Hydraulic Safety Mechanisms Override Traditional Wood Economics in Hyper-Arid Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Design
2.2. Functional Trait Measurements
2.3. Estimation of Community-Weighted Mean Values
2.4. Data Analyses
3. Results
3.1. WES and Wood Trait Covariation Across Sites
3.2. Tissue Fractions and Wood Density
3.3. Aridity and Wood Trait Gradients
4. Discussion
Variable | Model | Slope Parameter 1 | Pseudo-R2 | d.f. | logLik | AICc | ΔAICc | wi | |
---|---|---|---|---|---|---|---|---|---|
1-AI | (1-AI) 2 | ||||||||
WD | Linear | −0.48 | - | 0.03 | 3 | 172.73 | −339.30 | 30.16 | 0.00 |
Quadratic | −150.00 | 78.78 | 0.26 | 4 | 188.88 | −369.40 | 0.00 | 1.00 | |
Bark | Linear | 1.24 | - | 0.48 | 3 | 255.85 | −505.50 | 3.18 | 0.17 |
Quadratic | 33.30 | −16.89 | 0.50 | 4 | 258.51 | −508.70 | 0.00 | 0.83 | |
Fiber | Linear | −129.70 | - | 0.10 | 3 | −430.61 | 867.40 | 0.00 | 0.64 |
Quadratic | 4178.00 | −2269.00 | 0.11 | 4 | −430.10 | 867.50 | 1.13 | 0.36 | |
2 Average | 1432.47 | −822.85 | - | - | - | - | - | - | |
Lumen | Linear | 32.57 | - | 0.02 | 3 | −372.53 | 751.30 | 0.63 | 0.42 |
Quadratic | −4344.00 | 2305.00 | 0.04 | 4 | −371.14 | 750.60 | 0.00 | 0.58 | |
2 Average | −2498.73 | 1333.35 | - | - | - | - | - | - | |
Parenchyma | Linear | −17.56 | - | 0.02 | 3 | −292.65 | 591.50 | 6.60 | 0.04 |
Quadratic | 3925.00 | −2077.00 | 0.09 | 4 | −288.28 | 584.90 | 0.00 | 0.96 | |
non-vessels | Linear | −6.02 | - | 0.01 | 3 | −229.60 | 465.40 | 1.68 | 0.30 |
Quadratic | −1563.00 | 820.40 | 0.04 | 4 | −227.69 | 463.70 | 0.00 | 0.70 | |
2 Average | −1093.57 | 572.87 | - | - | - | - | - | - | |
MVD | Linear | −103.40 | - | 0.10 | 3 | −403.37 | 812.90 | 29.36 | 0.00 |
Quadratic | 17,890.00 | −9476.00 | 0.31 | 4 | −387.62 | 783.60 | 0.00 | 1.00 | |
VD | Linear | 2.42 | - | 0.21 | 3 | 99.48 | −192.80 | 65.89 | 0.00 |
Quadratic | −370.40 | 196.40 | 0.55 | 4 | 133.50 | −258.60 | 0.00 | 1.00 | |
PC1 | Linear | 2.45 | - | 0.01 | 3 | −88.09 | 182.40 | 0.00 | 0.50 |
Quadratic | 362.00 | −189.40 | 0.03 | 4 | −87.02 | 182.40 | 0.00 | 0.50 | |
2 Average | 182.08 | −94.62 | - | - | - | - | - | - | |
PC2 | Linear | −14.32 | - | 0.39 | 3 | −58.95 | 124.10 | 47.78 | 0.00 |
Quadratic | 1224.00 | −652.20 | 0.60 | 4 | −33.99 | 76.30 | 0.00 | 1.00 |
4.1. Implications for the Wood Economics Spectrum
4.2. Anatomical Mechanisms Underlying Non-Linear Responses
4.3. Community-Level Functional Strategies
4.4. Implications for Plant Economics Theory
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perez-Navarro, M.A.; Serra-Diaz, J.M.; Serra-Diaz, J.M.; Svenning, J.C.; Esteve-Selma, M.Á.; Hernández-Bastida, J.; Lloret, F. Extreme Drought Reduces Climatic Disequilibrium in Dryland Plant Communities. Oikos 2021, 130, 680–690. [Google Scholar] [CrossRef]
- Abel, C.; Maestre, F.T.; Berdugo, M.; Tagesson, T.; Abdi, A.M.; Horion, S.; Fensholt, R. Vegetation Resistance to Increasing Aridity When Crossing Thresholds Depends on Local Environmental Conditions in Global Drylands. Commun. Earth Environ. 2024, 5, 379. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.; Swenson, N.; Zanne, A. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 461–471. [Google Scholar] [CrossRef]
- Carvajal, D.E.; Loayza, A.P.; Rios, R.S.; Delpiano, C.A.; Squeo, F.A. A hyper-arid environment shapes an inverse pattern of the fast–slow plant economics spectrum for above-, but not below-ground resource acquisition strategies. J. Ecol. 2019, 107, 1079–1092. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Ackerly, D.D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 2009, 79, 109–126. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernández-Clemente, R.; Zhao, Y.; Gaitán, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehmann, A.; et al. Global ecosystem thresholds driven by aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef]
