The Genus Iris Tourn. ex L.: Updates on Botany, Cultivation, Novel Niches and Impactful Applications
Abstract
1. Introduction
- examining the classical literature on the genus’s botany, cultivation and applications;
- assessing the phytochemical diversity and pharmacological potential, with emphasis on the most impactful applications;
- identifying trends and challenges in novel uses to outline future directions.
2. Cultural Importance
3. Botany
3.1. General Overview
3.2. Organography: Current Overview and New Insights
3.2.1. Vegetative Organs: Root, Storage Organs and Leaf
3.2.2. Generative Organs: Flower, Fruit, Seed
4. Classification and Insights into Species
4.1. Classification of Irises
4.2. Status of Iris Species
5. Cultivation
5.1. Cultivation History
5.2. Genetics and Breeding Objectives
5.3. Environmental Factor Requirements
5.4. Crop Establishment
5.4.1. Propagation by Seed
Main Trait | Horticultural Identifier 1 | Botanic Identifier (Genus Iris) [11] | Natural Habitat Conditions | Requirements in Culture and Examples 2 | |
---|---|---|---|---|---|
Rhizome | Bearded | Bearded species and cultivars (highly cultivated for gardens, the most bred group) | subg. Iris, sec. Iris | Usually found in open habitats and rarely in high mountains, they grow in dry conditions, with some rarely in seasonal damp soil. Distribution: Atlantic Coast of Southern Europe to Central Asia [11]. | Well-drained, fertile, neutral to slightly acid soil in full sun. In greenhouses in deep pots with loam-based substrate with grit, full light and low humidity, moderate watering and dry during dormancy [29]. Species: I. germanica (H6), I. aphylla (H7), I. florentina (H6), I. pallida (H7). |
Royal irises (high interest for collections/hybridizing) | subg. Iris, sec. Oncocyclus | Hot summers, rain/snow in winter and wet warm spring. There is great variation in habitats they grow in: from desert to cold steppe and high mountains. Distribution: East Mediterranean, Middle East [11]. | Difficult to cultivate: they require dormancy in summer (must be kept hot and dry). Preferably in greenhouses, raised beds, or protected frames [11]. Species: I. susiana, I. atropurpurea, I. iberica subsp. elegantissima (H4). | ||
Regelia and Regeliocyclus | subg. Iris, sec. Regelia and hybrids with sec. Oncocyclus | High open mountainsides. Cold winter, wet spring and autumn, dry summer. Distribution: Central Asia [11]. | Too vigorous for pot culture, suitable for plant frame/alpine house and outdoors with good drainage. Require warm and dry dormancy. Rocky substrate, granite grit, limestone [11]. Species: I. stolonifera, I. afganica (H4). | ||
Arilbred | hybrids (complex) | - | Loam-based potting compost with grit [29]. | ||
Beardless | Pacific Coast natives | subg. Limniris, sec. Limniris, ser. Californicae | Adapted to mountain and forest areas, often growing in light shade. Distribution: Pacific Coast of North America [11]. | Lime should be avoided in the substrate. Mulching over winter might be needed [11]. Species: I. innominata, I. douglasiana (H6). | |
Siberian (highly cultivated) | subg. Limniris, sec. Limniris, ser. Sibericae, subser. Sibericae | Moist pastures, seepage zones. Distribution: Europe and Asia [11]. | Thrive in open garden, moist, sunny/semi-shaded position. Mildly acidic to alkaline pH, grows well in heavy loams [11]. Species: I. sibirica (H7). | ||
Sino-Siberians | subg. Limniris, sec. Limniris, ser. Sibericae, subser. Chrysographes (includes hybrids) | Seepage zones and moist pastures, but not in shallow water. Distribution: Himalaya and South-West China [11]. | Prefer damper, more boggy ground but not subject to prolonged flooding. Unsuitable for herbaceous borders [11]. Species: I. chrysographes (H6). | ||
Spurias (some tolerate saline conditions) | subg. Limniris, sec. Limniris, ser. Spuriae | Ample moisture in soil, plenty of sunshine and no desiccation during summer. They grow in wet grasslands, marshes and river valleys, including saline conditions. Distribution: Europe, Asia and North Africa [11]. | Prefer heavy clay loam soil, neutral to slightly acidic pH and adequate moisture [11]. Species: I. graminea, I. spuria subsp. halophila, I. sintenisii, (H6). | ||
Water irises (invasive/cultivated aquatic macrophytes) | subg. Limniris, sec. Limniris, ser. Leavigatae | Wet, grassy places. Distribution: North America, Europe, Asia [11]. | Moist to wet, deep substrate, humus-rich soil, acidic pH; suitable for the margins of ponds and streams [29]. Species: I. pseudacorus (H7), I. ensata (H6), I. versicolor (H7). | ||
Louisiana irises | subg. Limniris, sec. Limniris, ser. Hexagonae | Grow in wetlands. Distribution: United States, mainly Louisiana but not exclusively [11]. | Damp and humus-rich soil, areas with high temperatures in summer [29]. May be too tender for temperate climates [11]. Species: I. fulva (H5). | ||
Unguiculares (Algerian iris is the best known) | subg. Limniris, sec. Limniris, ser. Unguiculares | Rocky/stony places, banks and dry scrub, open woodland. Distribution: Southern Europe, Middle East, North Africa [11]. | Quick-draining soil with neutral to alkaline pH; full sun; suitable for the base of sunny walls [29]. Species: I. unguicularis (H5). | ||
Crest | Crested irises | subg. Limniris, sec. Lophiris | Moist woodland. Distribution: North America and East Asia [11]. | Moist humus-rich soil, in full sun/partial shade outdoors. In pots with loam-based compost with grit and leaf mold, moderate watering and moist during dormancy [29]. Species: I. tectorum (H7), I. cristata (H6), I. japonica (H4). | |
Tuberous roots | Himalayan irises | subg. Nepalensis | Distribution: Himalaya [11] | Substrate should be rich and moist from spring until autumn, with dormancy over winter. Species: I. barbatula, I. decora (H7). | |
Bulb | Reticulata (highly cultivated garden bulb) | subg. Hermodactyloides | Open ground, mountain grasslands, stony slopes, sunny exposure. Distribution: Asia [11]. | Preferably grown in open ground, raised beds, or bulb frames. Humidity should be ensured during growth [11]. Species: I. reticulata (H7), I. histrioides (H7). | |
Juno irises (appreciated for pots but very sensitive) | subg. Scorpiris | Semi-arid steppe and mountains, seasonally moist, on grassy slopes, receiving cold winters and hot dry summers. Distribution: mostly Asia with one exception [11]. | Well-drained soil with neutral to slightly alkaline soil in full sun. Only in greenhouse/alpine house in deep containers with loam-based compost and grit, maintaining low humidity. Moderate watering [29]. Species: I. nicolai, I. bucharica (H5). | ||
Dutch, English and Spanish irises (cultivated for commercial cut flowers) | subg. Xiphium | Grow in soils that dry out in summer. Distribution: South-West Europe, North Africa [11]. | Alkaline well-drained soil and dry over summer during dormancy [11]. Bulbs can be forced in large-scale production for cut flowers sold in flower shops [107]. Species: I. × hollandica (H5), I. latifolia (H7), Iris xiphium (H5). |
