A Genome-Wide Modeling and Characterization Study of Pleckstrin Homology Domains in Chlamydomonas reinhardtii
Abstract
1. Introduction
2. Results
2.1. Protein Sequence Analysis and Cellular Localization Predictions
2.2. Orthologs and Phylogenetic Analysis
2.3. Homology Models
2.4. Docking Analysis for Phosphoinositide Binding
3. Discussion
4. Materials and Methods
4.1. Sequence Analysis
4.2. Domain Architecture Analysis
4.3. Secondary Structure Prediction (SSP)
4.4. Three-Dimensional Modeling
4.5. Biophysical Characterization of the Models
4.6. Docking
4.7. Multiple Sequence Alignment (MSA)
4.8. Phylogeny Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harlan, J.E.; Hajduk, P.J.; Yoon, H.S.; Fesik, S.W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 1994, 371, 168–170. [Google Scholar] [CrossRef]
- Soteriou, C.; Xu, M.; Connell, S.D.; Tyler, A.I.I.; Kalli, A.C.; Thorne, J.L. Two cooperative lipid binding sites within the pleckstrin homology domain are necessary for AKT binding and stabilization to the plasma membrane. Structure 2024, 33, 181–195.e5. [Google Scholar] [CrossRef]
- Selvam, K.; Xu, J.; Wilson, H.E.; Oh, J.; Li, Q.; Walng, D.; Wyrick, J.J. Elf1 promotes transcription-coupled repair in yeast by using its C-terminal domain to bind TFIIH. Nat. Commun. 2024, 15, 6223. [Google Scholar] [CrossRef]
- Gong, W.; Holmberg, H.; Lu, C.; Huang, M.; Li, S. Interplay of the Tfb1 pleckstrin homology domain with Rad2 and Rad4 in transcription coupled and global genomic nucleotide excision repair. Nucleic Acids Res. 2024, 52, 6333–6346. [Google Scholar] [CrossRef]
- Lemmon, M.A.; Ferguson, K.M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 2000, 350, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, N.; Nilges, D.M. Functional diversity of PH domains: An exhaustive modelling study. Fold. Des. 1997, 2, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Kavran, J.M.; Klein, D.E.; Lee, A.; Falasca, M.; Isakoff, S.J.; Skolnik, E.Y.; Lemmon, M.A. Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J. Biol. Chem. 1998, 273, 30497–30508. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.M.; Murray, D. Molecular modeling of the membrane targeting of phospholipase C pleckstrin homology domains. Protein Sci. 2003, 12, 1934–1953. [Google Scholar] [CrossRef]
- Yu, J.W.; Mendrola, J.M.; Audhya, A.; Singh, S.; Keleti, D.; DeWald, D.B.; Murray, D.; Emr, S.D.; Lemmon, M.A. Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol. Cell 2004, 13, 677–678. [Google Scholar] [CrossRef]
- Umate, P. Oxysterol binding proteins (OSBPs) and their encoding genes in Arabidopsis and rice. Steroids 2011, 76, 524–529. [Google Scholar] [CrossRef]
- Yoo, C.M.; Quan, L.; Cannon, A.E.; Wen, J.; Blancaflor, E.B. AGD1, a class 1 ARF-GAP, acts in common signaling pathways with phosphoinositide metabolism and the actin cytoskeleton in controlling Arabidopsis root hair polarity. Plant J. 2012, 69, 1064–1076. [Google Scholar] [CrossRef]
- Gasilina, A.; Yoon, H.Y.; Jian, X.; Luo, R.; Randazzo, P.A. A lysine-rich cluster in the N-BAR domain of ARF GTPase-activating protein ASAP1 is necessary for binding and bundling actin filaments. J. Biol. Chem. 2022, 298, 101700. [Google Scholar] [CrossRef]
- Jin, J.B.; Kim, Y.A.; Kim, S.J.; Lee, S.H.; Kim, D.H.; Cheong, G.W.; Hwang, I. A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell 2001, 13, 1511–1525. [Google Scholar] [CrossRef] [PubMed]
- Khurana, H.; Baratam, K.; Bhattacharyya, S.; Srivastava, A.; Pucadyil, T.J. Mechanistic analysis of a novel membrane-interacting variable loop in the pleckstrin-homology domain critical for dynamin function. Proc. Natl. Acad. Sci. USA 2023, 120, e2215250120. [Google Scholar] [CrossRef]
