Molecular Control of Flower Colour Change in Angiosperms
Abstract
1. Introduction
2. Anthocyanins
3. Carotenoids
4. Betalains
5. Integrative Overview of Flower Colour Change
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4CL | 4-CUMAROIL-COA LIGASE |
AACT | ANTHOCYANIDIN ACYL TRANSFERASE |
ACT | ACYL TRANSFERASE |
ADH | AROGENATE DEHYDROGENASE |
ADT | AROGENATE DEHYDRATASE |
Am | Antirrhinum majus |
ANR | ANTHOCYANIDIN REDUCTASE |
ANS | ANTHOCYANIDIN SYNTHASE |
bHLH | BASIC HELIX-LOOP-HELIX transcription factor |
C4H | CINNAMATE 4-HYDROXYLASE |
CCD | CAROTENOID CLEAVAGE DIOXYGENASE |
cDOPA | cyclo-DOPA |
CHI | CHALCONE ISOMERASE |
CHS | CHALCONE SYNTHASE |
CI | CAROTENE ISOMERASE |
Cm | Chrysanthemum morifolium |
CoA | Coenzyme A |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
CYP76AD | CYTOCHROME P450-TYPE GENE |
DFR | DIHYDROFLAVANOL 4-REDUCTASE |
DMAPP | dimethylallyl diphosphate |
DO | DIPHENOL OXIDASE |
DOD | DOPA DIOXYGENASE |
DXP | 1-deoxy-D-xylulose-5-P |
DXS | DXP SYNTHASE |
E4P | erythrose 4-phosphate |
F3′5′H | FLAVANONE 3′5′-HYDROXYLASE |
F3′H | FLAVANONE 3′-HYDROXYLASE |
F3H | FLAVANONE 3-HYDROXYLASE |
FLS | FLAVONOL SYNTHASE |
FS | FLAVONE SYNTHASE |
GA3P | glyceraldehyde 3-phosphate |
GDS | GPP SYNTHASE |
GGDS | GERANYLGERANYL DIPHOSPHATE SYNTHASE |
GGPP | geranylgeranyl diphosphate |
GPP | geranyl diphosphate |
HAT | PHENYLPYRUVATE AMINOTRANSFERASE |
IFS | ISOFLAVONE SYNTHASE |
IPP | isopentenyl diphosphate |
IPPI | ISOPENTENYL DIPHOSPHATE ISOMERASE |
IspH | 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE |
LCYβ | LYCOPENE β-CYCLASE |
LCYε | LYCOPENE ε-CYCLASE |
LD | Linear dichroism |
L-DOPA | dihydroxyphenylalanine |
Ls | Lilium sp. |
MAL | Malonate pathway |
MEP | methylerythritol phosphate pathway |
MEV | Mevalonate pathway |
Ml | Mimulus lewisii |
Mt | Medicago truncatula |
MYB | MYELOBLASTOSIS transcription factor |
NS | NEOXANTHIN SYNTHASE |
OMT | O-METHYL TRANSFERASE |
OMT | O-METHYLTRANSFERASE |
OR | ORANGE |
Pa | Petunia axilaris |
PAL | PHENYLALANINE AMMONIA LYASE |
PAT | PREPHENATE AMINOTRANSFERASE |
PDH | PREPHENATE DEHYDROGENASE |
PDS | PHYTOENE DESATURASE |
PEP | phosphoenolpyruvate |
Ph | Petunia hybrida |
PIFs | PHYTOCHROME INTERACTING FACTORS |
PSY | PHYTOENE SYNTHASE |
SDH | SHIKIMATE DEHYDROGENASE |
SK | Shikimate pathway |
SlRIN | RIPENING INHIBITOR |
SnRK1 | Sucrose Non-Fermenting 1-Related Kinase 1 |
TFs | transcription factors |
Tg | Tulipa gesneriana |
UGT | UDP GLYCOSYL TRANSFERASE |
UGT | UDP-GLUCOSYLTRANSFERASE |
WDR | WD40 repeat domain transcription factor |
ZDS | ZETA-CAROTENE DESATURASE |
ZE | ZEAXANTHIN EPOXIDASE |
β-CO | Β-CAROTENE OXYGENASE |
β-RH | β-RING HYDROXYLASE |
ε-RH | ε-RING HYDROXYLASE |
References
- Fenster, C.B.; Armbruster, W.S.; Wilson, P.; Dudash, M.R.; Thomson, J.D. Pollination Syndromes and Floral Specialization. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 375–403. [Google Scholar] [CrossRef]
- Yan, J.; Wang, G.; Sui, Y.; Wang, M.; Zhang, L. Pollinator Responses to Floral Colour Change, Nectar and Scent Promote Reproductive Fitness in Quisqualis Indica (Combretaceae). Sci. Rep. 2016, 6, 24408. [Google Scholar] [CrossRef]
- Van Der Kooi, C.J.; Stavenga, D.G.; Arikawa, K.; Belušič, G.; Kelber, A. Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology. Annu. Rev. Entomol. 2021, 66, 435–461. [Google Scholar] [CrossRef]
- Van Der Niet, T.; Pirie, M.D.; Shuttleworth, A.; Johnson, S.D.; Midgley, J.J. Do Pollinator Distributions Underlie the Evolution of Pollination Ecotypes in the Cape Shrub Erica Plukenetii? Ann. Bot. 2014, 113, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Kay, K.M.; Sargent, R.D. The Role of Animal Pollination in Plant Speciation: Integrating Ecology, Geography, and Genetics. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 637–656. [Google Scholar] [CrossRef]
- Grotewold, E. The Genetics and Biochemistry of Floral Pigments. Annu. Rev. Plant Biol. 2006, 57, 761–780. [Google Scholar] [CrossRef]
- Zhao, D.; Tao, J. Recent Advances on the Development and Regulation of Flower Color in Ornamental Plants. Front. Plant Sci. 2015, 6, 261. [Google Scholar] [CrossRef]
- Freire-Maia, N. Gregor Mendel: Vida e Obra; T.A. Queiroz: São Paulo, Brazil, 1995; ISBN 8571820538. [Google Scholar]
- Tanaka, Y.; Katsumoto, Y.; Brugliera, F.; Mason, J. Genetic Engineering in Floriculture. Plant Cell Tiss Organ Cult. 2005, 80, 1–24. [Google Scholar] [CrossRef]
