The Essential Oil from Cupules of Aiouea montana (Sw.) R. Rohde: Chemical and Enantioselective Analyses of an Important Source of (–)-α-Copaene
Abstract
1. Introduction
2. Results
2.1. Chemical Composition of the EO
2.2. Enantioselective Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Distillation and Sample Preparation
4.3. Qualitative (GC-MS) Chemical Analyses
4.4. Quantitative (GC-FID) Chemical Analyses
4.5. Enantioselective Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- UNEP-WCMC Megadiverse Countries. Available online: https://www.biodiversitya-z.org/content/megadiverse-countries (accessed on 28 April 2025).
- Malagón, O.; Ramírez, J.; Andrade, J.; Morocho, V.; Armijos, C.; Gilardoni, G. Phytochemistry and Ethnopharmacology of the Ecuadorian Flora. A Review. Nat. Prod. Commun. 2016, 11, 297. [Google Scholar] [CrossRef]
- Armijos, C.; Ramírez, J.; Salinas, M.; Vidari, G.; Suárez, A.I. Pharmacology and Phytochemistry of Ecuadorian Medicinal Plants: An Update and Perspectives. Pharmaceuticals 2021, 14, 1145. [Google Scholar] [CrossRef]
- Maldonado, Y.E.; Rodríguez, M.d.C.; Bustamante, M.E.; Cuenca, S.; Malagón, O.; Cumbicus, N.; Gilardoni, G. Gynoxys hallii Hieron., Gynoxys calyculisolvens Hieron., and Gynoxys azuayensis Cuatrec. essential oils—Chemical and enantioselective analyses of three unprecedented volatile fractions from the Ecuadorian biodiversity. Plants 2025, 14, 659. [Google Scholar] [CrossRef] [PubMed]
- Gilardoni, G.; Sgorbini, B.; Pavarino, M.; Cumbicus, N.; Romero, F.; Malagón, O. The leaf essential oil of Ecuadorian Ophryosporus peruvianus (J.F. Gmel.) R.M. King & H. Rob: Chemical composition, enantioselective analysis, and in vitro enzymatic inhibitory activity. J. Essent. Oil. Res. 2024, 36, 588–596. [Google Scholar]
- Maldonado, Y.E.; Malagón, O.; Cumbicus, N.; Gilardoni, G. A new leaf essential oil from the Andean species Gynoxys szyszylowiczii Hieron. of southern Ecuador: Chemical and enantioselective analyses. Sci. Rep. 2024, 14, 16360. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, Y.E.; Malagón, O.; Cumbicus, N.; Gilardoni, G. A new essential oil from the native Ecuadorian species Steiractinia sodiroi (Hieron.) S.F. Blake (Asteraceae): Chemical and enantioselective analyses. Sci. Rep. 2023, 13, 17180. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, Y.E.; Montalván, M.; Cumbicus, N.; Gilardoni, G. Chemical and Enantioselective Analyses of an Unprecedented Essential Oil from Ecuadorian Aiouea montana: A Natural Source of S-Methyl-O-2-phenylethyl Carbonothioate. ACS Omega 2024, 9, 26495–26502. [Google Scholar] [CrossRef]
- Gilardoni, G.; Montalván, M.; Vélez, M.; Malagón, O. Chemical and Enantioselective Analysis of the Essential Oils from Different Morphological Structures of Ocotea quixos (Lam.) Kosterm. Plants 2021, 10, 2171. [Google Scholar] [CrossRef]
- Renner, S.S. Aiouea. In Lauraceae I (Aniba and Aiouea). Flora Neotropica Monograph; Kubitzki, K., Renner, S.S., Eds.; New York Botanical Garden Press: New York, NY, USA, 1982; Volume 31, pp. 85–116. [Google Scholar]
- Salakhutdinov, N.F.; Volcho, K.P.; Yarovaya, O.I. Monoterpenes as a renewable source of biologically active compounds. Pure Appl. Chem. 2017, 89, 1105–1117. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Kim, T.H.; Thuy, N.T.; Shin, J.H.; Baek, H.H.; Lee, H.J. Aroma-active compounds of miniature beef steak plant (Mosla dianthera Maxim.). J. Agric. Food Chem. 2000, 48, 2877–2881. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, Q.; Fu, S.; Ma, X.; Xiao, H.; Liang, X. Chemical constituents of the essential oil of Asarum forbesii Maxim (Aristolochiaceae). Flavour Fragr. J. 2005, 20, 318–320. [Google Scholar] [CrossRef]
- Vichi, S.; Riu-Aumatell, M.; Mora-Pons, M.; Guadayol, J.M.; Buxaderas, S.; López-Tamames, E. Analytical, Nutritional and Clinical Methods. HS-SPME coupled to GC/MS for quality control of Juniperus communis L. berries used for gin aromatization. Food Chem. 2007, 105, 1748–1754. [Google Scholar] [CrossRef]