- Ren, Z.; Li, C.; Fu, B.; Wang, S.; Zhou, W.; Stringer, L.C. Belowground Soil and Vegetation Components Change across the Aridity Threshold in Grasslands. Environ. Res. Lett. 2023, 18, 094014. [Google Scholar] [CrossRef]
- Fajardo, A.; Piper, F.I.; García-Cervigón, A.I. The Intraspecific Relationship between Wood Density, Vessel Diameter and Other Traits across Environmental Gradients. Funct. Ecol. 2022, 36, 1585–1598. [Google Scholar] [CrossRef]
- Lourenço, J.; Enquist, B.J.; von Arx, G.; Sonsin-Oliveira, J.; Morino, K.; Thomaz, L.D.; Milanez, C.R.D. Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. New Phytol. 2022, 234, 50–63. [Google Scholar] [CrossRef]
- Osunkoya, O.; Sheng, T.; Mahmud, N.; Damit, N. Variation in wood density, wood water content, stem growth and mortality among twenty-seven tree species in a tropical rainforest on Borneo Island. Austral Ecol. 2007, 32, 191–201. [Google Scholar] [CrossRef]
- Martínez-Cabrera, H.I.; Schenk, H.J.; Cevallos-Ferriz, S.R.S.; Jones, C. Integration of vessel traits, wood density, and height in angiosperm shrubs and trees. Am. J. Bot. 2011, 98, 915–922. [Google Scholar] [CrossRef]
- Plavcová, L. Functional Biology of Wood: From Structure to Function. Habilitation Thesis, University of Hradec Králové, Hradec Králové, Czech Republic, 2023. [Google Scholar]
- Zimmermann, M.H. Xylem Structure and the Ascent of Sap; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Tyree, M.T. Hydraulic Limits on Tree Performance: Transpiration, Carbon Gain and Growth of Trees. Trees 2003, 17, 95–100. [Google Scholar] [CrossRef]
- Poorter, L.; McNeil, A.; Hurtado, V.-H.; Prins, H.H.T.; Putz, F.E. Bark traits and life-history strategies of tropical dry- and moist forest trees. Funct. Ecol. 2013, 28, 232–242. [Google Scholar] [CrossRef]
- Sperry, J.S.; Meinzer, F.C.; McCulloh, K.A. Safety and Efficiency Conflicts in Hydraulic Architecture: Scaling from Tissues to Trees. Plant Cell Environ. 2008, 31, 632–645. [Google Scholar] [CrossRef]
- Carlquist, S. Further Concepts in Ecological Wood Anatomy, with Comments on Recent Work in Wood Anatomy and Evolution. Aliso 1980, 9, 499–553. [Google Scholar] [CrossRef]
- Ewers, F.W.; Ewers, J.M.; Jacobsen, A.L.; López-Portillo, J. Vessel redundancy: Modeling safety in numbers. IAWA J. 2007, 28, 373–388. [Google Scholar] [CrossRef]
- Ziemińska, K.; Westoby, M.; Wright, I.J. Broad anatomical variation within a narrow wood density range—A study of twig wood across 69 Australian angiosperms. PLoS ONE 2015, 10, e0124892. [Google Scholar] [CrossRef]
- Yang, S.; Sterck, F.J.; Sass-Klaassen, U.; Cornelissen, J.H.C.; van Logtestijn, R.S.P.; Hefting, M.; Goudzwaard, L.; Zuo, J.; Poorter, L. Stem trait spectra underpin multiple functions of temperate tree species. Front. Plant Sci. 2022, 13, 769551. [Google Scholar] [CrossRef] [PubMed]
- Ziemińska, K.; Butler, D.W.; Gleason, S.M.; Wright, I.J.; Westoby, M. Fiber wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 2013, 5, plt046. [Google Scholar] [CrossRef]
- Carvajal, D.E.; Loayza, A.P.; Squeo, F.A. Functional Diversity and Spatial Association Analyses at Different Spatial Scales Reveal No Changes in Community Assembly Processes along an Aridity Gradient in the Atacama Desert. Sci. Rep. 2023, 13, 19905. [Google Scholar] [CrossRef] [PubMed]
- Mooney, H.A.; Dunn, E.L. Photosynthetic systems of Mediterranean-climate shrubs and trees of California and Chile. Am. Nat. 1970, 104, 447–453. [Google Scholar] [CrossRef]