- Powis, G.; Meuillet, E.J.; Indarte, M.; Booher, G.; Kirkpatrick, L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed. Pharmacother. 2023, 165, 115024. [Google Scholar] [CrossRef]
- Zhou, A.L.; Luoreng, Z.; Wang, X. Analysis of Differentially Expressed Proteins in Bovine Mammary Glands Infected with Staphylococcus aureus. Foodborne Pathog Dis. 2025. ahead of print. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.; Xu, H.; Wu, W.; Het, X.; Walng, X.; Jiang, M.; Hou, Y.; Bai, G. A natural AKT inhibitor swertiamarin targets AKT-PH domain, inhibits downstream signaling, and alleviates inflammation. FEBS J. 2020, 287, 1816–1829. [Google Scholar] [CrossRef]
- Tang, D.; Ade, J.; Frye, C.A.; Innes, R.W. Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant J. 2005, 44, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Vorwerke, S.; Schiff, C.; Santamaria, M.; Koh, S.; Nishimura, M.; Vogel, J.; Somerville, C.; Somerville, S. EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana. BMC Plant Biol. 2007, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Kawasaki, T. Function of Arabidopsis SWAP70 GEF in immune response. Plant Signal. Behav. 2012, 7, 465–468. [Google Scholar] [CrossRef]
- Heinnickel, M.L.; Grossman, A.R. The GreenCut: Re-evaluation of physiological role of previously studied proteins and potential novel protein functions. Photosynth. Res. 2013, 116, 427–436. [Google Scholar] [CrossRef]
- Forest, C.L.; Togasaki, R.K. Selection for conditional gametogenesis in Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. USA 1975, 72, 3652–3655. [Google Scholar] [CrossRef]
- Pinello, J.F.; Lai, A.L.; Millet, J.K.; Cassidy-Hanley, D.; Freed, J.H.; Clark, T.G. Structure-Function Studies Link Class II Viral Fusogens with the Ancestral Gamete Fusion Protein HAP2. Curr. Biol. 2017, 27, 651–660. [Google Scholar] [CrossRef]
- Aksoy, M.; Grossman, A.R.; Musul, Ö. Chlamydomonas reinhardtii SEC23 paralogs and their phylogenetic relationships. J. Anim. Plant Sci. 2022, 35, 1261–1273. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Zheng, H.Q.; Chiang-Hsieh, Y.F.; Chien, C.H.; Hsu, B.-K.J.; Liu, T.-L.; Chen, C.-N.N.; Chang, W.-C. AlgaePath: Comprehensive analysis of metabolic pathways using transcript abundance data from next-generation sequencing in green algae. BMC Genom. 2014, 15, 196. [Google Scholar] [CrossRef]
- Lemmon, M.A. Pleckstrin homology (PH) domains and phosphoinositides. Biochem. Soc. Symp. 2007, 74, 81–93. [Google Scholar] [CrossRef]
- Zheng, J.; Cahill, S.M.; Lemmon, M.A.; Fushman, D.; Schlessinger, J.; Cowburn, D. Identification of the binding site for acidic phospholipids on the PH domain of dynamin: Implications for stimulation of GTPase activity. J. Mol. Biol. 1996, 255, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.M.; Lemmon, M.A.; Schlessinger, J.; Sigler, P.B. Crystal structure at 2.2 Å resolution of the pleckstrin homology domain from human dynamin. Cell 1994, 79, 199–209. [Google Scholar] [CrossRef]
- Touhara, K.; Inglese, J.; Pitcher, J.A.; Shaw, G.; Lefkowitz, R.J. Binding of G protein beta gamma-subunits to pleckstrin homology domains. J. Biol. Chem. 1994, 269, 10217–10220. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Suzuki, H.; Ozawa, K.; Deng, J.; Lehel, C.; Fukamachi, H.; Anderson, W.B.; Kawakami, Y.; Kawakami, T. Interactions between Protein Kinase C and Pleckstrin Homology Domains. J. Biol. Chem. 1997, 272, 13033–13039. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.S.; Yohe, M.E.; Randazzo, P.A.; Gruschus, J.M. Allosteric properties of PH domains in Arf regulatory proteins. Cell Logist. 2016, 6, e1181700. [Google Scholar] [CrossRef]