- Bianchi, F.; Cantoni, C.; Careri, M.; Chiesa, L.; Musci, M.; Pinna, A. Characterization of the aromatic profile for the authentication and differentiation of typical Italian dry-sausages. Talanta 2007, 72, 1552–1563. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Finn, C.; Qian, M.C. Impact of Growing Environment on Chickasaw Blackberry (Rubus L.) Aroma Evaluated by Gas Chromatography Olfactometry Dilution Analysis. J. Agric. Food Chem. 2005, 53, 3563–3571. [Google Scholar] [CrossRef] [PubMed]
- Gurbuz, O.; Rouseff, J.M.; Rouseff, R.L. Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography—Olfactometry and gas chromatography—Mass spectrometry. J. Agric. Food Chem. 2006, 54, 3990–3996. [Google Scholar] [CrossRef] [PubMed]
- Osorio, C.; Alarcon, M.; Moreno, C.; Bonilla, A.; Barrios, J.; Garzon, C.; Duque, C. Characterization of Odor-Active Volatiles in Champa (Campomanesia lineatifolia R.P.). J. Agric. Food Chem. 2006, 54, 509–516. [Google Scholar] [CrossRef]
- Marzouk, Z.; Mansour, H.B.; Chraief, I.; Mosrati, R.; Cheriaa, J.; Neffati, A.; Marzouk, B.; Sfari, M.; Boukef, K.; Barillies, D.; et al. Chemical composition, antibacterial and antimutagenic activities of four populations of Rosmarinus officinalis L. oils from Tunisia. J. Food Agric. Environ. 2006, 4, 89–94. [Google Scholar]
- Pala-Paul, J.; Brophy, J.J.; Perez-Alonso, M.J.; Usano, J.; Soria, S.C. Essential oil composition of the different parts of Eryngium corniculatum Lam. (Apiaceae) from Spain. J. Chromatogr. A 2007, 1175, 289–293. [Google Scholar] [CrossRef]
- Flamini, G.; Tebano, M.; Cioni, P.L.; Bagci, Y.; Dural, H.; Ertugrul, K.; Uysal, T.; Savran, A. A multivariate statistical approach to Centaurea classification using essential oil composition data of some species from Turkey. Pl. Syst. Evol. 2006, 261, 217–228. [Google Scholar] [CrossRef]
- Martins, F.T.; Santos, M.H.; Polo, M.; Barbosa, L.C.A. Effects of the interactions among macronutrients, plant age and photoperiod in the composition of Hyptis suaveolens (L.) Poit essential oil from Alfenas (MG), Brazil. Flavour Fragr. J. 2007, 22, 123–129. [Google Scholar] [CrossRef]
- Hallier, A.; Prost, C.; Serot, T. Influence in rearing conditions on the volatile compounds of cooked fillets of Silurus glanis (European catfish). J. Agric. Food Chem. 2005, 53, 7204–7211. [Google Scholar] [CrossRef]
- Choi, H.-S.; Sawamura, M. Composition of the essential oil of Citrus tamurana Hort. ex Tanaka (Hyuganatsu). J. Agric. Food Chem. 2000, 48, 4868–4873. [Google Scholar] [CrossRef]
- Capetanos, C.; Saroglou, V.; Marin, P.D.; Simic, A.; Skaltsa, H.D. Essential oil alysis of two endemic Eringium species from Serbia. J. Serb. Chem. Soc. 2007, 72, 961–965. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. J. Sep. Sci. 2007, 39, 563–572. [Google Scholar] [CrossRef]
- Wedge, D.E.; Klun, J.A.; Tabanca, N.; Demirci, B.; Ozek, T.; Baser, K.H.C.; Liu, Z.; Zhang, S.; Cantrell, C.L.; Zhang, J. Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. J. Agric. Food Chem. 2009, 57, 464–470. [Google Scholar] [CrossRef]
- Rocha, S.M.; Coelho, E.; Zrostlikova, J.; Delgadillo, I.; Coimbra, M.A. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability. J. Chromatogr. A 2007, 1161, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Ferreira, V.; Escudero, A.; Cacho, J. Prediction of the wine sensory properties related to grape variety from dynamic-headspace gas chromatography-olfactometry data. J. Agric. Food Chem. 2005, 53, 5682–5690. [Google Scholar] [CrossRef] [PubMed]
- Moio, L.; Piombino, P.; Addeo, F. Odour-impact compounds of Gorgonzola cheese. J. Dairy Res. 2000, 67, 273–285. [Google Scholar] [CrossRef]
- Coen, M.; Engel, R.; Nahrstedt, A. Chavicol β-D-glucoside, a phenylpropanoid heteroside, benzyl-β-D-glucoside and glycosidically bound volatiles from subspecies of Cedronella canariensis. Phytochemistry 1995, 40, 149–155. [Google Scholar] [CrossRef]