- Ackerly, D. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol. Monogr. 2004, 74, 25–44. [Google Scholar] [CrossRef]
- Melián, E.; Gatica, G.; Pucheta, E. Compromisos de rasgos del leño en plantas del desierto: Un modelo triangular para comprender las variaciones intra e interespecíficas a lo largo de un gradiente de aridez. Austral Ecol. 2023, 49, e13370. [Google Scholar] [CrossRef]
- Wilson, B. Shrub stems: Form and function. In Plant Stems: Physiology and Functional Morphology; Gartner, B.L., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 91–102. [Google Scholar] [CrossRef]
- Götmark, K.; Götmark, E.; Jensen, A. Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form. Front. Plant Sci. 2016, 7, 1095. [Google Scholar] [CrossRef]
- Serra-Maluquer, X.; Gazol, A.; Anderegg, W.R.L.; Martínez-Vilalta, J.; Mencuccini, M.; Camarero, J.J. Wood density and hydraulic traits influence species’ growth response to drought across biomes. Glob. Chang. Biol. 2022, 28, 3871–3882. [Google Scholar] [CrossRef]
- Venegas-González, A.; Chagas, M.P.; Anholetto Júnior, C.R.; Alvares, C.A.; Roig, F.A.; Tomazello Filho, M. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil. Theor Appl Climatol. 2015, 123, 233–245. [Google Scholar] [CrossRef]
- Santini, L.; Craven, D.; Daigard, R.; Rodríguez, O.; Quintilhan, M.T.; Gibson-Carpintero, S.; Aravena Torres, C.; Roig, F.A.; Muñoz, A.A.; Venegas-González, A. La sequía extrema desencadena cambios paralelos en rasgos anatómicos y fisiológicos de la madera en la línea arbolera superior de los Andes mediterráneos. Ecol. Eng. 2024, 200, 107186. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, H.; Peng, L.; Tao, Y.; Zhou, X.; Yin, B.; Fan, Z.; Zhang, J. Intraspecific Variability of Xylem Hydraulic Traits of Calligonum Mongolicum Growing in the Desert of Northern Xinjiang, China. Plants 2024, 13, 3005. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated Dryland Expansion under Climate Change. Nat. Clim. Change 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Maestre, F.T.; Delgado-Baquerizo, M.; Jeffries, T.C.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Quero, J.L.; García-Gómez, M.; Gallardo, A.; Ulrich, W.; et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. USA 2015, 112, 15684–15689. [Google Scholar] [CrossRef] [PubMed]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; von Maltitz, G. (Eds.) World Atlas of Desertification; Publication Office of the European Union: Luxembourg, 2018; Available online: http://wad.jrc.ec.europa.eu (accessed on 1 January 2024).
- Zomer, R.J.; Trabucco, A.; Bossio, D.A.; Verchot, L.V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 2008, 126, 67–80. [Google Scholar] [CrossRef]
- Delpiano, C.A.; Prieto, I.; Loayza, A.P.; Carvajal, D.E.; Squeo, F.A. Different responses of leaf and root traits to changes in soil nutrient availability do not converge into a community-level plant economics spectrum. Plant Soil 2020, 450, 463–478. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New Handbook for Standardised Measurement of Plant Functional Traits Worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Yeung, E.C.T.; Stasolla, C.; Sumner, M.J.; Huang, B.Q. (Eds.) Plant Microtechniques and Protocols, 1st ed.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- De Bello, F.; Carmona, C.P.; Dias, A.T.; Götzenberger, L.; Moretti, M.; Berg, M.P. Handbook of Trait-Based Ecology: From Theory to R Tools; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Oksanen, J. Vegan: Ecological Diversity. 2016. Available online: https://vegandevs.github.io/vegan/ (accessed on 1 January 2025).