5.4.2. Vegetative Propagation
5.4.3. Micropropagation
5.5. Crop Management and Target Outcomes
5.5.1. Field Crops: Industrial Irises
5.5.2. Irises in the Landscape: Ornamentals
5.5.3. Constructed Wetlands
5.5.4. Protected Crops and Forcing Bulbs: The Cut Flower Crops
5.5.5. Diseases and Pests
5.6. Invasive Species Management
6. Phytochemistry of Iris spp.
6.1. Most Valuable Iris Compounds
6.2. Influencing Factors
6.3. Harvest and Post-Harvest Matters: Aging Rhizomes and Processing
6.4. Quality Standards for Orris and Medicinal Irises
7. Overview of Multipurpose Applications
7.1. Summary of Historical and Established Use
7.2. Novel Evidence on Biologic Activity
7.2.1. Antimicrobial and Antioxidant Activities
7.2.2. Pharmacological and Immunomodulatory Potential
7.3. Remediation Applications and Outcomes
7.4. Novel Niches
8. The Past, Present Future and Interconnections Between Domains
- optimizing cultivation technologies to enhance the phytochemicals of interest and feasibility of Iris cultivation;
- perfecting phytoremediation systems and preparing them for scaling-up;
- breeding ornamental irises able to withstand stresses, pests and diseases for low-maintenance green spaces;
- devising cultivation technologies for newly identified useful species;
- pharmacognostic standardization for more species for safe pharmaceutical use;
- biodiversity conservation of declining wild populations and genetic studies (genetic diversity mapping of the existing wild populations and establishing ex situ collections);
- effective management approaches for invasive irises.
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Plants of the World Online|Kew Science. Iris Tourn. Ex L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:326330-2 (accessed on 2 February 2025).
- Khatib, S.; Faraloni, C.; Bouissane, L. Exploring the Use of Iris Species: Antioxidant Properties, Phytochemistry, Medicinal and Industrial Applications. Antioxidants 2022, 11, 526. [Google Scholar] [CrossRef]
- Friščić, M.; Maleš, Ž.; Maleš, I.; Duka, I.; Radonić, A.; Mitić, B.; Hruševar, D.; Jurić, S.; Jerković, I. Gas Chromatography–Mass Spectrometry Analysis of Volatile Organic Compounds from Three Endemic Iris Taxa: Headspace Solid-Phase Microextraction vs. Hydrodistillation. Molecules 2024, 29, 4107. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.C.; Choisy, P. Medicinal Plants Meet Modern Biodiversity Science. Curr. Biol. 2024, 34, R158–R173. [Google Scholar] [CrossRef] [PubMed]
- Daley, D.K.; Badal, S. Chapter 5—Plant Crude Drugs. In Pharmacognosy, 2nd ed.; McCreath, S.B., Clement, Y.N., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 75–89. ISBN 978-0-443-18657-8. [Google Scholar]
- Aara, I.; Faheem, M.; Shahista, S. Pharmacognostic Standardization, Phytochemical Evaluation Potential of Iris germanica L. World J. Intern. Med. Surg. 2025, 2, 1–8. [Google Scholar]
- Asgari, E. The Intersection of Biotechnology and Iris Breeding: A New Era in Floriculture. In Breeding of Ornamental Crops: Bulbous Flowers; Wani, M.A., Al-Khayri, J.M., Jain, S.M., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 527–552. ISBN 978-3-031-77900-8. [Google Scholar]
- Bicchi, C.; Joulain, D. A Comprehensive Review on Essential Oils and Extracts from Iris Rhizomes. Phytochem. Rev. 2025, 24, 1629–1665. [Google Scholar] [CrossRef]
- Orris Butter Pallida (20% Irones) from hermitageoils.com; Hermitage Oils SRL: Arezzo, Italy, 2025.