- Baccouri, B.; Ben Temime, S.; Campeol, E.; Cioni, P.L.; Daoud, D.; Zarrouk, M. Application of solid-phase microextraction to the analysis of volatile compounds in virgin olive oils from five new cultivars. Food Chem. 2007, 102, 850–856. [Google Scholar] [CrossRef]
- Liu, J.M.; Nan, P.; Tsering, Q.; Tsering, T.; Bai, Z.K.; Wang, L.; Liu, Z.J.; Zhong, Y. Volatile constituents of the leaves and flowers of Salvia przewalskii Maxim. from Tibet. Flavour Fragr. J. 2006, 21, 435–438. [Google Scholar] [CrossRef]
- Yu, E.J.; Kim, T.H.; Kim, K.H.; Lee, H.J. Characterization of aroma-active compounds of Abies nephrolepis (Khingan fir) needles using aroma extract dilution analysis. Flavour Fragr. J. 2004, 19, 74–79. [Google Scholar] [CrossRef]
- Sati, S.; Mathela, C.S. Essential oil composition of Valeriana hardwickii var. arnottiana from the Himalayas. Flavour Fragr. J. 2005, 20, 299–301. [Google Scholar] [CrossRef]
- Rezazadeh, S.; Hamedani, M.P.; Dowlatabadi, R.; Yazdani, D.; Shafiee, A. Chemical composition of the essential oils of Stachys schtschegleevii Sosn. and Stachys balansae Boiss Kotschy from Iran. Flavour Fragr. J. 2006, 21, 290–293. [Google Scholar] [CrossRef]
- Flamini, G.; Bader, A.; Cioni, P.L.; Katbeh-Bader, A.; Morelli, I. Composition of the essential oil of leaves, galls, and ripe and unripe fruits of Jordian Pistacia palaestina Boiss. J. Agric. Food Chem. 2004, 52, 572–576. [Google Scholar] [CrossRef]
- Pet’ka, J.; Mocák, J.; Farkas, P.; Balla, B.; Kovác, M. Classification of Slovak varietal white wines by volatile compounds. J. Sci. Food Agric. 2001, 81, 1533–1539. [Google Scholar] [CrossRef]
- Mardarowicz, M.; Wianowska, D.; Dawidowicz, A.L.; Sawicki, R. The influence of sample treatment on SPME extracts from conifers. I. Comparison of terpene composition in Engelmann Spruce (Picea engelmanii) using hydrodistillation, SPME and PLE. Ann. Univ. Mariae Curie-Sklodowska Lub. Pol. 2004, 59, 25–42. [Google Scholar]
- Le Quere, J.-L.; Latrasse, A. Composition of the Essential Oils of Blackcurrant Buds (Ribes nigrum L.). J. Agric. Food Chem. 1990, 38, 3–10. [Google Scholar] [CrossRef]
- Gauvin, A.; Lecomte, H.; Smadja, J. Comparative investigations of the essential oils of two scented geranium (Pelargonium spp.) cultivars grown on Reunion Island. Flavour Fragr. J. 2004, 19, 455–460. [Google Scholar] [CrossRef]
- Paolini, J.; Costa, J.; Bernardini, A. Analysis of the essential oil from aerial parts of Eupatorium cannabinum subsp. corsicum (L.) by gas chromatography with electron impact and chemical ionization mass spectrometry. J. Chromatogr. A 2005, 1076, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, J.-F.; Tomi, F.; Bernardini, A.-F.; Casanova, J. Composition and chemical variability of the bark oil of Cedrelopsis grevei H. Baillon from Madagascar. Flavour Fragr. J. 2003, 18, 532–538. [Google Scholar] [CrossRef]
- Christoph, F. Chemische Zuzammensetzung und Antimikrobielle Eigenschaften der ätherischen Öle von Leptospermum Scoparium J.R. et G. Forst. und Anderer Teebaumöle der Gattungen Kunzea, Leptospermum und Melaleuca Unter Besonderer Berücksichtigung von Handelsölen. Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 2001. [Google Scholar]
- Vinogradov, B.A. Production, Composition, Properties and Application of Essential Oils. Available online: http://viness.narod.ru (accessed on 14 June 2025).
- Calyecac-cortero, H.G.; Cibrian-Tovar, J.; Soto-Hernandez, M.; Garcia-Velasco, R. Aislamento e identificacion de volatiles de Physalis philadelphica LAM. (Isolation and identification of Physalis philadelphica LAM. volatiles). Agrociencia 2007, 41, 337–346. [Google Scholar]
- Beck, J.J.; Higbee, B.S.; Marrill, G.B.; Roitman, J.N. Comparison of volatile emissions from undamaged and mechanically damaged almonds. J. Sci. Food Argic. 2008, 88, 1363–1368. [Google Scholar] [CrossRef]
- Wong, K.C.; Lim, T.B.; Ali, D.M.H. Essential oil of Homalomena sagittifolia Jungh. Flavour Fragr. J. 2006, 21, 786–788. [Google Scholar] [CrossRef]