- Joo, S.; Nishimura, Y.; Cronmiller, E.; Hong, R.H.; Kariyawasam, T.; Wang, M.H.; Shao, N.C.; El Akkad, S.-E.; Suzuki, T.; Higashiyama, T.; et al. Gene regulatory networks for the haploid-to-diploid transition of Chlamydomonas reinhardtii. Plant Physiol. 2017, 175, 314–332. [Google Scholar] [CrossRef]
- Strenkert, D.; Schmollinger, S.; Gallaher, S.D.; Salomé, P.A.; Purvine, S.O.; Nicora, C.D.; Mettler-Altmann, T.; Soubeyrand, E.; Weber, A.P.M.; Lipton, M.S.; et al. Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc. Natl. Acad. Sci. USA 2019, 116, 2374–2383. [Google Scholar] [CrossRef] [PubMed]
- Breker, M.; Lieberman, K.; Cross, F.R. Comprehensive discovery of cell-cycle-essential pathways in chlamydomonas reinhardtii. Plant Cell 2018, 30, 1178–1198. [Google Scholar] [CrossRef]
- Bajhaiya, A.K.; Dean, A.P.; Zeef, L.A.H.; Webster, R.E.; Pittman, J.K. PSR1 is a global transcriptional regulator of phosphorus deficiency responses and carbon storage metabolism in Chlamydomonas reinhardtii. Plant Physiol. 2016, 170, 1216–1234. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y. Phosphate starvation and membrane lipid remodeling in seed plants. Prog. Lipid Res. 2013, 52, 43–50. [Google Scholar] [CrossRef]
- Delfosse, V.; Bourguet, W.; Drin, G. Structural and Functional Specialization of OSBP-Related Proteins. Contact 2020, 3, 2515256420946627. [Google Scholar] [CrossRef]
- Cross, F.R.; Umen, J.G. The Chlamydomonas cell cycle. Plant J. 2015, 82, 370–392. [Google Scholar] [CrossRef]
- Li, X.; Patena, W.; Fauser, F.; Jinkerson, R.E.; Saroussi, S.; Meyer, M.T.; Ivanova, N.; Robertson, J.M.; Yue, R.; Zhang, R.; et al. A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis. Nat. Genet. 2019, 51, 627–635. [Google Scholar] [CrossRef]
- The UniProt Consortium; Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Bourexis, D.; Brister, J.R.; Canese, K.; Comeau, D.C.; Funk, K.; Kim, S.; Klimke, W.; et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021, 49, D10–D17. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; Lopez, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef]
- Tardif, M.; Atteia, A.; Specht, M.; Cogne, G.; Rolland, N.; Brugière, S.; Hippler, M.; Ferro, M.; Bruley, C.; Peltier, G.; et al. Predalgo: A new subcellular localization prediction tool dedicated to green algae. Mol. Biol. Evol. 2012, 29, 3625–3639. [Google Scholar] [CrossRef] [PubMed]
- Almagro Armenteros, J.J.; Sønderby, C.K.; Sønderby, S.K.; Nielsen, H.; Winther, O. DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics 2017, 33, 4049. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar] [CrossRef]
- Sigrist, C.J.A.; De Castro, E.; Cerutti, L.; Cuche, B.A.; Hulo, N.; Bridge, A.; Bougueleret, L.; Xenarios, I. New and continuing developments at PROSITE. Nucleic Acids Res. 2013, 41, D344–D347. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; A Salazar, G.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; A Yamashita, R.; et al. The conserved domain database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef]
- Liu, W.; Xie, Y.; Ma, J.; Luo, X.; Nie, P.; Zuo, Z.; Lahrmann, U.; Zhao, Q.; Zheng, Y.; Zhao, Y.; et al. IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics 2015, 31, 3359–3361. [Google Scholar] [CrossRef]
- McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 2000, 16, 404–405. [Google Scholar] [CrossRef]
- Yan, R.; Xu, D.; Yang, J.; Walker, S.; Zhang, Y. A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Sci. Rep. 2013, 3, 2619. [Google Scholar] [CrossRef]