- Naing, A.H.; Park, D.Y.; Park, H.C.; Kim, C.K. Removal of Heavy Metals Using Iris Species: A Potential Approach for Reclamation of Heavy Metal-Polluted Sites and Environmental Beautification. Environ. Sci. Pollut. Res. 2023, 30, 78004–78016. [Google Scholar] [CrossRef]
- White, B.; Bowley, M.; Brearley, C.; Christiansen, H.; Cohen, O.; Davis, A.; Dickson-Cohen, V.; Ellis, J.; Grey-Wilson, C.; Innes, C.; et al. A Guide to Species Irises: Their Identification and Cultivation; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Yu, X.-F.; Feng, Y.; Yue, L.-J. Collection and Evaluation of Iris Species in Southwest China. Acta Sci. Pol. Hortorum Cultus 2021, 20, 29–44. [Google Scholar] [CrossRef]
- Linnaeus, C. Species Plantarum; Laurentius Salvius: Stockholm, Sweden, 1753; Volume 1. [Google Scholar]
- Robu, T. Monograph of the Genus Iris: Physiology, Botany and Uses; Editura Ion Ionescu de la Brad Iași: Iași, Romania, 2005. [Google Scholar]
- Cristea, V. Plante Vasculare: Diversitate, Sistematică, Ecologie Și Importanță; Presa Universitara Clujeana: Cluj-Napoca, Romania, 2014; ISBN 978-973-595-648-6. [Google Scholar]
- Kandeler, R.; Ullrich, W.R. Symbolism of Plants: Examples from European-Mediterranean Culture Presented with Biology and History of Art: APRIL: Iris. J. Exp. Bot. 2009, 60, 1067–1068. [Google Scholar] [CrossRef][Green Version]
- Pignatti, S.; Savoia, A.U.; Piazza, S.V. Iris: A Significant Element of the Mediterranean Landscape. Ann. Bot. 2000, 58. [Google Scholar] [CrossRef]
- Radenković, L. Perunika—Cvet Nebeskog Ili Htonskog Sveta? German Iris—The Flower from the Heavenly or Chthonian World? Stud. Myth. Slavica 2013, 16, 105–116. [Google Scholar] [CrossRef]
- Poursaleh Amiri, S.M.; Seyyed Ahmadi Zavieh, S.S. Analytical Study of the Accompaniment of the Image of the Iris and Poppy Plant on the Zarrinfam Dishes of the Safavid Era from a Social Perspective. Negareh J. 2022, 17, 73–87. [Google Scholar] [CrossRef]
- Lyte, C. The Iris in History. In A Guide to Species—Irises, Their Identification and Cultivation; Cambridge University Press: Cambridge, UK, 1997; pp. 1–3. [Google Scholar]
- Fărcaș, C.; Cristea, V.; Fărcaș, S.; Ursu, T.; Șuteu, A.; Roman, A. The Symbolism of Garden and Orchard Plants and Their Representation in Paintings (I). Contrib. Bot. 2015, 189–200. Available online: https://contributii_botanice.reviste.ubbcluj.ro/materiale/2015/Contrib_Bot_vol_50_pp_189-200.pdf (accessed on 26 April 2025).
- Dafni, A.; Lev, E.; Beckmann, S.; Eichberger, C. Ritual Plants of Muslim Graveyards in Northern Israel. J. Ethnobiol. Ethnomedicine 2006, 2, 38. [Google Scholar] [CrossRef] [PubMed]
- Goody, J. The Culture of Flowers; Cambridge University Press: Cambridge, NY, USA, 1993; ISBN 978-0-521-42484-4. [Google Scholar]
- Lehner, E.; Lehner, J. Folklore and Symbolism of Flowers, Plants, and Trees: With over 200 Rare and Unusual Floral Designs and Illustrations; Dover pictorial archive series; Dover Publications: Mineola, NY, USA, 2003; ISBN 978-0-486-42978-6. [Google Scholar]
- Giner-Sorolla, H. A Christian’s Treasury of Trees & Plants; WestBow Press: Bloomington, IN, USA, 2011; ISBN 978-1-4497-0711-8. [Google Scholar]
- Erken, K.; Gülbağ, F.; Erken, S.; Kaya, E. The Adaptation of Turkish Iris L. Species to the Cultural Conditions. Acta Hortic. 2013, 1002, 153–166. [Google Scholar] [CrossRef]
- Goldblatt, P.; Manning, J.C. The Iris Family: Natural History & Classification; Timber Press: Portland, OR, USA, 2008; ISBN 978-0-88192-897-6. [Google Scholar]
- Wilson, C. Patterns in Evolution in Characters That Define Iris Subgenera and Sections. Aliso J. Syst. Florist. Bot. 2006, 22, 425–433. [Google Scholar] [CrossRef]
- Brickell, C. A-Z Encyclopedia of Garden Plants, 4th ed.; Dorling Kindersley—Royal Horticultural Society: Munich, Germany, 2016; ISBN 978-0-2412-3912-4. [Google Scholar]
- Bresinsky, A.; Körner, C.; Kadereit, J.W.; Neuhaus, G.; Sonnewald, U. Strasburger’s Plant Sciences; Springer: Berlin, Germany, 2013; ISBN 978-3-642-15517-8. [Google Scholar]
- Meyer, C.J.; Peterson, C.A.; Steudle, E. Permeability of Iris germanica’s Multiseriate Exodermis to Water, NaCl, and Ethanol. J. Exp. Bot. 2011, 62, 1911–1926. [Google Scholar] [CrossRef] [PubMed]
- Stoie, A.; Vârban, R. Botany: Morphology and Plant Anatomy Practical Works; Academic Press: Cluj-Napoca, Romania, 2019; ISBN 978-973-744-764-7. [Google Scholar]
- Crișan, I.; Vidican, R.; Stoie, A.; Simea, Ș.A. Spring-Autumn Arbuscular Mycorrhiza Colonization Dynamic in Iris germanica L. from Urban Microclimate. AgroLife Sci. J. 2020, 9, 82–90. Available online: https://agrolifejournal.usamv.ro/index.php/agrolife/article/view/705/697 (accessed on 26 April 2025).