- Quattrocchio, F.; Wing, J.F.; Va, K.; De, W.; Mol, J.N.M.; Koes, R. Analysis of bHLH and MYB Domain Proteins: Species-Specific Regulatory Differences Are Caused by Divergent Evolution of Target Anthocyanin Genes. Plant J. 1998, 13, 475–488. [Google Scholar] [CrossRef]
- Yoshida, K.; Miki, N.; Momonoi, K.; Kawachi, M.; Katou, K.; Okazaki, Y.; Uozumi, N.; Maeshima, M.; Kondo, T. Synchrony between Flower Opening and Petal-Color Change from Red to Blue in Morning Glory, Ipomoea Tricolor Cv. Heavenly Blue. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009, 85, 187–197. [Google Scholar] [CrossRef]
- Moss, S.M.A.; Zhou, Y.; Butelli, E.; Waite, C.N.; Yeh, S.-M.; Cordiner, S.B.; Harris, N.N.; Copsey, L.; Schwinn, K.E.; Davies, K.M.; et al. Painted Flowers: Eluta Generates Pigment Patterning in Antirrhinum. New Phytol. 2024, 243, 738–752. [Google Scholar] [CrossRef]
- Katsumoto, Y.; Fukuchi-Mizutani, M.; Fukui, Y.; Brugliera, F.; Holton, T.A.; Karan, M.; Nakamura, N.; Yonekura-Sakakibara, K.; Togami, J.; Pigeaire, A.; et al. Engineering of the Rose Flavonoid Biosynthetic Pathway Successfully Generated Blue-Hued Flowers Accumulating Delphinidin. Plant Cell Physiol. 2007, 48, 1589–1600. [Google Scholar] [CrossRef] [PubMed]
- Winkel-Shirley, B. Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Brugliera, F.; Kalc, G.; Senior, M.; Dyson, B.; Nakamura, N.; Katsumoto, Y.; Chandler, S. Flower Color Modification by Engineering of the Flavonoid Biosynthetic Pathway: Practical Perspectives. Biosci. Biotechnol. Biochem. 2010, 74, 1760–1769. [Google Scholar] [CrossRef]
- Chalker-Scott, L. Environmental Significance of Anthocyanins in Plant Stress Responses. Photochem. Photobiol. 1999, 70, 1–9. [Google Scholar] [CrossRef]
- Steyn, W.J.; Wand, S.J.E.; Holcroft, D.M.; Jacobs, G. Anthocyanins in Vegetative Tissues: A Proposed Unified Function in Photoprotection. New Phytol. 2002, 155, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Takos, A.M.; Jaffé, F.W.; Jacob, S.R.; Bogs, J.; Robinson, S.P.; Walker, A.R. Light-Induced Expression of a MYB Gene Regulates Anthocyanin Biosynthesis in Red Apples. Plant Physiol. 2006, 142, 1216–1232. [Google Scholar] [CrossRef]
- De Rezende, F.M.; Furlan, C.M. Anthocyanins and Tannins in Ozone-Fumigated Guava Trees. Chemosphere 2009, 76, 1445–1450. [Google Scholar] [CrossRef]
- Gould, K.S.; Jay-Allemand, C.; Logan, B.A.; Baissac, Y.; Bidel, L.P.R. When Are Foliar Anthocyanins Useful to Plants? Re-Evaluation of the Photoprotection Hypothesis Using Arabidopsis Thaliana Mutants That Differ in Anthocyanin Accumulation. Environ. Exp. Bot. 2018, 154, 11–22. [Google Scholar] [CrossRef]
- Agati, G.; Guidi, L.; Landi, M.; Tattini, M. Anthocyanins in Photoprotection: Knowing the Actors in Play to Solve This Complex Ecophysiological Issue. New Phytol. 2021, 232, 2228–2235. [Google Scholar] [CrossRef]
- Holton, T.; Cornish, E. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell 1995, 7, 1071–1083. [Google Scholar] [CrossRef]
- Borghi, M.; Fernie, A.R.; Schiestl, F.P.; Bouwmeester, H.J. The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network That Produces Signals for Pollinators. Trends Plant Sci. 2017, 22, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; J. Wiley: Chichester, UK, 2009; ISBN 978-0-470-74168-9. [Google Scholar]
- Yonekura-Sakakibara, K.; Higashi, Y.; Nakabayashi, R. The Origin and Evolution of Plant Flavonoid Metabolism. Front. Plant Sci. 2019, 10, 943. [Google Scholar] [CrossRef]
- Cooper-Driver, G.A. Contributions of Jeffrey Harborne and Co-Workers to the Study of Anthocyanins. Phytochemistry 2001, 56, 229–236. [Google Scholar] [CrossRef]
- Saito, K.; Yamazaki, M. Biochemistry and Molecular Biology of the Late-Stage of Biosynthesis of Anthocyanin: Lessons from Perilla Frutescens as a Model Plant. New Phytol. 2002, 155, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Sunil, L.; Shetty, N.P. Biosynthesis and Regulation of Anthocyanin Pathway Genes. Appl. Microbiol. Biotechnol. 2022, 106, 1783–1798. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.D.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.O.; Freitas, A.A.; Maçanita, A.L.; Quina, F.H. Chemistry and Photochemistry of Natural Plant Pigments: The Anthocyanins. J. Phys. Org. Chem. 2016, 29, 594–599. [Google Scholar] [CrossRef]
- Buchweitz, M.; Gudi, G.; Carle, R.; Kammerer, D.R.; Schulz, H. Systematic Investigations of Anthocyanin–Metal Interactions by Raman Spectroscopy. J. Raman Spectrosc. 2012, 43, 2001–2007. [Google Scholar] [CrossRef]