- Adamczak, R.; Porollo, A.; Meller, J. Accurate prediction of solvent accessibility using neural networks-based regression. Proteins Struct. Funct. Genet. 2004, 56, 753–767. [Google Scholar] [CrossRef]
- Rost, B.; Sander, C.; Schneider, R. PHD-an automatic mail server for protein secondary structure prediction. Bioinformatics 1994, 10, 53–60. [Google Scholar] [CrossRef]
- Nicholas, K.B.; Nicholas, H.B., Jr.; Deerfield, D.W., II. GeneDoc: Analysis and visualization of genetic variation. EMBnet News 1997, 14. [Google Scholar]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed]
- McGuffin, L.J.; Edmunds, N.S.; Genc, A.G.; Alharbi, S.M.A.; Salehe, B.R.; Adiyaman, R. Prediction of protein structures, functions and interactions using the IntFOLD7, MultiFOLD and ModFOLDdock servers. Nucleic Acids Res. 2023, 51, W274–W280. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zheng, W.; Li, Y.; Pearce, R.; Zhang, C.; Bell, E.W.; Zhang, G.; Zhang, Y. I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction. Nat. Protoc. 2022, 17, 2326–2353. [Google Scholar] [CrossRef]
- Baek, M.; Dimaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a 3-track network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Webb, B.; Sali, A. Comparative Protein Structure Modeling Using MODELLER; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins Struct. Funct. Bioinforma 2012, 80, 1715–1735. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef]
- Olechnovič, K.; Venclovas, C.D.S. VoroMQA web server for assessing three-dimensional structures of proteins and protein complexes. Nucleic Acids Res. 2019, 47, W437–W442. [Google Scholar] [CrossRef]
- Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997, 277, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Benkert, P.; Künzli, M.; Schwede, T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 2009, 37, W510–W514. [Google Scholar] [CrossRef] [PubMed]
- McGuffin, L.J.; Alharbi, S.M.A. ModFOLD9: A web server for independent estimates of 3D protein model quality. J. Mol. Biol. 2024, 436, 168531. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, version 3.0; Schrödinger, Inc.: New York, NY, USA, 2024.
- Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 2001, 98, 10037–10041. [Google Scholar] [CrossRef]
- Yan, Y.; Tao, H.; He, J.; Huang, S.Y. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 2020, 15, 1829–1852. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Laskowski, R.A. PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Res. 2001, 29, 221–222. [Google Scholar] [CrossRef] [PubMed]
- Maiti, R.; Van Domselaar, G.H.; Zhang, H.; Wishart, D.S. SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Res. 2004, 32, W590–W594. [Google Scholar] [CrossRef] [PubMed]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Cepas, J.; Serra, F.; Bork, P. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol. Biol. Evol. 2016, 33, 1635–1638. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
Gene Model | Annotation (Phytozome) | pI/MW (Residues) | Predicted Localization PredAlgo (DeepLoc) |
---|---|---|---|
Cre02.g079550.t1.2 | Dynamin GTPase | 8.87/91,230.45 (868) | Other (Cytoplasm, NLS) |
Cre02.g119150.t1.2 | No known function (Hypothetical, found in green algae only) | 5.56/73,642.51 (698) | Other (Cytoplasm-NLS) |
Cre03.g153150 | Calcium/calmodulin-dependent protein kinase | 10.40/257,848.56 (2667) | Mitochondria (Cytoplasm, NLS) |
Cre03.g154150.t1.1 | Arf GAP | 6.68/94,698.00 (907) | Other (Cytoplasm) |
Cre03.g170650 | No known function (found in green algae and charophyte) | 6.25/67,312.52 (636) | Other (Cytoplasm, NLS) |
Cre04.g229163 | Formin like, involved in cytoskeletal rearrangement. | 6.67/259,728.68 (2683) | Other (Cytoplasm) |