- Crișan, I.; Stoie, A. Seasonal Arbuscular Mycorrhiza Colonization Dynamic Displays Genotype-Specific Pattern in Iris sibirica L. Not. Sci. Biol. 2021, 13, 10838. [Google Scholar] [CrossRef]
- Crișan, I.; Vidican, R.; Stoian, V.; Vâtca, S. Prospecting the Influence of Potting Substrate and Am Inoculation on Iris pseudacorus L. Sci. Pap. Ser. Agron. 2019, 62, 128–134. [Google Scholar]
- Crișan, I.; Vidican, R.; Olar, L.; Stoian, V.; Morea, A.; Ștefan, R. Screening for Changes on Iris germanica L. Rhizomes Following Inoculation with Arbuscular Mycorrhiza Using Fourier Transform Infrared Spectroscopy. Agronomy 2019, 9, 815. [Google Scholar] [CrossRef]
- Xing, S.; Zhang, K.; Hao, Z.; Zhang, X.; Chen, B. Arbuscular Mycorrhizal Fungi Alter Arsenic Translocation Characteristics of Iris tectorum Maxim. J. Fungi 2023, 9, 998. [Google Scholar] [CrossRef]
- Zhu, S.; Mao, H.; Sun, S.; Yang, X.; Zhao, W.; Sheng, L.; Chen, Z. Arbuscular Mycorrhizal Fungi Promote Functional Gene Regulation of Phosphorus Cycling in Rhizosphere Microorganisms of Iris tectorum under Cr Stress. J. Environ. Sci. 2025, 151, 187–199. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, W.; Sun, S.; Yang, X.; Mao, H.; Sheng, L.; Chen, Z. Metagenomic Analysis Revealed N-Metabolizing Microbial Response of Iris tectorum to Cr Stress after Colonization by Arbuscular Mycorrhizal Fungi. Ecotoxicol. Environ. Saf. 2024, 273, 116157. [Google Scholar] [CrossRef]
- Ranwala, A.P.; Miller, W.B. Analysis of Nonstructural Carbohydrates in Storage Organs of 30 Ornamental Geophytes by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection. New Phytol. 2008, 180, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Crișan, I.; Cantor, M. New Perspectives on Medicinal Properties and Uses of Iris sp. Hop Med. Plants 2016, 24, 24–36. [Google Scholar]
- Popovici, P.C.; Ancuceanu, V.R.; Dinu, M. Mihaela Microscopic Characterization and Toxicological Assessment of Iris germanica L. Cultivated under Hydroponic and Geoponic Conditions. Farmacia 2022, 70, 861–871. [Google Scholar] [CrossRef]
- Shao, L.; Xu, T.; Wang, X.; Zhang, R.; Wang, X.; Ren, Z.; Zhang, J.; Xia, Y.; Li, D. Integrative Comparative Assessment of Cold Acclimation in Evergreen and Deciduous Iris Species. Antioxidants 2022, 11, 977. [Google Scholar] [CrossRef] [PubMed]
- Royal Horticultural Society (RHS) Hardiness Ratings. Available online: http://www.rhs.org.uk/advice/rhs-hardiness-rating (accessed on 23 April 2025).
- Hočevar, K.; Vuleta, A.; Manitašević Jovanović, S. Plastic Responses of Iris pumila Functional and Mechanistic Leaf Traits to Experimental Warming. Plants 2025, 14, 960. [Google Scholar] [CrossRef] [PubMed]
- Konarska, A. Morphological, Anatomical, Ultrastructural, and Histochemical Study of Flowers and Nectaries of Iris sibirica L. Micron 2022, 158, 103288. [Google Scholar] [CrossRef]
- Crișan, I.; Vidican, R.; Oltean, I.; Stoie, A.; Stoian, V. Iris Flower Visitors: Pollinators versus Nectar Thieves. Romanian J. Grassl. Forage Crops 2018, 17, 11–20. [Google Scholar]
- Lozada-Gobilard, S.; Nielsen, N.; Sapir, Y. Flower Size as an Honest Signal in Royal Irises (Iris Section Oncocyclus, Iridaceae). Plants 2023, 12, 2978. [Google Scholar] [CrossRef] [PubMed]
- Zalmat, A.S.; Sotola, V.A.; Nice, C.C.; Martin, N.H. Genetic Structure in Louisiana Iris Species Reveals Patterns of Recent and Historical Admixture. Am. J. Bot. 2021, 108, 2257–2268. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Gao, Y.; Guan, C.; Ding, L.; Fan, Z.; Zhang, Q. The Comparison of Temporal Transcriptome Changes Between Morning-Opening and Afternoon-Opening Iris Flowers Reveals the Candidate Genes Regulating Flower Opening and Closing. J. Plant Biol. 2023, 66, 455–473. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Liu, Q.; Tong, H.; Zhang, T.; Gu, C.; Liu, L.; Huang, S.; Yuan, H. Selection and Validation of Appropriate Reference Genes for RT-qPCR Analysis of Flowering Stages and Different Genotypes of Iris germanica L. Sci. Rep. 2021, 11, 9901. [Google Scholar] [CrossRef]
- Fan, Z.; Gao, Y.; Guan, C.; Liu, R.; Wang, S.; Zhang, Q. FLOWERING LOCUS T Homologue in Reblooming Bearded Iris (Iris Spp.) Plays a Role in Accelerating Flowering and Reblooming. S. Afr. J. Bot. 2023, 159, 10–16. [Google Scholar] [CrossRef]
- Fan, Z.; Gao, Y.; Gao, Y.; Guan, C.; Liu, R.; Wang, S.; Zhang, Q. Functional Characterization of Two Flowering Repressors SHORT VEGETATIVE PHASE and TERMINAL FLOWER 1 in Reblooming Bearded Iris (Iris Spp.). Plant Sci. 2023, 328, 111542. [Google Scholar] [CrossRef]
- Roguz, K.; Gallagher, M.K.; Senden, E.; Bar-Lev, Y.; Lebel, M.; Heliczer, R.; Sapir, Y. All the Colors of the Rainbow: Diversification of Flower Color and Intraspecific Color Variation in the Genus Iris. Front. Plant Sci. 2020, 11, 569811. [Google Scholar] [CrossRef]
- Bahreini, Z.; Abedi, M.; Ashori, A.; Parach, A. Extraction and Characterization of Anthocyanin Pigments from Iris Flowers and Metal Complex Formation. Heliyon 2024, 10, e31795. [Google Scholar] [CrossRef]
- Liu, G.; Liu, H.; Shi, G.; Xu, N.; Niu, Z.; Wang, L.; Zhao, R.; Wang, L.; Fan, L. Multi-Omics Analysis of Iris sanguinea with Distinctive Flower Colors Provides Insights into Petal Coloration. Hortic. Plant J. 2024, 11, 1274–1290. [Google Scholar] [CrossRef]
- Liu, H.; Shi, G.; Ye, W.; Behera, J.R.; Kilaru, A.; Wang, L. Functional Role of DFR Genes in Various Blue Iris for the Regulation of Delphinidin Synthesis. Plant Physiol. Biochem. 2025, 219, 109355. [Google Scholar] [CrossRef]