- Cavalli, J.-F.; Ranarivelo, L.; Ratsimbason, M.; Bernardini, A.-F.; Casanova, J. Constituents of the essential oil of six Helichrysum species from Madagascar. Flavour Fragr. J. 2001, 16, 253–256. [Google Scholar] [CrossRef]
- Stashenko, E.E.; Jaramillo, B.E.; Martínez, J.R. Comparison of different extraction methods for the analysis of volatile secondary metabolites of Lippia alba (Mill.) N.E. Brown, grown in Colombia, and evaluation of its in vitro antioxidant activity. J. Chromatogr. A 2004, 1025, 93–103. [Google Scholar] [CrossRef]
- Gauvin, A.; Smadja, J. Essential oil composition of four Psiadia species from Reunion Island: A chemotaxonomic study. Biochem. Syst. Ecol. 2005, 33, 705–714. [Google Scholar] [CrossRef]
- Bortolomeazzi, R.; Berno, P.; Pizzale, L.; Conte, L.S. Sesquiterpene, alkene, and alkane hydrocarbons in virgin olive oils of different varieties and geographical origins. J. Agric. Food Chem. 2001, 49, 3278–3283. [Google Scholar] [CrossRef] [PubMed]
- Bisio, A.; Ciarallo, G.; Romussi, G.; Fontana, N.; Mascolo, N.; Capasso, R.; Biscardi, D. Chemical Composition of Essential Oils from some Salvia species. Phytother. Res. 1998, 12, s117–s120. [Google Scholar] [CrossRef]
- Paniandy, J.-C.; Chane-Ming, J.; Pierbattesti, J.-C. Chemical Composition of the Essential Oil and Headspace Solid-Phase Microextraction of the Guava Fruit (Psidium guajava L.). J. Essent. Oil Res. 2000, 12, 153–158. [Google Scholar] [CrossRef]
- Rout, P.K.; Rao, Y.R.; Sree, A.; Naik, S.N. Composition of essential oil, concrete, absolute, wax and headspace volatiles of Murrarya paniculata (Linn.) Jack flowers. Flavour Fragr. J. 2007, 22, 352–357. [Google Scholar] [CrossRef]
- Bassole, I.H.N.; Ouattara, A.S.; Nebie, R.; Ouattara, C.A.T.; Kabore, Z.I.; Traore, S.A. Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochemistry 2003, 62, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Cozzani, S.; Muselli, A.; Desjobert, J.-M.; Bernardini, A.-F.; Tomi, F.; Casanova, J. Chemical composition of essential oil of Teucrium polium subsp. capitatum (L.) from Corsica. Flavour Fragr. J. 2005, 20, 436–441. [Google Scholar] [CrossRef]
- Demetzos, C.; Angelopoulou, D.; Perdetzoglou, D. A comparative study of the essential oils of Cistus salviifolius in several populations of Crete (Greece). Biochem. Syst. Ecol. 2002, 30, 651–665. [Google Scholar]
- Shellie, R.; Mondello, L.; Marriott, P.; Dugo, G. Characterisation of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2002, 970, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Javidnia, K.; Miri, R.; Kamalinejad, M.; Khazraii, H. Chemical composition of the volatile oil of aerial parts of Valeriana sisymbriifolia Vahl. grown in Iran. Flavour Fragr. J. 2006, 21, 516–518. [Google Scholar] [CrossRef]
- Shellie, R.; Marriott, P.; Zappia, G.; Mondello, L.; Dugo, G. Interactive use of linear retention indices on polar and apolar columns with an MS-Library for reliable characterization of Australian tea tree and other Melaleuca sp. oils. J. Essent. Oil Res. 2003, 15, 305–312. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Liu, J.M.; Zhang, X.Y.; Liu, Z.J.; Tsering, T.; Zhong, Y.; Nan, P. Chemical composition of the volatiles of three wild Bergenia species from western China. Flavour Fragr. J. 2006, 21, 431–434. [Google Scholar] [CrossRef]
- Ferhat, M.A.; Meklati, B.Y.; Chemat, F. Comparison of different isolation methods of essential oil from Citrus fruits: Cold pressing, hydrodistillation and microwave dry distillation. Flavour Fragr. J. 2007, 22, 494–504. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Özek, T.; Kirimer, N.; Deliorman, D.; Ergun, F. Composition of the essential oils of Galium aparine L. and Galium odoratum (L.) Scop. from Turkey. J. Essent. Oil Res. 2004, 16, 305–307. [Google Scholar] [CrossRef]
- Radulovic, N.; Lazarevic, J.; Ristic, N.; Palic, R. Chemotaxonomic significance of the volatiles in the genus Stachys (Lamiaceae): Essential oil composition of four Balkan Stachys species. Biochem. Syst. Ecol. 2007, 35, 196–208. [Google Scholar] [CrossRef]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2009. [Google Scholar]