- Bahreini, Z.; Abedi, M.; Ashori, A.; Parach, A. Extraction and Characterization of Anthocyanin Pigments from Iris Flowers and Metal Complex Formation. Heliyon 2024, 10, e31795. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, C.; Katayama, H.; Makino, I.; Inagaki, A.; Arakawa, O.; Martin, C. Peace, a MYB-like Transcription Factor, Regulates Petal Pigmentation in Flowering Peach ‘Genpei’ Bearing Variegated and Fully Pigmented Flowers. J. Exp. Bot. 2014, 65, 1081–1094. [Google Scholar] [CrossRef] [PubMed]
- Koes, R.; Verweij, W.; Quattrocchio, F. Flavonoids: A Colorful Model for the Regulation and Evolution of Biochemical Pathways. Trends Plant Sci. 2005, 10, 236–242. [Google Scholar] [CrossRef]
- Yan, H.; Pei, X.; Zhang, H.; Li, X.; Zhang, X.; Zhao, M.; Chiang, V.L.; Sederoff, R.R.; Zhao, X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int. J. Mol. Sci. 2021, 22, 3103. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, L.C.; Walker, J.F.; Ng, J.; Deanna, R.; Dunbar-Wallis, A.; Backes, A.; Pezzi, P.H.; Palchetti, M.V.; Robertson, H.M.; Monaghan, A.; et al. Transcription Factors Evolve Faster Than Their Structural Gene Targets in the Flavonoid Pigment Pathway. Mol. Biol. Evol. 2022, 39, msac044. [Google Scholar] [CrossRef] [PubMed]
- Mehrtens, F.; Kranz, H.; Bednarek, P.; Weisshaar, B. The Arabidopsis Transcription Factor MYB12 Is a Flavonol-Specific Regulator of Phenylpropanoid Biosynthesis. Plant Physiol. 2005, 138, 1083–1096. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, H.; Zhu, H.; Huang, C.; Liu, C.; Chang, Y.; Kong, Z.; Zhou, Z.; Wang, G.; Lin, Y.; et al. Determining Factors, Regulation System, and Domestication of Anthocyanin Biosynthesis in Rice Leaves. New Phytol. 2019, 223, 705–721. [Google Scholar] [CrossRef]
- Wu, Y.; Han, T.; Lyu, L.; Li, W.; Wu, W. Research Progress in Understanding the Biosynthesis and Regulation of Plant Anthocyanins. Sci. Hortic. 2023, 321, 112374. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, Z.; Wang, C.; Zhang, X.; Tang, Y.; Zhu, X.; Shao, J.; Wu, Y. Changing a Conserved Amino Acid in R2R3-MYB Transcription Repressors Results in Cytoplasmic Accumulation and Abolishes Their Repressive Activity in Arabidopsis. Plant J. 2015, 84, 395–403. [Google Scholar] [CrossRef]
- Chagné, D.; Lin-Wang, K.; Espley, R.V.; Volz, R.K.; How, N.M.; Rouse, S.; Brendolise, C.; Carlisle, C.M.; Kumar, S.; De Silva, N.; et al. An Ancient Duplication of Apple MYB Transcription Factors Is Responsible for Novel Red Fruit-Flesh Phenotypes. Plant Physiol. 2012, 161, 225–239. [Google Scholar] [CrossRef]
- Pelletier, M.K.; Burbulis, I.E.; Winkel-Shirley, B. Disruption of Specific Flavonoid Genes Enhances the Accumulation of Flavonoid Enzymes and End-Products in Arabidopsis Seedlings. Plant Mol. Biol. 1999, 40, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Petroni, K.; Tonelli, C. Recent Advances on the Regulation of Anthocyanin Synthesis in Reproductive Organs. Plant Sci. 2011, 181, 219–229. [Google Scholar] [CrossRef]
- Shin, D.H.; Choi, M.; Kim, K.; Bang, G.; Cho, M.; Choi, S.-B.; Choi, G.; Park, Y.-I. HY5 Regulates Anthocyanin Biosynthesis by Inducing the Transcriptional Activation of the MYB75/PAP1 Transcription Factor in Arabidopsis. FEBS Lett. 2013, 587, 1543–1547. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Lin-Wang, K.; Wang, F.; Espley, R.V.; Ren, F.; Zhao, J.; Ogutu, C.; He, H.; Jiang, Q.; Allan, A.C.; et al. Activator-Type R2R3-MYB Genes Induce a Repressor-Type R2R3-MYB Gene to Balance Anthocyanin and Proanthocyanidin Accumulation. New Phytol. 2019, 221, 1919–1934. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; He, W.; Guo, X.; Pan, J. Genome-Wide Identification, Classification and Expression Analysis of the MYB Transcription Factor Family in Petunia. Int. J. Mol. Sci. 2021, 22, 4838. [Google Scholar] [CrossRef] [PubMed]
- Brugliera, F.; Barri-Rewell, G.; Holton, T.A.; Mason, J.G. Isolation and Characterization of a Flavonoid 3′-Hydroxylase cDNA Clone Corresponding to the Ht1 Locus of Petunia Hybrida. Plant J. 1999, 19, 441–451. [Google Scholar] [CrossRef]
- Quattrocchio, F.; Wing, J.; Koes, R. Molecular Analysis of the Anthocyanin2 Gene of Petunia and Its Role in the Evolution of Flower Color. Plant Cell 1999, 11, 1433–1444. [Google Scholar] [CrossRef]
- Albert, N.W.; Lewis, D.H.; Zhang, H.; Schwinn, K.E.; Jameson, P.E.; Davies, K.M. Members of an R2R3-MYB Transcription Factor Family in Petunia Are Developmentally and Environmentally Regulated to Control Complex Floral and Vegetative Pigmentation Patterning. Plant J. 2011, 65, 771–784. [Google Scholar] [CrossRef]