Cre12.g525450.t1.1 | No known function (mating activation-specific expression in plus gametes; found in green algae only) | 9.48/239,756.79 (2372) | Other (Cytoplasm, NLS) |
Cre12.g548900.t1.1 | ROC23, circadian rhythm-related (Rho GTPase activating protein) | 7.73/55,982.70 (531) | Other (Cytoplasm, Lysosome/Vacuole, NLS) |
Cre14.g614350.t1.2 | No known function | 8.45/16,209.40 (141) | Other (Cytoplasm-NLS) |
Cre14.g616050.t1.1 | No known function (mating activation-specific expression) | 9.83/117,412.88 (1160) | Mitochondria (Cytoplasm) |
Cre16.g653700 | Oxysterol binding | 6.02/127,272.95 (1218) | Mitochondria (Cytoplasm) |
PH Domain | Phosphoinositide | Residues Involved in Binding |
---|---|---|
Cre02.g079550.t1.2 | I4P * | Gln 57, Asn 59, His 98, Val 104 |
Cre02.g119150.t1.2 | I3,4P * | Ala 58, Glu 79, Arg 80 |
I3P | Lys 9, Arg 80, Val 81 | |
I5P | Ala 58, Glu 79 | |
I4,5P | Lys 9, Arg 80, Arg 83 | |
I3,4,5P | Lys 9, Lys 12, Gln 24, Arg 26 | |
Cre03.g153150 | I3P * | Lys 10, Ser 12, Lys 81 |
Cre03.g154150.t1.1 | I3,4,5P * | Lys 10, Arg 33, Thr 67 |
I3P | Lys 10, Arg 33, Thr 66, Thr 67 | |
I4P | Lys 10, Arg 33, Thr 66 | |
I5P | Lys 10, Arg 33, Thr 66 | |
I3,4P | Lys 10, Arg 33, Thr 66, Thr 67 | |
Cre03.g170650 | IPA * | Gly 45 |
I3P | Arg 19, Arg 79 | |
I4P | Arg 79 | |
I5P | Trp 33, Arg 79 | |
I3,4P | Trp 11, Arg 79, Ser 82 | |
I4,5P | Arg 19, Cys 21, Trp 33, Arg 79 | |
I3,4,5P | Arg 19, Cys 21, Trp 33 | |
Cre04.g229163 | IPA * | Lys 11, Arg 19 |
I3P | Lys 11, His 79 | |
I4P | Trp 78 | |
I5P | Thr 76, Trp 78 | |
I3,4P | Lys 73, Trp 78 | |
I4,5P | Lys 11, Arg 77, His 79 | |
I3,4,5P | Val 48, Thr 76, Trp 78 | |
Cre12.g525450 | IPA * | Arg 18, Ser 40, Tyr 67 |
I3P | Arg 18, Ser 40, Tyr 67 | |
I5P | Arg 18, Ser 40 | |
I3,4P | Lys 9, Arg 18, Ser 40, Tyr 67 | |
I4,5P | Lys 9, Arg 18, Ser 40, Tyr 67 | |
I3,4,5P | Lys 9, Arg 18, Arg 39, Ser 40, Tyr 67 | |
Cre12.g548900 | IPA * | Gln 11, His 77 |
I3P | Arg 32, His 77 | |
I4P | Ser 10, Gln 11, Arg 32, Hys 77, Tyr 78 | |
I5P | Ser 10 | |
I3,4P | Gln 11, Lys 16, Arg 32, Val 47, His 77 | |
I4,5P | Ser 10, Asp 13, Arg 21, Arg 32 | |
I3,4,5P | Ser 10, Gln 11, Val 47, Tyr 78 | |
Cre14.g614350 | I3,4,5P * | Lys 10, Arg 19, Arg 21 |
I3P | Lys 10, Arg 19, Arg 21 | |
I4P | Lys 10, Glu 13, Trp 32 | |
I5P | Lys 10, Arg 19, Arg 21 | |
I3,4P | Arg 19, Arg 21, Arg 45 | |
IPA | Lys 10 | |
Cre14.g616050 | IPA * | Lys 10, Arg21, Arg 43 |
I3P | Ser 83, Arg 84 | |
I4P | Lys 10, Ser 83, Arg 84 | |
I5P | Trp 32, Ser 83, Arg 84 | |
I3,4P | Lys10, Arg 43, Ser 83, Arg 84 | |
I4,5P | Lys 10 | |
I3,4,5P | Lys 10, Arg 21, Arg 43 | |
Cre16.g653700 | IPA * | His 24 |
I5P | Arg 26, Lys 41, Trp 50 | |
I3,4P | Arg 26, Lys 41, Lys 48 | |
I3,4,5P | Arg 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksoy, M.; Krupitskaya, M.; Singh, S.M. A Genome-Wide Modeling and Characterization Study of Pleckstrin Homology Domains in Chlamydomonas reinhardtii. Plants 2025, 14, 2607. https://doi.org/10.3390/plants14172607
Aksoy M, Krupitskaya M, Singh SM. A Genome-Wide Modeling and Characterization Study of Pleckstrin Homology Domains in Chlamydomonas reinhardtii. Plants. 2025; 14(17):2607. https://doi.org/10.3390/plants14172607
Chicago/Turabian StyleAksoy, Münevver, Marina Krupitskaya, and Shaneen M. Singh. 2025. "A Genome-Wide Modeling and Characterization Study of Pleckstrin Homology Domains in Chlamydomonas reinhardtii" Plants 14, no. 17: 2607. https://doi.org/10.3390/plants14172607
APA StyleAksoy, M., Krupitskaya, M., & Singh, S. M. (2025). A Genome-Wide Modeling and Characterization Study of Pleckstrin Homology Domains in Chlamydomonas reinhardtii. Plants, 14(17), 2607. https://doi.org/10.3390/plants14172607