- Semenzato, G.; Del Duca, S.; Vassallo, A.; Zaccaroni, M.; Mucci, N.; Greco, C.; Padula, A.; Castronovo, L.M.; Chioccioli, S.; Pistelli, L.; et al. Exploring the nexus between the composition of essential oil and the bacterial phytobiome associated with different compartments of the medicinal plants Origanum vulgare ssp. vulgare, O. vulgare ssp. hirtum, and O. heracleoticum. Ind. Crops Prod. 2023, 191, 115997. [Google Scholar] [CrossRef]
- Monteiro, G.M.; Carvalho, E.E.N.; do Lago, R.C.; da Silva, L.G.M.; Souza, L.R.; da Costa, C.A.R.; Boas, E.V.B.V. Compositional analysis of baru (Dipteryx alata Vogel) pulp highlighting its industrial potential. Food Res. Int. 2025, 201, 115548. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, O.A.; Ayoub, I.M.; Eldahshan, O.A.; Singab, A.N.B. The impact of seasonal variation on the composition of the volatile oil of Polyalthia suberosa (Roxb.) Thwaites leaves and evaluation of its acetylcholinesterase inhibitory activity. BMC Complement. Med. Ther. 2024, 24, 159. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yanga, Y.; Dong, H.; Zhu, Y.; Feng, W.; Wu, H. Essential oil from Cinnamomum cassia Presl bark regulates macrophage polarization and ameliorates lipopolysaccharide-induced acute lung injury through TLR4/MyD88/NF-κB pathway. Phytomedicine 2024, 129, 155651. [Google Scholar] [CrossRef] [PubMed]
- Romdhane, O.B.; Baccari, W.; Saidi, I.; Flamini, G.; Ascrizzi, R.; Chaieb, I.; Harrath, A.H.; Jannet, H.B. Chemical Composition, Repellent, and Phytotoxic Potentials of the Fractionated Resin Essential Oil from Araucaria heterophylla Growing in Tunisia. Chem. Biodivers. 2024, 21, e202400185. [Google Scholar] [CrossRef]
- Anatachodwanit, A.; Promnart, P.; Deachathai, S.; Maneerat, T.; Charoensup, R.; Duangyod, T.; Laphookhieo, S. Chemical Composition of the Essential Oils from Goniothalamus tortilipetalus M.R. Hend. and Their Antioxidant and Antibacterial Activities. Chemistry 2024, 6, 264. [Google Scholar] [CrossRef]
- Jacobson, M.; Uebel, E.C.; Lusby, W.R.; Waters, R.M. Optical Isomers of α-Copaene Derived from Several Plant Sources. J. Agric. Food Chem. 1987, 35, 798. [Google Scholar] [CrossRef]
- Nishida, R.; Shelly, T.E.; Whittier, T.S.; Kaneshiro, K.Y. α-Copaene, A Potential Rendezvous Cue for the Mediterranean Fruit Fly, Ceratitis capitata? J. Chem. Ecol. 2000, 26, 87. [Google Scholar] [CrossRef]
- George, G.; Shah, F.M.; Ali, A.; Guddeti, D.K.; Alowaifi, N.; Lee, J.; Chen, J.; Khan, I.A.; Li, X.C. Stereoselective Oxidation of α-Copaene, a Fire Ant Repellent Sesquiterpene from the Essential Oil of Dipterocarpus turbinatus. J. Nat. Prod. 2024, 87, 2302. [Google Scholar] [CrossRef]
- Lima, D.F.; Brandão, M.S.; Moura, J.B.; Leitão, J.M.R.S.; Carvalho, F.A.A.; Miúra, L.M.C.V.; Leite, J.R.S.A.; Sousa, D.P.; Almeida, F.R.C. Antinociceptive Activity of the Monoterpene α-Phellandrene in Rodents: Possible Mechanisms of Action. J. Pharm. Pharmacol. 2012, 64, 283. [Google Scholar] [CrossRef] [PubMed]
- Piccinelli, A.C.; Santos, J.A.; Konkiewitz, E.C.; Oesterreich, S.A.; Nazari-Formagio, A.S.; Croda, J.; Ziff, E.B.; Leite-Kassuya, C.A. Antihyperalgesic and Antidepressive Actions of (R)-(+)-Limonene, α-Phellandrene, and Essential Oil from Schinus terebinthifolius Fruits in a Neuropathic Pain Model. Nutr. Neurosci. 2014, 18, 217. [Google Scholar] [CrossRef]
- Lin, J.J.; Lin, J.H.; Hsu, S.C.; Weng, S.W.; Huang, Y.P.; Tang, N.Y.; Lin, J.G.; Chung, J.G. Alpha-phellandrene Promotes Immune Responses in Normal Mice Through Enhancing Macrophage Phagocytosis and Natural Killer Cell Activities. Vivo 2013, 27, 809. [Google Scholar]
- Lin, J.J.; Wu, C.C.; Hsu, S.C.; Weng, S.W.; Ma, Y.S.; Huang, Y.P.; Lin, J.G.; Chung, J.G. Alpha-Phellandrene-Induced DNA Damage and Affect DNA Repair Protein Expression in WEHI-3 Murine Leukemia Cells In Vitro. Environ. Toxicol. 2015, 30, 1322. [Google Scholar] [CrossRef]