- Albert, N.W.; Davies, K.M.; Lewis, D.H.; Zhang, H.; Montefiori, M.; Brendolise, C.; Boase, M.R.; Ngo, H.; Jameson, P.E.; Schwinn, K.E. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots. Plant Cell. 2014, 26, 962–980. [Google Scholar] [CrossRef]
- Hu, X.; Liang, Z.; Sun, T.; Huang, L.; Wang, Y.; Chan, Z.; Xiang, L. The R2R3-MYB Transcriptional Repressor TgMYB4 Negatively Regulates Anthocyanin Biosynthesis in Tulips (Tulipa gesneriana L.). Int. J. Mol. Sci. 2024, 25, 563. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, Y.; Zhang, L.; Wang, B.; Zhao, Y.; Irfan, M.; Chen, L.; Feng, Y. Regulation of MYB Transcription Factors of Anthocyanin Synthesis in Lily Flowers. Front. Plant Sci. 2021, 12, 761668. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Ma, H.; Duan, X.; Gao, S.; Zhou, X.; Cheng, Y. The R2R3-MYB Gene PsMYB58 Positively Regulates Anthocyanin Biosynthesis in Tree Peony Flowers. Plant Physiol. Biochem. 2021, 164, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Schwinn, K.; Venail, J.; Shang, Y.; Mackay, S.; Alm, V.; Butelli, E.; Oyama, R.; Bailey, P.; Davies, K.; Martin, C. A Small Family of MYB -Regulatory Genes Controls Floral Pigmentation Intensity and Patterning in the Genus Antirrhinum. Plant Cell. 2006, 18, 831–851. [Google Scholar] [CrossRef]
- Albert, N.W.; Butelli, E.; Moss, S.M.A.; Piazza, P.; Waite, C.N.; Schwinn, K.E.; Davies, K.M.; Martin, C. Discrete bHLH Transcription Factors Play Functionally Overlapping Roles in Pigmentation Patterning in Flowers of Antirrhinum Majus. New Phytol. 2021, 231, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, R.; Vaucheret, H.; Trejo, J.; Bartel, D.P. A Diverse and Evolutionarily Fluid Set of microRNAs in Arabidopsis Thaliana. Genes Dev. 2006, 20, 3407–3425. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, L.-C.; Lin, S.-I.; Shih, A.C.-C.; Chen, J.-W.; Lin, W.-Y.; Tseng, C.-Y.; Li, W.-H.; Chiou, T.-J. Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing. Plant Physiol. 2009, 151, 2120–2132. [Google Scholar] [CrossRef]
- Li, Y.; Cui, W.; Qi, X.; Lin, M.; Qiao, C.; Zhong, Y.; Hu, C.; Fang, J. MicroRNA858 Negatively Regulates Anthocyanin Biosynthesis by Repressing AaMYBC1 Expression in Kiwifruit (Actinidia Arguta). Plant Sci. 2020, 296, 110476. [Google Scholar] [CrossRef]
- Zhang, B.; Qin, X.; Han, Y.; Li, M.; Guo, Y. Dorsoventrally Asymmetric Expression of miR319/TCP Generates Dorsal-Specific Venation Patterning in Petunia Corolla Tube. J. Exp. Bot. 2024, 75, 3401–3411. [Google Scholar] [CrossRef]
- Kiselev, K.V.; Suprun, A.R.; Aleynova, O.A.; Ogneva, Z.V.; Kalachev, A.V.; Dubrovina, A.S. External dsRNA Downregulates Anthocyanin Biosynthesis-Related Genes and Affects Anthocyanin Accumulation in Arabidopsis Thaliana. Int. J. Mol. Sci. 2021, 22, 6749. [Google Scholar] [CrossRef]
- Suprun, A.R.; Manyakhin, A.Y.; Trubetskaya, E.V.; Kiselev, K.V.; Dubrovina, A.S. Regulation of Anthocyanin Accumulation in Tomato Solanum Lycopersicum L. by Exogenous Synthetic dsRNA Targeting Different Regions of SlTRY Gene. Plants 2024, 13, 2489. [Google Scholar] [CrossRef]
- Broucke, E.; Dang, T.T.V.; Li, Y.; Hulsmans, S.; Van Leene, J.; De Jaeger, G.; Hwang, I.; Wim, V.d.E.; Rolland, F. SnRK1 Inhibits Anthocyanin Biosynthesis through Both Transcriptional Regulation and Direct Phosphorylation and Dissociation of the MYB/bHLH/TTG1 MBW Complex. Plant J. 2023, 115, 1193–1213. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A.; Abbas, N. Role of Epigenetic and Post-Translational Modifications in Anthocyanin Biosynthesis: A Review. Gene 2023, 887, 147694. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.M.; Feller, A.; Morohashi, K.; Frame, K.; Grotewold, E. The Basic Helix–Loop–Helix Domain of Maize R Links Transcriptional Regulation and Histone Modifications by Recruitment of an EMSY-Related Factor. Proc. Natl. Acad. Sci. USA 2007, 104, 17222–17227. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, H.; Liu, Z.; Zhang, T.; Li, Z.; Cao, L.; Wu, S.; Liu, Y.; Yu, S.; Zhang, Q.; et al. A Naturally-Occurring Phenomenon of Flower Color Change during Flower Development in Xanthoceras Sorbifolium. Front. Plant Sci. 2022, 13, 1072185. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Liu, Y.; Wei, Y.; Hu, Z.; Wu, X.; Zheng, C.; Wang, C. Applications of CRISPR/Cas9 Technology in Ornamental Plants. Plant Mol Biol Rep. 2024, 42, 193–200. [Google Scholar] [CrossRef]
- Li, G.; Michaelis, D.F.; Huang, J.; Serek, M.; Gehl, C. New Insights into the Genetic Manipulation of the R2R3-MYB and CHI Gene Families on Anthocyanin Pigmentation in Petunia Hybrida. Plant Physiol. Biochem. 2023, 203, 108000. [Google Scholar] [CrossRef]