- Zhou, Z.-L.; Wang, G.-Y.; Wang, X.-L.; Huang, X.-J.; Zhu, Z.-S.; Wang, L.-L.; Yang, Y.-P.; Duan, Y.-W. Flower Color Polymorphism of a Wild Iris on the Qinghai-Tibet Plateau. BMC Plant Biol. 2023, 23, 633. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Sun, Y.; Zhao, Y.; Liu, C.; Chen, X.; Li, F.; Bao, J. Identification of Floral Scent Profiles in Bearded Irises. Molecules 2019, 24, 1773. [Google Scholar] [CrossRef]
- Cai, K.; Ban, Z.; Xu, H.; Chen, W.; Jia, W.; Zhu, Y.; Chen, H. Analysis of Floral Scent Component of Three Iris Species at Different Stages. Horticulturae 2024, 10, 153. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, Y.; Gu, L.; He, D.; Luo, J.; Zhang, Y. Transcriptomic Profiling of the Floral Fragrance Biosynthesis of Iris germanica ‘Harvest of Memories’ and Functional Characterization of the IgTPS14 Gene. Hortic. Plant J. 2024. [Google Scholar] [CrossRef]
- Mitić, B.; Halbritter, H.; Šoštarić, R.; Nikolić, T. Pollen Morphology of the Genus Iris L. (Iridaceae) from Croatia and Surrounding Area: Taxonomic and Phylogenetic Implications. Plant Syst. Evol. 2013, 299, 271–288. [Google Scholar] [CrossRef]
- Choi, T.-Y.; Lee, S.-R. Complete Plastid Genome of Iris orchioides and Comparative Analysis with 19 Iris Plastomes. PLoS ONE 2024, 19, e0301346. [Google Scholar] [CrossRef]
- Boltenkov, E.V.; Artyukova, E.V. New Approach to the Systematics of the Section Psammiris (Iris, Iridaceae): What Does Chloroplast DNA Sequence Tell Us? Plants 2023, 12, 1254. [Google Scholar] [CrossRef] [PubMed]
- Crișan, I.; Vidican, R.; Stoian, V.; Stoie, A. Wild Iris spp. from Romanian Meadows and Their Importance for Ornamental Plant Breeding. Rom. J. Grassl. Forage Crops 2017, 16, 21–32. [Google Scholar]
- Volis, S.; Depalle, F.; Khassanov, F.; Yusupov, Z.; Deng, T. Oncocyclus Irises: Phylogeny, Evolutionary History and Revised Taxonomy Based on Complete Chloroplast Genome Sequences. Plant Divers. Cent. Asia 2024, 3, 1–66. [Google Scholar]
- Osmolovsky, I.; Shifrin, M.; Gamliel, I.; Belmaker, J.; Sapir, Y. Eco-Geography and Phenology Are the Major Drivers of Reproductive Isolation in the Royal Irises, a Species Complex in the Course of Speciation. Plants 2022, 11, 3306. [Google Scholar] [CrossRef]
- Saad, L.; Talhouk, S.N.; Mahy, G. Decline of Endemic Oncocyclus Irises (Iridaceae) of Lebanon: Survey and Conservation Needs. Oryx 2009, 43, 91–96. [Google Scholar] [CrossRef]
- International Union for Conservation of Nature (IUCN) Red List of Threatened Species: Iris. Available online: https://www.iucnredlist.org/en (accessed on 26 April 2025).
- Boltenkov, E.V.; Artyukova, E.V.; Trias-Blasi, A. Taxonomic Composition of Iris Subser. Chrysographes (Iridaceae) Inferred from Chloroplast DNA and Morphological Analyses. Plants 2021, 10, 2232. [Google Scholar] [CrossRef]
- Boltenkov, E.; Artyukova, E.; Kozyrenko, M.; Erst, A.; Trias-Blasi, A. Iris sanguinea Is Conspecific with I. sibirica (Iridaceae) According to Morphology and Plastid DNA Sequence Data. PeerJ 2020, 8, e10088. [Google Scholar] [CrossRef]
- Wilson, C.A.; Boosalis, Z.; Sandor, M.; Crespo, M.B.; Martínez-Azorín, M. Phylogeny of Species, Infraspecific Taxa, and Forms in Iris Subgenus Xiphium (Iridaceae), from the Mediterranean Basin Biodiversity Hotspot. Syst. Bot. 2023, 48, 208–219. [Google Scholar] [CrossRef]
- Crișan, I.; Vidican, R.; Stoian, V.; Vâtcă, S.; Cantor, M. Stomatal Index of Five Iris × hollandica Cultivars in Field Conditions. In Proceedings of the International Conference on Life Sciences, Timișoara, Romania, 24–25 May 2018; pp. 370–377. [Google Scholar]
- Gaskin, J.F.; Pokorny, M.L.; Mangold, J.M. An Unusual Case of Seed Dispersal in an Invasive Aquatic; Yellow Flag Iris (Iris pseudacorus). Biol. Invasions 2016, 18, 2067–2075. [Google Scholar] [CrossRef]
- Sennikov, A.; Khassanov, F.; Ortikov, E.; Kurbonaliyeva, M.; Tojibaev, K.S. The Genus Iris L. s. l. (Iridaceae) in the Mountains of Central Asia Biodiversity Hotspot. Plant Divers. Cent. Asia 2023, 2, 1–104. [Google Scholar] [CrossRef]
- Cohen, J.I.; Turgman-Cohen, S. The Conservation Genetics of Iris lacustris (Dwarf Lake Iris), a Great Lakes Endemic. Plants 2023, 12, 2557. [Google Scholar] [CrossRef] [PubMed]
- Chirilă, S.D.; Vassilev, K.; Bădărău, A.S. Wide Habitat Preference Found in a Rare, Regional Endemic Species: Iris brandzae Prodán (Iridaceae Juss., Subgenus Limniris, Series Spuriae) in Romania. Hacquetia 2024, 23, 203–212. [Google Scholar] [CrossRef]
- Mucioki, M.; Sowerwine, J.; Sarna-Wojcicki, D.; McCovey, K.; Bourque, S.D. Understanding the Conservation Challenges and Needs of Culturally Significant Plant Species through Indigenous Knowledge and Species Distribution Models. J. Nat. Conserv. 2022, 70, 126285. [Google Scholar] [CrossRef]
- Othman, Y.A.; Ayasrah, B.; Al-Kofahi, S. Habitat Selection to Reintroduce Iris bismarckiana in Semi-Arid Environments. Diversity 2023, 15, 957. [Google Scholar] [CrossRef]
- Volis, S.; Blecher, M. Translocation Success in Iris atrofusca: Importance of Replicating Sites and Long-Term Monitoring. Restor. Ecol. 2022, 30, e13502. [Google Scholar] [CrossRef]
- Hurdu, B.-I.; Coste, A.; Halmagyi, A.; Szatmari, P.-M.; Farkas, A.; Pușcaș, M.; Dan Turtureanu, P.; Roșca-Casian, O.; Tănase, C.; Oprea, A.; et al. Ex Situ Conservation of Plant Diversity in Romania: A Synthesis of Threatened and Endemic Taxa. J. Nat. Conserv. 2022, 68, 126211. [Google Scholar] [CrossRef]
- Botanic Gardens Conservation International (BGCI) PlantSearch: Iris. Available online: https://plantsearch.bgci.org/search?filter[genus]=Iris&sort=name (accessed on 26 April 2025).