- Hsieh, L.C.; Hsieh, S.L.; Chen, C.T.; Chung, J.G.; Wang, J.J.; Wu, C.C. Induction of α-Phellandrene on Autophagy in Human Liver Tumor Cells. Am. J. Chin. Med. 2015, 43, 1. [Google Scholar] [CrossRef] [PubMed]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef]
- Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective Effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef]
- Allenspach, M.; Steuer, C. α-Pinene: A Never-Ending Story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef]
- Maldonado, Y.E.; Malagón, O.; Cumbicus, N.; Gilardoni, G. A New Essential Oil from the Leaves of Gynoxys rugulosa Muschl. (Asteraceae) Growing in Southern Ecuador: Chemical and Enantioselective Analyses. Plants 2023, 12, 849. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Gilardoni, G.; Matute, Y.; Ramírez, J. Chemical and Enantioselective Analysis of the Leaf Essential Oil from Piper coruscans Kunth (Piperaceae), a Costal and Amazonian Native Species of Ecuador. Plants 2020, 9, 791. [Google Scholar] [CrossRef] [PubMed]
- De Saint Laumer, J.Y.; Cicchetti, E.; Merle, P.; Egger, J.; Chaintreau, A. Quantification in Gas Chromatography: Prediction of Flame Ionization Detector Response Factors from Combustion Enthalpies and Molecular Structures. Anal. Chem. 2010, 82, 6457–6462. [Google Scholar] [CrossRef] [PubMed]
- Tissot, E.; Rochat, S.; Debonneville, C.; Chaintreau, A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012, 27, 290–296. [Google Scholar] [CrossRef]
N. | Compounds | 5% Phenyl Methyl Polysiloxane | Polyethylene Glycol | Average % | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Calc. | Ref. | % | σ | Lit. | Calc. | Ref. | % | σ | Lit. | |||
1 | α-thujene | 926 | 924 | trace | - | [13] | 1022 | 1022 | 0.1 | 0.01 | [14] | 0.1 |
2 | α-pinene | 933 | 932 | 4.8 | 1.05 | [13] | 1018 | 1018 | 4.2 | 0.69 | [15] | 4.5 |
3 | α-fenchene | 948 | 945 | trace | - | [13] | 1050 | 1050 | trace | - | [16] | trace |
4 | camphene | 950 | 946 | 0.6 | 0.53 | [13] | 1058 | 1057 | 0.7 | 0.42 | [17] | 0.7 |
5 | β-pinene | 978 | 974 | 1.6 | 0.55 | [13] | 1106 | 1106 | 1.3 | 0.50 | [18] | 1.5 |
6 | myrcene | 992 | 988 | 0.6 | 0.40 | [13] | 1166 | 1166 | 17.9 | 1.49 | [19] | 0.6 |
7 | α-phellandrene | 1010 | 1002 | 18.7 | 1.60 | [13] | 1163 | 1162 | [20] | 18.7 | ||
8 | α-terpinene | 1019 | 1014 | 0.5 | 0.06 | [13] | 1176 | 1176 | 0.4 | 0.05 | [21] | 0.4 |
9 | o-cymene | 1029 | 1022 | 0.7 | 0.08 | [13] | 1269 | 1268 | 0.6 | 0.18 | [22] | 0.7 |
10 | limonene | 1032 | 1024 | 0.6 | 0.05 | [13] | 1196 | 1196 | 0.5 | 0.04 | [20] | 0.6 |
11 | β-phellandrene | 1033 | 1025 | 0.9 | 0.08 | [13] | 1205 | 1205 | 0.8 | 0.07 | [23] | 0.9 |
12 | 1,8-cineole | 1036 | 1036 | [24] | 1202 | 1200 | [25] | |||||
13 | (Z)-β-ocimene | 1041 | 1032 | 0.1 | 0.00 | [13] | 1243 | 1243 | 0.1 | 0.01 | [26] | 0.1 |
14 | (E)-β-ocimene | 1051 | 1044 | 0.9 | 0.07 | [13] | 1255 | 1255 | 0.7 | 0.13 | [23] | 0.8 |
15 | γ-terpinene | 1061 | 1054 | 0.3 | 0.02 | [13] | 1243 | 1243 | 0.2 | 0.02 | [27] | 0.3 |
16 | terpinolene | 1084 | 1086 | 0.2 | 0.02 | [13] | 1275 | 1276 | 0.1 | 0.01 | [28] | 0.2 |
17 | p-mentha-2,4(8)-diene | 1088 | 1085 | 2.0 | 0.35 | [13] | 1280 | 1286 | 1.8 | 0.30 | [29] | 1.9 |
18 | linalool | 1109 | 1109 | 0.3 | 0.02 | [30] | 1562 | 1562 | 0.3 | 0.01 | [31] | 0.3 |
19 | phenyl ethyl alcohol | 1128 | 1127 | 0.3 | 0.19 | [32] | 1923 | 1923 | 0.3 | 0.19 | [33] | 0.3 |
20 | cis-p-menth-2-en-1-ol | 1133 | 1129 | 0.1 | 0.10 | [34] | 1566 | - | 0.2 | 0.03 | § | 0.2 |
21 | trans-p-menth-2-en-1-ol | 1152 | 1148 | 0.1 | 0.02 | [35] | 1635 | - | 0.2 | 0.03 | § | 0.2 |
22 | camphene hydrate | 1164 | 1157 | trace | - | [36] | 1600 | - | trace | - | § | trace |
23 | borneol | 1182 | 1179 | 0.1 | 0.01 | [37] | 1536 | - | 0.1 | 0.10 | § | 0.1 |
24 | terpinen-4-ol | 1189 | 1189 | trace | - | [38] | 1607 | 1607 | trace | - | [39] | trace |
25 | p-cymen-9-ol | 1201 | 1204 | trace | - | [13] | 1863 | - | 0.1 | 0.01 | § | 0.1 |