- Watanabe, K.; Oda-Yamamizo, C.; Sage-Ono, K.; Ohmiya, A.; Ono, M. Alteration of Flower Colour in Ipomoea Nil through CRISPR/Cas9-Mediated Mutagenesis of Carotenoid Cleavage Dioxygenase 4. Transgenic Res. 2018, 27, 25–38. [Google Scholar] [CrossRef]
- Nishihara, M.; Higuchi, A.; Watanabe, A.; Tasaki, K. Application of the CRISPR/Cas9 System for Modification of Flower Color in Torenia Fournieri. BMC Plant Biol. 2018, 18, 1–9. [Google Scholar] [CrossRef]
- Luo, Q.; Liu, R.; Zeng, L.; Wu, Y.; Jiang, Y.; Yang, Q.; Nie, Q. Isolation and Molecular Characterization of NtMYB4a, a Putative Transcription Activation Factor Involved in Anthocyanin Synthesis in Tobacco. Gene 2020, 760, 144990. [Google Scholar] [CrossRef]
- Hirschberg, J.; Cohen, M.; Harker, M.; Lotan, T.; Mann, V.; Pecker, I. Molecular Genetics of the Carotenoid Biosynthesis Pathway in Plants and Algae. Pure Appl. Chem. 1997, 69, 2151–2158. [Google Scholar] [CrossRef]
- Li, L.; Paolillo, D.J.; Parthasarathy, M.V.; DiMuzio, E.M.; Garvin, D.F. A Novel Gene Mutation That Confers Abnormal Patterns of β-Carotene Accumulation in Cauliflower (Brassica oleracea Var. Botrytis). Plant J. 2001, 26, 59–67. [Google Scholar] [CrossRef]
- Bartley, G.E.; Scolnik, P.A. Plant Carotenoids: Pigments for Photoprotection, Visual Attraction, and Human Health. Plant Cell. 1995, 7, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Ronen, G.; Cohen, M.; Zamir, D.; Hirschberg, J. Regulation of Carotenoid Biosynthesis during Tomato Fruit Development: Expression of the Gene for Lycopene Epsilon-Cyclase Is down-Regulated during Ripening and Is Elevated in the Mutant Delta. Plant J. 1999, 17, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.M. (Ed.) Plant Pigments and Their Manipulation. In Annual Plant Reviews; Blackwell: Oxford, UK, 2004; ISBN 978-1-4051-1737-1. [Google Scholar]
- Niyogi, K.K.; Shih, C.; Soon Chow, W.; Pogson, B.J.; DellaPenna, D.; Björkman, O. Photoprotection in a Zeaxanthin- and Lutein-Deficient Double Mutant of Arabidopsis. Photosynth. Res. 2001, 67, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Lao, Y.-M.; Xiao, L.; Ye, Z.; Jiang, J.-G.; Zhou, S.-S. In Silico Analysis of Phytoene Synthase and Its Promoter Reveals Hints for Regulation Mechanisms of Carotenogenesis in Duanliella Bardawil. Bioinformatics 2011, 27, 2201–2208. [Google Scholar] [CrossRef]
- Isler, O.; Gutmann, H.; Solms, U. (Eds.) Carotenoids; Birkhäuser: Basel, Switzerland, 1971; ISBN 978-3-0348-5832-8. [Google Scholar]
- Krinsky, N.I.; Johnson, E.J. Carotenoid Actions and Their Relation to Health and Disease. Mol. Asp. Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of Plant Pigments: Anthocyanins, Betalains and Carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Moehs, C.P.; Tian, L.; Osteryoung, K.W.; DellaPenna, D. Analysis of Carotenoid Biosynthetic Gene Expression during Marigold Petal Development. Plant Mol. Biol. 2001, 45, 281–293. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Qiu, H.; Chen, R.; Xiong, A.; Xu, Z.; Miao, W.; Chen, R.; Wang, P.; Hou, X.; et al. The Mads-Ripening Inhibitor–Divaricata1 Module Regulates Carotenoid Biosynthesis in Nonclimacteric Capsicum Fruits. Plant Physiol. 2025, 197, kiaf013. [Google Scholar] [CrossRef]
- Srivastava, R.; Ahmed, H.; Dixit, R.K.; Dixit, R.K.; Saraf, S.A. Crocus Sativus L.: A Comprehensive Review. Pharmacogn. Rev. 2010, 4, 200–208. [Google Scholar] [CrossRef]
- Nisar, N.; Li, L.; Lu, S.; Khin, N.C.; Pogson, B.J. Carotenoid Metabolism in Plants. Mol. Plant 2015, 8, 68–82. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. The 1-Deoxy-D-Xylulose-5-Phosphate Pathway of Isoprenoid Biosynthesis in Plants. Annu. Rev. Plant Biol. 1999, 50, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Concepción, M.; Boronat, A. Elucidation of the Methylerythritol Phosphate Pathway for Isoprenoid Biosynthesis in Bacteria and Plastids. A Metabolic Milestone Achieved through Genomics. Plant Physiol. 2002, 130, 1079–1089. [Google Scholar] [CrossRef]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant Volatiles: Recent Advances and Future Perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Schwender, J.; Disch, A.; Rohmer, M. Biosynthesis of Isoprenoids in Higher Plant Chloroplasts Proceeds via a Mevalonate-independent Pathway. FEBS Lett. 1997, 400, 271–274. [Google Scholar] [CrossRef]
- Rodríguez-Concepción, M. Supply of Precursors for Carotenoid Biosynthesis in Plants. Arch. Biochem. Biophys. 2010, 504, 118–122. [Google Scholar] [CrossRef]