- Gaoue, O.G.; Coe, M.A.; Bond, M.; Hart, G.; Seyler, B.C.; McMillen, H. Theories and Major Hypotheses in Ethnobotany. Econ. Bot. 2017, 71, 269–287. [Google Scholar] [CrossRef]
- Teixidor-Toneu, I.; Jordan, F.M.; Hawkins, J.A. Comparative Phylogenetic Methods and the Cultural Evolution of Medicinal Plant Use. Nat. Plants 2018, 4, 754–761. [Google Scholar] [CrossRef]
- Purugganan, M.D. Evolutionary Insights into the Nature of Plant Domestication. Curr. Biol. 2019, 29, R705–R714. [Google Scholar] [CrossRef]
- Wilson, C.A.; Padiernos, J.; Sapir, Y. The Royal Irises (Iris Subg. Iris Sect. Oncocyclus): Plastid and Low-Copy Nuclea Data Contribute to an Understanding of Their Phylogenetic Relationships. Taxon 2016, 65, 35–46. [Google Scholar] [CrossRef]
- Belletti, G.; Fani, E.; Marescotti, A.; Scaramuzzi, S. The Role of Traditional Products in the Valorisation of Marginal Rural Areas: The Case of Iris pallida. Span. J. Rural Dev. 2013, 4, 11–22. [Google Scholar] [CrossRef]
- Samad, N.A.; Hidalgo, O.; Saliba, E.; Siljak-Yakovlev, S.; Strange, K.; Leitch, I.J.; Dagher-Kharrat, M.B. Genome Size Evolution and Dynamics in Iris, with Special Focus on the Section Oncocyclus. Plants 2020, 9, 1687. [Google Scholar] [CrossRef]
- Mykhailenko, O.; Buydin, Y.; Ivanauskas, L.; Krechun, A.; Georgiyants, V. Innovative GACP Approaches for Obtaining the Quality Iris hybrida Leaves for the Pharmaceutical Industry. Chem. Biodivers. 2022, 19, e202200149. [Google Scholar] [CrossRef]
- Bruccoleri, R.E.; Oakeley, E.J.; Faust, A.M.E.; Altorfer, M.; Dessus-Babus, S.; Burckhardt, D.; Oertli, M.; Naumann, U.; Petersen, F.; Wong, J. Genome Assembly of the Bearded Iris, Iris pallida Lam. GigaByte 2023, 2023, gigabyte94. [Google Scholar] [CrossRef]
- Ghasemi, G.; Ayyari, M.; Azimi, M.-H.; Ebadi, M.-T. Orris Root Diversity and Quality Assessment: Multivariate Analysis of Phytochemicals and Antioxidant Properties. Ind. Crops Prod. 2023, 202, 116935. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Iris Genome. Available online: https://www.ncbi.nlm.nih.gov/datasets/genome/?taxon=26378 (accessed on 18 May 2025).
- The International Union for the Protection of New Varieties of Plants (UPOV) Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability for Iris (Bulbous) (Iris L.) 2000. Available online: https://www.upov.int/edocs/tgdocs/en/tg174.pdf (accessed on 26 April 2025).
- Noli, J.; Nichols, B.; Rivarola, A.; White, G.; Snyder, G.; Rose, L.; Strauss, D.; Rieniets, K.; Markham, S.; Vaughn, K.; et al. Handbook for Judges and Show Officials; Edition 8.23, March 2024; American Iris Society: Dallas, TX, USA, 2024; ISBN 978-1-892400-40-6. [Google Scholar]
- Ding, L.; Liu, R.; Gao, Y.; Xiao, J.; Lv, Y.; Zhou, J.; Zhang, Q. Effect of Tetraploidization on Morphological and Fertility Characteristics in Iris × norrisii Lenz. Sci. Hortic. 2023, 322, 112403. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Wu, Y.; Yu, F.; Su, B.; Li, X.; Huang, D. Cross Compatibility and Endogenous Phytohormone Profiles in Interspecific Hybridization between Iris tectorum and Iris germanica. Sci. Hortic. 2024, 327, 112837. [Google Scholar] [CrossRef]
- Crişan, I.; Stoie, A.; Cantor, M. Overwintering of Some Hardy Iris Species in Agro-Botanical Garden UASVM Cluj-Napoca. Agricultura 2016, 99, 6–14. [Google Scholar] [CrossRef]
- Muntean, L.S.; Tămaș, M.; Muntean, S.; Muntean, L.; Duda, M.M.; Vârban, D.I.; Florian, S. Treatise of Cultivated and Spontaneous Medicinal Plants; Risoprint: Cluj-Napoca, Romania, 2016; ISBN 978-973-53-1873-4. [Google Scholar]
- Arditti, J.; Pray, T.R. Dormancy Factors in Iris (Iridaceae) Seeds. Am. J. Bot. 1969, 56, 254–259. [Google Scholar] [CrossRef]
- Abubakar, M.S.; Attanda, M.L.; Abubakar, M.S.; Attanda, M.L. Factors That Cause Seed Dormancy. In Seed Biology Updates; IntechOpen: London, UK, 2022; ISBN 978-1-80355-814-1. [Google Scholar]