- Tollefson, M. The base, stats, and graphics packages. In R 4 Quick Syntax Reference; Apress: Berkeley, CA, USA, 2022; pp. 15–30. [Google Scholar] [CrossRef]
- Bartoń, K.; MuMIn: Multi-Model Inference. R Package Version 1.48.11. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 1 January 2025).
- Hamilton, N.E.; Ferry, M. ggtern: Ternary diagrams using ggplot2. J. Stat. Softw. 2018, 87, 1–17. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 January 2024).
- Morales, J.P.; Squeo, F.A.; Tracol, Y.; Armas, C.; Gutiérrez, J.R. Resource economics and coordination among above- and below-ground functional traits of three dominant shrubs from the Chilean coastal desert. J. Plant Ecol. 2015, 8, 70–78. [Google Scholar] [CrossRef]
- Martínez-Cabrera, H.I.; Jones, C.; Espino, S.; Schenk, H.J. Wood Anatomy and Wood Density in Shrubs: Responses to Varying Aridity along Transcontinental Transects. Am. J. Bot. 2009, 96, 1388–1398. [Google Scholar] [CrossRef]
- Pratt, R.B.; Jacobsen, A.L.; Percolla, M.I.; De Guzman, M.E.; Traugh, C.A.; Tobin, M.F. Trade-Offs among Transport, Support, and Storage in Xylem from Shrubs in a Semiarid Chaparral Environment Tested with Structural Equation Modeling. Proc. Natl. Acad. Sci. USA 2021, 118, e2104336118. [Google Scholar] [CrossRef]
- Rosell, J.A. Bark in Woody Plants: Understanding the Diversity of a Multifunctional Structure. Integr. Comp. Biol. 2019, 59, 535–547. [Google Scholar] [CrossRef]
- Pratt, R.B.; Jacobsen, A.L. Conflicting Demands on Angiosperm Xylem: Tradeoffs among Storage, Transport and Biomechanics. Plant Cell Environ. 2017, 40, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Navarro, M.; Oyama, K.; García-Oliva, F.; Torres-Miranda, A.; de la Riva, E.G.; Terrazas, T. The role of wood anatomical traits in the coexistence of oak species along an environmental gradient. AoB Plants 2021, 13, plab066. [Google Scholar] [CrossRef] [PubMed]
- Santini, N.S.; Cleverly, J.; Faux, R.; Lestrange, C.; Rumman, R.; Eamus, D. Xylem Traits and Water-Use Efficiency of Woody Species Co-Occurring in the Ti Tree Basin Arid Zone. Trees-Struct. Funct. 2016, 30, 295–303. [Google Scholar] [CrossRef]
- Li, X.; Blackman, C.J.; Choat, B.; Duursma, R.A.; Rymer, P.D.; Medlyn, B.E.; Tissue, D.T. Tree Hydraulic Traits Are Coordinated and Strongly Linked to Climate-of-Origin across a Rainfall Gradient. Plant Cell Environ. 2018, 41, 646–660. [Google Scholar] [CrossRef]
- Nolan, R.H.; Fairweather, K.A.; Tarin, T.; Santini, N.S.; Cleverly, J.; Faux, R.; Eamus, D. Divergence in Plant Water-Use Strategies in Semiarid Woody Species. Funct. Plant Biol. 2017, 44, 1134–1146. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rios, R.S.; Silva Rojas, B.; Carvajal, D.E.; Loayza, A.P. Hydraulic Safety Mechanisms Override Traditional Wood Economics in Hyper-Arid Environments. Plants 2025, 14, 2709. https://doi.org/10.3390/plants14172709
Rios RS, Silva Rojas B, Carvajal DE, Loayza AP. Hydraulic Safety Mechanisms Override Traditional Wood Economics in Hyper-Arid Environments. Plants. 2025; 14(17):2709. https://doi.org/10.3390/plants14172709
Chicago/Turabian StyleRios, Rodrigo S., Bárbara Silva Rojas, Danny E. Carvajal, and Andrea P. Loayza. 2025. "Hydraulic Safety Mechanisms Override Traditional Wood Economics in Hyper-Arid Environments" Plants 14, no. 17: 2709. https://doi.org/10.3390/plants14172709
APA StyleRios, R. S., Silva Rojas, B., Carvajal, D. E., & Loayza, A. P. (2025). Hydraulic Safety Mechanisms Override Traditional Wood Economics in Hyper-Arid Environments. Plants, 14(17), 2709. https://doi.org/10.3390/plants14172709