- Jahns, P.; Holzwarth, A.R. The Role of the Xanthophyll Cycle and of Lutein in Photoprotection of Photosystem II. Biochim. Biophys. Acta (BBA)-Bioenerg. 2012, 1817, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Ortiz, G.; Huq, E.; Rodríguez-Concepción, M. Direct Regulation of Phytoene Synthase Gene Expression and Carotenoid Biosynthesis by Phytochrome-Interacting Factors. Proc. Natl. Acad. Sci. USA 2010, 107, 11626–11631. [Google Scholar] [CrossRef]
- Martel, C.; Vrebalov, J.; Tafelmeyer, P.; Giovannoni, J.J. The Tomato MADS-Box Transcription Factor RIPENING INHIBITOR Interacts with Promoters Involved in Numerous Ripening Processes in a Colorless Nonripening-Dependent Manner. Plant Physiol. 2011, 157, 1568–1579. [Google Scholar] [CrossRef]
- Gong, J.; Zeng, Y.; Meng, Q.; Guan, Y.; Li, C.; Yang, H.; Zhang, Y.; Ampomah-Dwamena, C.; Liu, P.; Chen, C.; et al. Red Light-Induced Kumquat Fruit Coloration Is Attributable to Increased Carotenoid Metabolism Regulated by FcrNAC22. J. Exp. Bot. 2021, 72, 6274–6290. [Google Scholar] [CrossRef]
- Lu, S.; Ye, J.; Zhu, K.; Zhang, Y.; Zhang, M.; Xu, Q.; Deng, X. A Fruit Ripening-Associated Transcription Factor CsMADS5 Positively Regulates Carotenoid Biosynthesis in Citrus. J. Exp. Bot. 2021, 72, 3028–3043. [Google Scholar] [CrossRef]
- Sagawa, J.M.; Stanley, L.E.; LaFountain, A.M.; Frank, H.A.; Liu, C.; Yuan, Y.-W. An R2R3-MYB Transcription Factor Regulates Carotenoid Pigmentation in Mimulus Lewisii Flowers. New Phytol. 2016, 209, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wang, Z.; Wang, Y.; Wang, C.; Zhu, B.; Liu, H.; Ji, W.; Wen, J.; Chu, C.; Tadege, M.; et al. The MYB Activator WHITE PETAL1 Associates with MtTT8 and MtWD40-1 to Regulate Carotenoid-Derived Flower Pigmentation in Medicago truncatula. Plant Cell. 2019, 31, 2751–2767. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant Carotenoids: Recent Advances and Future Perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef]
- Ohmiya, A. Diversity of Carotenoid Composition in Flower Petals. JARQ. 2011, 45, 163–171. [Google Scholar] [CrossRef]
- Pulido, P.; Llamas, E.; Llorente, B.; Ventura, S.; Wright, L.P.; Rodríguez-Concepción, M. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis. PLoS Genet. 2016, 12, e1005824. [Google Scholar] [CrossRef]
- Welsch, R.; Zhou, X.; Yuan, H.; Álvarez, D.; Sun, T.; Schlossarek, D.; Yang, Y.; Shen, G.; Zhang, H.; Rodriguez-Concepcion, M.; et al. Clp Protease and OR Directly Control the Proteostasis of Phytoene Synthase, the Crucial Enzyme for Carotenoid Biosynthesis in Arabidopsis. Mol. Plant 2018, 11, 149–162. [Google Scholar] [CrossRef]
- Li, H.; Yu, K.; Amoo, O.; Yu, Y.; Guo, M.; Deng, S.; Li, M.; Hu, L.; Wang, J.; Fan, C.; et al. Site-Directed Mutagenesis of the Carotenoid Isomerase Gene BnaCRTISO Alters the Color of Petals and Leaves in Brassica Napus L. Front. Plant Sci. 2022, 13, 801456. [Google Scholar] [CrossRef]
- Timoneda, A.; Feng, T.; Sheehan, H.; Walker-Hale, N.; Pucker, B.; Lopez-Nieves, S.; Guo, R.; Brockington, S. The Evolution of Betalain Biosynthesis in Caryophyllales. New Phytol. 2019, 224, 71–85. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Najar, T.; Abderrabba, M. Chemical and Antioxidant Properties of Betalains. J. Agric. Food Chem. 2017, 65, 675–689. [Google Scholar] [CrossRef]
- Khan, M.I.; Giridhar, P. Plant Betalains: Chemistry and Biochemistry. Phytochemistry 2015, 117, 267–295. [Google Scholar] [CrossRef]
- Tossi, V.E.; Martínez Tosar, L.; Pitta-Álvarez, S.I.; Causin, H.F. Casting Light on the Pathway to Betalain Biosynthesis: A Review. Environ. Exp. Bot. 2021, 186, 104464. [Google Scholar] [CrossRef]
- Polturak, G.; Aharoni, A. “La Vie En Rose”: Biosynthesis, Sources, and Applications of Betalain Pigments. Mol. Plant. 2018, 11, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Brockington, S.F.; Yang, Y.; Gandia-Herrero, F.; Covshoff, S.; Hibberd, J.M.; Sage, R.F.; Wong, G.K.S.; Moore, M.J.; Smith, S.A. Lineage-Specific Gene Radiations Underlie the Evolution of Novel Betalain Pigmentation in Caryophyllales. New Phytol. 2015, 207, 1170–1180. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Takamura, E.; Sakuta, M. Isolation and Expression Analysis of Two DOPA Dioxygenases in Phytolacca Americana. Z. Für Naturforschung C. 2009, 64, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Hichri, I.; Barrieu, F.; Bogs, J.; Kappel, C.; Delrot, S.; Lauvergeat, V. Recent Advances in the Transcriptional Regulation of the Flavonoid Biosynthetic Pathway. J. Exp. Bot. 2011, 62, 2465–2483. [Google Scholar] [CrossRef]