- Śmigała-Lasota, M.; Dziurka, K.; Dąbrowska, A.; Winiarczyk, K. Development of the Male and Female Gametophyte, Fertilization, and Assessment of Germination and Regulation of Dormancy in Iris aphylla L. Seeds. Acta Sci. Pol. Hortorum Cultus 2023, 22, 29–40. [Google Scholar] [CrossRef]
- Yoon, M.J.; Kim, S.H.; Gil, M.; Park, E.H.; Oh, S.I.; Lee, S.Y.; Ko, C.H. Seed Dormancy and Germination in Iris laevigata (Iridaceae), A Rare Species in Korea. Flower Res. J. 2022, 30, 75–81. [Google Scholar]
- Pianova, A.S.; Berdasova, K.S.; Mironova, L.N.; Salokhin, A.V.; Sabutski, Y.E. Optimization of Seed Scarification Protocol and Assessment of the Effect of 6-BAP Concentration on Microplants of Iris mandshurica Maxim. (Iridaceae). Bot. Pacifica 2025, 14, 103–108. [Google Scholar] [CrossRef]
- Gillard, M.B.; Castillo, J.M.; Mesgaran, M.B.; Futrell, C.J.; Grewell, B.J. Germination Niche Breadth of Invasive Iris pseudacorus (L.) Suggests Continued Recruitment from Seeds with Global Warming. Am. J. Bot. 2022, 109, 1108–1119. [Google Scholar] [CrossRef]
- Volis, S. Effect of Intra-Seasonal Variation in Precipitation on Seed Germination and Seedling Growth in Iris atrofusca: Implications for Conservation. Isr. J. Ecol. Evol. 2024, 70, 123–129. [Google Scholar] [CrossRef]
- Park, H.B.; Lee, B.-D.; Lee, C.W.; Hwang, J.E.; Park, H.J.; Kim, S.; An, J.; Kim, P.B.; Kim, N.Y. Germination Characteristics and Seed Dormancy of Iris dichotoma Pall., an Endangered Species Native to Korea. Proc. Natl. Inst. Ecol. Repub. Korea 2021, 2, 229–234. [Google Scholar] [CrossRef]
- Hirai, H.; Mori, G. Forcing Culture of Freesia and Dutch Iris Using Spot Cooling System; ISHS: Narita, Japan, 1996. [Google Scholar]
- Hellivan, P.-J. Orris: A Star of Inspiration. Perfum. Flavorist 2009, 34, 36–41. [Google Scholar]
- Meucci, A.; Ghelardi, C.; Maggini, R.; Malorgio, F.; Chietera, G.; Mensuali, A. Micropropagation via Somatic Embryogenesis of Iris pallida Lam. Ecotypes. Plant Cell Tissue Organ Cult. PCTOC 2024, 158, 21. [Google Scholar] [CrossRef]
- Meucci, A.; Ghelardi, C.; Chietera, G.; Mensuali, A. Synthetic Seed Production and Slow Growth Storage of In Vitro Cultured Plants of Iris pallida Lam. Horticulturae 2024, 10, 272. [Google Scholar] [CrossRef]
- Verma, V.; Kumar, A.; Thakur, M.; Bhargava, B.; Priti, S. Meta-Topolin Mediated in Vitro Propagation in an Ornamentally Important Crop Iris × hollandica Tub. Cv. Professor Blaauw and Genetic Fidelity Studies Using SCoT Markers. Plant Cell Tissue Organ Cult. PCTOC 2022, 151, 681–694. [Google Scholar] [CrossRef]
- Yasemin, S.; Beruto, M. A Review on Flower Bulb Micropropagation: Challenges and Opportunities. Horticulturae 2024, 10, 284. [Google Scholar] [CrossRef]
- Jevremović, S.; Milutinović, M.; Veličković, K.; Gašić, U.; Škoro, N.; Puač, N.; Živković, S. Cold Plasma Treatment Alters the Morphology, Oxidative Stress Response and Specialized Metabolite Content in Yellow Iris (I. reichenbachii) Callus. Horticulturae 2025, 11, 781. [Google Scholar] [CrossRef]
- Niketić, M.; Tomović, G.; Siljak-Yakovlev, S. A New Spontaneous Hybrid between the Cultivated and Wild Iris Species from Serbia. Bull. Nat. Hist. Mus. 2018, 11, 189–210. [Google Scholar] [CrossRef]
- Beresford-Kroeger, D. A Garden for Life: The Natural Approach to Designing, Planting, and Maintaining a North Temperate Garden; University of Michigan Press: Ann Arbor, MI, USA, 2004; ISBN 978-0-472-03012-5. [Google Scholar]
- Fan, Z.; Gao, Y.; Guo, L.; Cao, Y.; Liu, R.; Zhang, Q. Phenotypic Variations and Heritability in Hybrid Populations of Bearded Iris. HortScience 2019, 54, 988–992. [Google Scholar] [CrossRef]
- Asgari, E.; Taghizadeh, M.; Abbasifar, A. Exploration and Morphologic Variation of Iris Wild Species with Ornamental Potential. Ornam. Hortic. 2022, 28, 36–48. [Google Scholar] [CrossRef]
- Kemper William Centre for Home Gardening. Iris Fact Sheet, Missouri Botanical Garden. Available online: https://www.missouribotanicalgarden.org/Portals/0/Gardening/Gardening%20Help/Factsheets/Iris22.pdf (accessed on 26 April 2025).