26 | α-terpineol | 1206 | 1186 | 0.2 | 0.01 | [13] | 1702 | 1700 | 0.2 | 0.05 | [40] | 0.2 |
27 | trans-piperitol | 1220 | 1207 | 0.2 | 0.02 | [41] | 1682 | 1679 | 0.7 | 0.10 | [42] | 0.5 |
28 | carvotanacetone | 1261 | 1256 | 0.1 | 0.01 | [43] | 1672 | 1669 | 0.3 | 0.02 | [44] | 0.2 |
29 | α-cubebene | 1345 | 1348 | 0.4 | 0.03 | [13] | 1450 | 1450 | 0.5 | 0.01 | [45] | 0.5 |
30 | α-copaene | 1377 | 1373 | 19.8 | 1.28 | [13] | 1483 | 1482 | 20.7 | 1.86 | [46] | 20.3 |
31 | 2-epi-α-funebrene | 1387 | 1380 | 0.1 | 0.05 | [13] | 1535 | - | 0.2 | 0.02 | § | 0.2 |
32 | β-elemene | 1390 | 1389 | trace | - | [13] | 2004 | - | trace | - | § | trace |
33 | β-isocomene | 1396 | 1407 | 0.4 | 0.69 | [13] | 1457 | - | 0.3 | 0.18 | § | 0.4 |
34 | sibirene | 1405 | 1400 | 0.1 | 0.01 | [13] | 1621 | - | 0.1 | 0.01 | § | 0.1 |
35 | longifolene | 1410 | 1407 | trace | - | [13] | 1623 | 1623 | trace | - | [47] | trace |
36 | (E)-β-caryophyllene | 1421 | 1417 | 6.5 | 0.51 | [13] | 1587 | 1587 | 5.7 | 3.21 | [48] | 6.1 |
37 | β-copaene | 1430 | 1430 | 1.0 | 0.75 | [13] | 1651 | - | 0.5 | 0.05 | § | 0.5 |
38 | α-trans-bergamotene | 1433 | 1432 | [13] | 1582 | 1582 | 0.7 | 0.19 | [49] | 0.7 | ||
39 | aromadendrene | 1439 | 1439 | 0.2 | 0.02 | [13] | 1595 | - | 0.2 | 0.07 | § | 0.2 |
40 | (Z)-β-farnesene | 1442 | 1440 | trace | - | [13] | 1566 | - | 0.2 | 0.02 | § | 0.2 |
41 | 2-phenyl ethyl butanoate | 1445 | 1439 | 0.1 | 0.01 | [13] | 2014 | - | trace | - | § | 0.1 |
42 | trans-muurola-3,5-diene | 1450 | 1451 | trace | - | [13] | 1602 | - | 0.1 | 0.01 | § | 0.1 |
43 | α-humulene | 1457 | 1452 | 1.0 | 0.08 | [13] | 1657 | - | 1.1 | 0.24 | § | 1.1 |
44 | 9-epi-(E)-caryophyllene | 1461 | 1464 | 0.1 | 0.01 | [13] | 1604 | - | trace | - | § | 0.1 |
45 | trans-cadina-1(6),4-diene | 1473 | 1475 | 0.5 | 0.05 | [13] | 1651 | - | 0.4 | 0.04 | § | 0.5 |
46 | γ-muurolene | 1477 | 1478 | 0.5 | 0.04 | [13] | 1680 | 1680 | 0.5 | 0.04 | [50] | 0.5 |
47 | γ-curcumene | 1479 | 1481 | 0.1 | 0.00 | [13] | 1687 | 1685 | 0.1 | 0.08 | [51] | 0.1 |
48 | trans-muurola-4(14),5-diene | 1483 | 1493 | 0.1 | 0.01 | [52] | 1697 | 1706 | 0.2 | 0.04 | [46] | 0.2 |
49 | β-selinene | 1491 | 1489 | 1.6 | 0.34 | [13] | 1706 | 1706 | 1.5 | 0.56 | [53] | 1.6 |
50 | α-zingiberene | 1494 | 1493 | [13] | 1659 | - | § | |||||
51 | α-selinene | 1498 | 1498 | 0.9 | 0.08 | [13] | 1711 | 1741 | 0.5 | 0.35 | [53] | 0.7 |
52 | α-muurolene | 1499 | 1500 | [13] | 1717 | - | § | |||||
53 | δ-amorphene | 1503 | 1511 | 0.1 | 0.02 | [13] | 1752 | - | 0.9 | 1.70 | § | 0.5 |
54 | isodaucene | 1508 | 1500 | 0.2 | 0.13 | [13] | 1755 | - | trace | - | § | trace |
55 | β-curcumene | 1510 | 1514 | [13] | 1739 | 1743 | 0.3 | 0.02 | [54] | 0.3 | ||
56 | γ-cadinene | 1514 | 1513 | 0.1 | 0.01 | [13] | 1700 | - | trace | - | § | 0.1 |
57 | δ-cadinene | 1520 | 1522 | 2.2 | 0.31 | [13] | 1752 | 1752 | 3.0 | 0.51 | [23] | 2.6 |
58 | zonarene | 1524 | 1528 | 0.1 | 0.15 | [13] | 1749 | - | trace | - | § | 0.1 |
59 | S-methyl-O-2-phenylethyl carbonothioate | 1539 | 1538 | 23.1 | 5.81 | [9] | 2223 | - | 22.5 | 4.44 | § | 23.1 |
60 | α-cadinene | 1543 | 1537 | 0.1 | 0.01 | [13] | 2227 | - | 0.1 | 0.01 | § | 0.1 |
61 | germacrene B | 1561 | 1559 | trace | - | [13] | 1713 | - | 0.2 | 0.07 | § | 0.2 |
62 | caryolan-8-ol | 1581 | 1571 | 0.1 | 0.01 | [13] | 2047 | - | 0.2 | 0.02 | § | 0.2 |
63 | spathulenol | 1583 | 1577 | [13] | 2127 | 2128 | [28] | |||||
64 | caryophyllene oxide | 1587 | 1582 | trace | - | [13] | 1970 | 1970 | trace | - | [55] | trace |
65 | gleenol | 1592 | 1586 | 0.2 | 0.01 | [13] | 2038 | 2035 | 0.3 | 0.04 | [56] | 0.3 |
66 | 2-phenyl ethyl tiglate | 1595 | 1590 | [57] | 2196 | 2190 | [58] | |||||
67 | guaiol | 1606 | 1600 | trace | - | [13] | 2065 | 2064 | 0.1 | 0.01 | [59] | 0.1 |
68 | γ-eudesmol | 1638 | 1630 | 0.1 | 0.01 | [60] | 2097 | - | 0.1 | 0.01 | § | 0.1 |
69 | β-eudesmol | 1641 | 1649 | trace | - | [13] | 2104 | - | trace | - | § | trace |