- Hatlestad, G.J.; Akhavan, N.A.; Sunnadeniya, R.M.; Elam, L.; Cargile, S.; Hembd, A.; Gonzalez, A.; McGrath, J.M.; Lloyd, A.M. The Beet Y Locus Encodes an Anthocyanin MYB-like Protein That Activates the Betalain Red Pigment Pathway. Nat Genet. 2015, 47, 92–96. [Google Scholar] [CrossRef]
- Shimada, S.; Inoue, Y.T.; Sakuta, M. Anthocyanidin Synthase in Non-Anthocyanin-Producing Caryophyllales Species. Plant J. 2005, 44, 950–959. [Google Scholar] [CrossRef]
- Shimada, S.; Otsuki, H.; Sakuta, M. Transcriptional Control of Anthocyanin Biosynthetic Genes in the Caryophyllales. J. Exp. Bot. 2007, 58, 957–967. [Google Scholar] [CrossRef]
- Brockington, S.F.; Walker, R.H.; Glover, B.J.; Soltis, P.S.; Soltis, D.E. Complex Pigment Evolution in the Caryophyllales. New Phytol. 2011, 190, 854–864. [Google Scholar] [CrossRef]
- Sheehan, H.; Feng, T.; Walker-Hale, N.; Lopez-Nieves, S.; Pucker, B.; Guo, R.; Yim, W.C.; Badgami, R.; Timoneda, A.; Zhao, L.; et al. Evolution of L-DOPA 4,5-Dioxygenase Activity Allows for Recurrent Specialisation to Betalain Pigmentation in Caryophyllales. New Phytol. 2020, 227, 914–929. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, M.; Hirabuchi, A.; Goto, F.; Nishizaki, Y.; Uesugi, S.; Watanabe, A.; Tasaki, K.; Washiashi, R.; Sasaki, N. Production of Yellow-Flowered Gentian Plants by Genetic Engineering of Betaxanthin Pigments. New Phytol. 2023, 240, 1177–1188. [Google Scholar] [CrossRef]
- Nishihara, M.; Hirabuchi, A.; Teshima, T.; Uesugi, S.; Takahashi, H. Flower Color Modification in Torenia Fournieri by Genetic Engineering of Betacyanin Pigments. BMC Plant Biol. 2024, 24, 1–10. [Google Scholar] [CrossRef]
- Weiss, M.R. Floral Color Change: A Widespread Functional Convergence. Am. J. Bot. 1995, 82, 167–185. [Google Scholar] [CrossRef]
- Erickson, E.; Junker, R.R.; Ali, J.G.; McCartney, N.; Patch, H.M.; Grozinger, C.M. Complex Floral Traits Shape Pollinator Attraction to Ornamental Plants. Ann. Bot. 2022, 130, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Ida, T.Y.; Kudo, G. Floral Color Change in Weigela Middendorffiana (Caprifoliaceae): Reduction of Geitonogamous Pollination by Bumble Bees. Am. J. Bot. 2003, 90, 1751–1757. [Google Scholar] [CrossRef]
- Sun, S.G.; Liao, K.; Xia, J.; Guo, Y.H. Floral Colour Change in Pedicularis Monbeigiana (Orobanchaceae). Plant Syst. Evol. 2005, 255, 77–85. [Google Scholar] [CrossRef]
- Ida, T.Y.; Kudo, G. Modification of Bumblebee Behavior by Floral Color Change and Implications for Pollen Transfer in Weigela Middendorffiana. Evol Ecol. 2010, 24, 671–684. [Google Scholar] [CrossRef]
- Zhang, Y.-W.; Zhao, X.-N.; Huang, S.-J.; Zhang, L.-H.; Zhao, J.-M. Temporal Pattern of Floral Color Change and Time Retention of Post-Change Flowers in Weigela Japonica Var. Sinica (Caprifoliaceae). J. Syst. Evol. 2012, 50, 519–526. [Google Scholar] [CrossRef]
- Brito, V.L.G.; Weynans, K.; Sazima, M.; Lunau, K. Trees as Huge Flowers and Flowers as Oversized Floral Guides: The Role of Floral Color Change and Retention of Old Flowers in Tibouchina Pulchra. Front. Plant Sci. 2015, 6, 362. [Google Scholar] [CrossRef]
- Antonelli, A.; Fry, C.; Smith, R.J.; Eden, J.; Govaerts, R.H.A.; Kersey, P.; Nic Lughadha, E.; Onstein, R.E.; Simmonds, M.S.J.; Zizka, A.; et al. State of the World’s Plants and Fungi, 2023; Royal Botanic Gardens, Kew: Surrey, UK, 2023. [Google Scholar]
- Farzad, M.; Griesbach, R.; Weiss, M.R. Floral Color Change in Viola Cornuta L. (Violaceae): A Model System to Study Regulation of Anthocyanin Production. Plant Sci. 2002, 162, 225–231. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Sun, H.-Y.; Shang, X. Flower Color Patterning in Pansy (Viola × Wittrockiana Gams.) Is Caused by the Differential Expression of Three Genes from the Anthocyanin Pathway in Acyanic and Cyanic Flower Areas. Plant Physiol. Biochem. 2014, 84, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Macnish, A.J.; Jiang, C.-Z.; Negre-Zakharov, F.; Reid, M.S. Physiological and Molecular Changes during Opening and Senescence of Nicotiana Mutabilis Flowers. Plant Sci. 2010, 179, 267–272. [Google Scholar] [CrossRef]
- Rezende, F.M.; Clausen, M.H.; Rossi, M.; Furlan, C.M. The Regulation of Floral Colour Change in Pleroma Raddianum (DC.) Gardner. Molecules 2020, 25, 4664. [Google Scholar] [CrossRef]
- Tan, J.; Wang, M.; Tu, L.; Nie, Y.; Lin, Y.; Zhang, X. The Flavonoid Pathway Regulates the Petal Colors of Cotton Flower. PLoS ONE 2013, 8, e72364. [Google Scholar] [CrossRef]
