome Analysis Provides Insights into Gingerol Biosynthesis in Ginger (Zingiber officinale). Plant Genome 2018, 11, 180034. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Lv, Y.; Qu, S.; Liu, W.; Wang, K.; Gao, S.; Zhu, F.; Cao, B.; Xu, K. A genome assembly of ginger (Zingiber officinale Roscoe) provides insights into genome evolution and 6-gingerol biosynthesis. Plant J. 2024, 118, 682–695. [Google Scholar] [CrossRef]
- Wang, J.; Duan, X.; Wang, Y.; Sheng, J. Transcriptomic and physiological analyses of Miscanthus lutarioriparius in response to plumbum stress. Ind. Crops Prod. 2022, 176, 114305. [Google Scholar] [CrossRef]
- Jiang, L.; Yun, M.; Ma, Y.; Qu, T. Melatonin Mitigates Water Deficit Stress in Cenchrus alopecuroides (L.) Thunb through Up-Regulating Gene Expression Related to the Photosynthetic Rate, Flavonoid Synthesis, and the Assimilatory Sulfate Reduction Pathway. Plants 2024, 13, 716. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; An, Y.; Qu, T.; Jin, T.; Zhao, L.; Guo, H.; Wang, W.; Zhao, C. Effects of Ni and Cu Stresses on Morphological and Physiological Characteristics of Euphorbia marginata Pursh Seedlings. Agronomy 2024, 14, 1223. [Google Scholar] [CrossRef]
- Griffith, O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 1980, 106, 207–212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Jin, T.; Li, T.; An, Y.; Dai, X.; Zhao, C.; Qu, T. Euphorbia marginata Alleviate Heavy Metal Ni-Cu Combined Stress by Regulating the Synthesis of Signaling Factors and Flavonoid Organisms. Plants 2025, 14, 2159. https://doi.org/10.3390/plants14142159
Zhou X, Jin T, Li T, An Y, Dai X, Zhao C, Qu T. Euphorbia marginata Alleviate Heavy Metal Ni-Cu Combined Stress by Regulating the Synthesis of Signaling Factors and Flavonoid Organisms. Plants. 2025; 14(14):2159. https://doi.org/10.3390/plants14142159
Chicago/Turabian StyleZhou, Xudan, Tian Jin, Te Li, Yue An, Xintian Dai, Chunli Zhao, and Tongbao Qu. 2025. "Euphorbia marginata Alleviate Heavy Metal Ni-Cu Combined Stress by Regulating the Synthesis of Signaling Factors and Flavonoid Organisms" Plants 14, no. 14: 2159. https://doi.org/10.3390/plants14142159
APA StyleZhou, X., Jin, T., Li, T., An, Y., Dai, X., Zhao, C., & Qu, T. (2025). Euphorbia marginata Alleviate Heavy Metal Ni-Cu Combined Stress by Regulating the Synthesis of Signaling Factors and Flavonoid Organisms. Plants, 14(14), 2159. https://doi.org/10.3390/plants14142159