70 | 1-epi-cubenol | 1645 | 1638 | 0.3 | 0.07 | [61] | 2059 | 2060 | 0.4 | 0.02 | [51] | 0.4 |
71 | allo-aromadendrene epoxide | 1654 | 1645 | trace | - | [62] | 2152 | - | trace | - | § | trace |
72 | cubenol | 1662 | 1651 | trace | - | [63] | 2052 | 2052 | 0.2 | 0.02 | [46] | 0.2 |
73 | α-muurolol (=torreyol) | 1664 | 1668 | 0.1 | 0.01 | [64] | 2178 | 2178 | 0.4 | 0.07 | [65] | 0.3 |
74 | α-cadinol | 1667 | 1666 | [42] | 2191 | 2191 | [54] | |||||
75 | 7-epi-α-eudesmol | 1670 | 1662 | 0.1 | 0.01 | [13] | 2207 | 2205 | trace | - | [62] | 0.1 |
76 | intermedeol | 1682 | 1674 | 0.2 | 0.01 | [43] | 2261 | 2264 | 0.1 | 0.01 | [66] | 0.2 |
77 | epi-β-bisabolol | 1690 | 1670 | trace | - | [13] | 2163 | - | 0.1 | 0.01 | § | 0.1 |
78 | α-bisabolol | 1700 | 1699 | 0.1 | 0.01 | [67] | 2076 | - | trace | - | § | 0.1 |
79 | epi-α-bisabolol | 1701 | 1683 | trace | - | [13] | 2324 | - | trace | - | § | trace |
80 | eudesm-7(11)-en-4-ol | 1713 | 1709 | trace | - | [44] | 2258 | - | trace | - | § | trace |
81 | (2Z,6E)-farnesol | 1731 | 1722 | trace | - | [13] | 2252 | - | trace | - | § | trace |
monoterpenes | 32.5 | 29.4 | 32.0 | |||||||||
oxygenated monoterpenoids | 1.1 | 2.1 | 1.8 | |||||||||
sesquiterpenes | 36.1 | 38.0 | 38.0 | |||||||||
oxygenated sesquiterpenoids | 1.2 | 1.9 | 2.1 | |||||||||
others | 23.5 | 22.8 | 23.5 | |||||||||
total | 94.4 | 94.2 | 97.4 |
Chiral Selector | Ion Integration | Enantiomer | LRI | E.D. (%) | e.e. (%) |
---|---|---|---|---|---|
DET | TIC | (1S,5R)-(+)-α-thujene | 915 | 21.1 | 57.8 |
DET | TIC | (1R,5S)-(−)-α-thujene | 919 | 78.9 | |
DAC | TIC | (1S,5S)-(−)-α-pinene | 914 | 100.0 | 100.0 |
DAC | TIC | (1R,5R)-(+)-α-pinene | 916 | - | |
DET | TIC | (1R,4S)-(−)-camphene | 922 | 40.0 | 20.0 |
DET | TIC | (1S,4R)-(+)-camphene | 938 | 60.0 | |
DET | TIC | (1R,5R)-(+)-β-pinene | 950 | 93.0 | 86.0 |
DET | TIC | (1S,5S)-(−)-β-pinene | 961 | 7.0 | |
DET | TIC | (R)-(−)-α-phellandrene | 1018 | 14.7 | 70.6 |
DET | TIC | (S)-(+)-α-phellandrene | 1021 | 85.3 | |
DET | 68 (m/z) | (S)-(−)-limonene | 1060 | 33.6 | 32.8 |
DET | 68 (m/z) | (R)-(+)-limonene | 1076 | 66.4 | |
DET | TIC | (R)-(−)-β-phellandrene | 1053 | 32.5 | 35.0 |
DET | TIC | (S)-(+)-β-phellandrene | 1064 | 67.5 | |
DET | 71 (m/z) | (R)-(−)-linalool | 1182 | 98.1 | 96.2 |
DET | 71 (m/z) | (S)-(+)-linalool | 1196 | 1.9 | |
DET | 95 (m/z) | (1S,2R,4S)-(−)-borneol | 1205 | 9.2 | 81.6 |
DET | 95 (m/z) | (1R,2S,4R)-(+)-borneol | 1213 | 90.8 | |
DAC | 71 (m/z) | (R)-(−)-terpinen-4-ol | 1291 | 45.7 | 8.6 |
DAC | 71 (m/z) | (S)-(+)-terpinen-4-ol | 1297 | 54.3 | |
DET | 59 (m/z) | (S)-(−)-α-terpineol | 1302 | 94.1 | 88.2 |
DET | 59 (m/z) | (R)-(+)-α-terpineol | 1314 | 5.9 | |
DET | TIC | (1R,2S,6S,7S,8S)-(−)-α-copaene | 1322 | 100.0 | 100.0 |
DET | TIC | (1S,2R,6R,7R,8R)-(+)-α-copaene | 1324 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cueva, C.F.; Maldonado, Y.E.; Cumbicus, N.; Gilardoni, G. The Essential Oil from Cupules of Aiouea montana (Sw.) R. Rohde: Chemical and Enantioselective Analyses of an Important Source of (–)-α-Copaene. Plants 2025, 14, 2474. https://doi.org/10.3390/plants14162474
Cueva CF, Maldonado YE, Cumbicus N, Gilardoni G. The Essential Oil from Cupules of Aiouea montana (Sw.) R. Rohde: Chemical and Enantioselective Analyses of an Important Source of (–)-α-Copaene. Plants. 2025; 14(16):2474. https://doi.org/10.3390/plants14162474
Chicago/Turabian StyleCueva, Crisol F., Yessenia E. Maldonado, Nixon Cumbicus, and Gianluca Gilardoni. 2025. "The Essential Oil from Cupules of Aiouea montana (Sw.) R. Rohde: Chemical and Enantioselective Analyses of an Important Source of (–)-α-Copaene" Plants 14, no. 16: 2474. https://doi.org/10.3390/plants14162474
APA StyleCueva, C. F., Maldonado, Y. E., Cumbicus, N., & Gilardoni, G. (2025). The Essential Oil from Cupules of Aiouea montana (Sw.) R. Rohde: Chemical and Enantioselective Analyses of an Important Source of (–)-α-Copaene. Plants, 14(16), 2474. https://doi.org/10.3390/plants14162474