- Ghissing, U.; Kutty, N.N.; Bimolata, W.; Samanta, T.; Mitra, A. Comparative Transcriptome Analysis Reveals an Insight into the Candidate Genes Involved in Anthocyanin and Scent Volatiles Biosynthesis in Colour Changing Flowers of Combretum Indicum. Plant Biol. 2023, 25, 85–95. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.; Wei, H.; Zhang, H.; Wu, Q.; Wang, L. Integrative Analysis of Transcriptome and Target Metabolites Uncovering Flavonoid Biosynthesis Regulation of Changing Petal Colors in Nymphaea ‘Feitian 2’. BMC Plant Biol. 2024, 24, 370. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhou, L.-J.; Peng, J.; Chen, C.; Liu, S.; Song, A.; Jiang, J.; Chen, S.; Chen, F. CmNAC25 Targets CmMYB6 to Positively Regulate Anthocyanin Biosynthesis during the Post-Flowering Stage in Chrysanthemum. BMC Biol. 2023, 21, 211. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, P.; Jiang, Y.; Li, J.; Chang, J.; Zhang, H.; Shao, H.; Zhou, Y. Integrated Metabolome and Transcriptome Analysis of Petal Anthocyanin Accumulation Mechanism in Gloriosa Superba ‘Rothschildiana’ during Different Flower Development Stages. Int. J. Mol. Sci. 2023, 24, 15034. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Shi, X.; Ma, J.; Zeng, X.; Zhu, Z.; Li, F.; Zhou, M.; Guo, X.; Liu, X. A High-Quality, Chromosome-Level Genome Provides Insights Into Determinate Flowering Time and Color of Cotton Rose (Hibiscus Mutabilis). Front. Plant Sci. 2022, 13, 818206. [Google Scholar] [CrossRef]
- Zhu, Z.; Zeng, X.; Shi, X.; Ma, J.; Liu, X.; Li, Q. Transcription and Metabolic Profiling Analysis of Three Discolorations in a Day of Hibiscus Mutabilis. Biology 2023, 12, 1115. [Google Scholar] [CrossRef] [PubMed]
- Vaknin, H.; Bar-Akiva, A.; Ovadia, R.; Nissim-Levi, A.; Forer, I.; Weiss, D.; Oren-Shamir, M. Active Anthocyanin Degradation in Brunfelsia Calycina (Yesterday–Today–Tomorrow) Flowers. Planta 2005, 222, 19–26. [Google Scholar] [CrossRef]
- Bar-Akiva, A.; Ovadia, R.; Rogachev, I.; Bar-Or, C.; Bar, E.; Freiman, Z.; Nissim-Levi, A.; Gollop, N.; Lewinsohn, E.; Aharoni, A.; et al. Metabolic Networking in Brunfelsia Calycina Petals after Flower Opening. J. Exp. Bot. 2010, 61, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Zipor, G.; Duarte, P.; Carqueijeiro, I.; Shahar, L.; Ovadia, R.; Teper-Bamnolker, P.; Eshel, D.; Levin, Y.; Doron-Faigenboim, A.; Sottomayor, M.; et al. In Planta Anthocyanin Degradation by a Vacuolar Class III Peroxidase in Brunfelsia Calycina Flowers. New Phytol. 2015, 205, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.; Zhang, M.; Wang, Y.; Deng, X.; Sun, H.; Yang, D.; Xu, L.; Song, H.; Yang, M. Color Fading in Lotus (Nelumbo Nucifera) Petals Is Manipulated Both by Anthocyanin Biosynthesis Reduction and Active Degradation. Plant Physiol. Biochem. 2022, 179, 100–107. [Google Scholar] [CrossRef]
- Han, M.; Yang, C.; Zhou, J.; Zhu, J.; Meng, J.; Shen, T.; Xin, Z.; Li, H. Analysis of Flavonoids and Anthocyanin Biosynthesis-Related Genes Expression Reveals the Mechanism of Petal Color Fading of Malus Hupehensis (Rosaceae). Braz. J. Bot. 2020, 43, 81–89. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; da Silva, J.A.T.; Fan, Y.; Yu, X. Transcriptome and Chemical Analysis Reveal Putative Genes Involved in Flower Color Change in Paeonia ‘Coral Sunset’. Plant Physiol. Biochem. 2019, 138, 130–139. [Google Scholar] [CrossRef]
- Nielsen, K.M.; Lewis, D.H.; Morgan, E.R. Characterization of Carotenoid Pigments and Their Biosynthesis in Two Yellow Flowered Lines of Sandersonia Aurantiaca (Hook). Euphytica 2003, 130, 25–34. [Google Scholar] [CrossRef]
- Hai, N.T.L.; Masuda, J.; Miyajima, I.; Thien, N.Q.; Mojtahedi, N.; Hiramatsu, M.; Kim, J.-H.; Okubo, H. Involvement of Carotenoid Cleavage Dioxygenase 4 Gene in Tepal Color Change in Lilium Brownii Var. Colchesteri. J. Jpn. Soc. Hort. Sci. 2012, 81, 366–373. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezende, F.M.; Rossi, M.; Furlan, C.M. Molecular Control of Flower Colour Change in Angiosperms. Plants 2025, 14, 2185. https://doi.org/10.3390/plants14142185
Rezende FM, Rossi M, Furlan CM. Molecular Control of Flower Colour Change in Angiosperms. Plants. 2025; 14(14):2185. https://doi.org/10.3390/plants14142185
Chicago/Turabian StyleRezende, Fernanda M., Magdalena Rossi, and Cláudia M. Furlan. 2025. "Molecular Control of Flower Colour Change in Angiosperms" Plants 14, no. 14: 2185. https://doi.org/10.3390/plants14142185
APA StyleRezende, F. M., Rossi, M., & Furlan, C. M. (2025). Molecular Control of Flower Colour Change in Angiosperms. Plants, 14(14), 2185. https://doi.org/10.3390/plants14142185