- Crișan, I.; Vidican, R.; Plesa, A.; Mihaiescu, T. Phytoremediation Potential of Iris spp. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric. 2021, 78, 1–10. [Google Scholar] [CrossRef]
- Sandenbergh, E.; Gervazoni, P.; Grewell, B.; Franceschini, C.; Minuti, G.; McGrannachan, C.; Stiers, I.; Coetzee, J. Biology of Invasive Plants 7. Iris pseudacorus L. (Iridaceae). Invasive Plant Sci. Manag. 2025, 18, e6. [Google Scholar] [CrossRef]
- Bilgaiyan, P.; Shivhare, N.; Gowripathi Rao, N.R.N.V. Phytoremediation of Wastewater through Implemented Wetland—A Review. In Proceedings of the 2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023), Pune, India, 15–16 June 2023; EDP Sciences: Pimpri, India, 2023; Volume 405, p. 04026. [Google Scholar]
- Sarti, C.; Cincinelli, A.; Bresciani, R.; Rizzo, A.; Chelazzi, D.; Masi, F. Microplastic Removal and Risk Assessment Framework in a Constructed Wetland for the Treatment of Combined Sewer Overflows. Sci. Total Environ. 2024, 952, 175864. [Google Scholar] [CrossRef]
- Yadav, N.; Govindwar, S.P.; Rane, N.; Ahn, H.-J.; Xiong, J.-Q.; Jang, M.; Kim, S.H.; Jeon, B.-H. Insights on the Role of Periphytic Biofilm in Synergism with Iris pseudacorus for Removing Mixture of Pharmaceutical Contaminants from Wastewater. J. Hazard. Mater. 2021, 418, 126349. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhong, F.; Chen, Y.; Wu, J.; Cheng, S. The Interaction Effects of Aeration and Plant on the Purification Performance of Horizontal Subsurface Flow Constructed Wetland. Int. J. Environ. Res. Public Health 2022, 19, 1583. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.A. Introduction to Floriculture; Academic Press: Cambridge, MA, USA, 2013; ISBN 978-1-4832-6998-6. [Google Scholar]
- Dole, J.M. Research Approaches for Determining Cold Requirements for Forcing and Flowering of Geophytes. HortScience 2003, 38, 341–346. [Google Scholar] [CrossRef]
- Mortazavi, H.; Hassanpour Asil, M. Effects of Temperature and Gibberellic Acid on Forcing and Quality Improvement of Iris (Iris hollandica Cv. ‘Blue Magic’) Cut Flowers. J. Agric. Sci. Sustain. Prod. 2010, 20, 1–14. [Google Scholar]
- Elphinstone, E.D.; Rees, A.R.; Atherton, J.G. Temperature and Development in Iris x hollandica during Pre-Planting Storage. II. Floral Initiation. J. Hortic. Sci. 1990, 65, 185–192. [Google Scholar] [CrossRef]
- Janick, J. Horticultural Reviews, Volume 36; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 978-0-470-52722-1. [Google Scholar]
- Seraya, L.G.; Larina, G.E.; Bondareva, E.V.; Ivanova, I.O.; Polyakova, N.N. Ecological Methods of Protecting Bearded Irises in the Urban Environment. IOP Conf. Ser. Earth Environ. Sci. 2021, 845, 012149. [Google Scholar] [CrossRef]
- Crișan, I. Study on Dynamic and Effects of Arbuscular Mycorrhizae in Some Ornamentals from Cluj Conditions. Ph.D. Thesis, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania, 2020. [Google Scholar]
- Yadav, P.; Yadav, K.; Mishra, A.; Singh, K. An Assessment and Analysis of Diseases of Economically Important Plant Members of Family Iridaceae. J. Plant Dis. Prot. 2024, 131, 329–346. [Google Scholar] [CrossRef]
- Dugan, F.M.; Lupien, S.L.; Vahling-Armstrong, C.M.; Chastagner, G.A.; Schroeder, B.K. Host Ranges of North American Isolates of Penicillium Causing Blue Mold of Bulb Crops. Crop Prot. 2014, 64, 129–136. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, N.; Zhu, Y.; Xue, H.; Piao, C.; Li, Y. Colletotrichum truncatum Causing Anthracnose Disease of Iris lactea in Beijing, China. J. Phytopathol. 2022, 170, 391–398. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Y.; Dong, A.; Liu, X.; Diao, G.; Jia, N.; Zhu, T. First Report of Alternaria alternata Causing Fruit Blight Disease on Iris sanguinea in China. Plant Dis. 2024, 108, 3193. [Google Scholar] [CrossRef]
- Oxspring, S.; Carroll, S.; Bryning, A.; Gaunt, A.; Aspin, A. First Report of Pseudomonas syringae Infecting Iris foetidissima in the United Kingdom. New Dis. Rep. 2024, 50, e70004. [Google Scholar] [CrossRef]
- Karanfil, A.; Korkmaz, S. First Report of Iris Severe Mosaic Virus in Bulbous Irises in Turkey. J. Plant Pathol. 2022, 104, 859–860. [Google Scholar] [CrossRef]
- Grunwald, D.J.; Stroschein, S.M.; Grinstead, S.; Mollov, D.; Rioux, R.A.; Rakotondrafara, A.M. Targeting the Highly Conserved 3′ Untranslated Region of Iris Severe Mosaic Virus for Sensitive Monitoring of the Disease Prevalence in Iris Production. Plant Dis. 2023, 107, 3763–3772. [Google Scholar] [CrossRef]
- Bag, S.; Schwartz, H.F.; Cramer, C.S.; Havey, M.J.; Pappu, H.R. Iris Yellow Spot Virus (Tospovirus: Bunyaviridae): From Obscurity to Research Priority. Mol. Plant Pathol. 2015, 16, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Doyon, J.; Savage, J.; Bailleul, S.; Labelle, S.; Brodeur, J. Susceptibility of Iris (Iridaceae) to Larval Infestation by Neorthacheta dissimilis (Diptera: Scathophagidae). Can. Entomol. 2022, 154, e5. [Google Scholar] [CrossRef]
- Vuleta, A.; Hočevar, K.; Manitašević Jovanović, S.; Raičević, J.; Plećaš, M. Assessment of Iris pumila L. Pollinator and Florivore Diversity in a Common Garden: A Pan-Trap Experiment. In Proceedings of the 4th International Conference on Plant Biology [and] 23rd SPPS Meeting, Belgrade, Serbia, 6–8 October 2022; p. 142. [Google Scholar]
- Minuti, G.; Coetzee, J.A.; Stiers, I. Contrasting Effects of Climate Change on the Invasion Risk and Biocontrol Potential of the Invasive Iris pseudacorus L. between Northern and Southern Hemisphere. Biol. Control 2023, 184, 105290. [Google Scholar] [CrossRef]
- Minuti, G.; Coetzee, J.A.; Ngxande-Koza, S.; Hill, M.P.; Stiers, I. Prospects for the Biological Control of Iris pseudacorus L. (Iridaceae). Biocontrol Sci. Technol. 2021, 31, 314–335. [Google Scholar] [CrossRef]
- Iwashina, T.; Mizuno, T. Flavonoids and Xanthones From the Genus Iris: Phytochemistry, Relationships with Flower Colors and Taxonomy, and Activities and Function. Nat. Prod. Commun. 2020, 15, 1934578X20937151. [Google Scholar] [CrossRef]
- Yan, H.; Lyu, H.; Otgon, O.; Lu, J.; Peng, D.; Zhu, Y.; Jiang, J. Five New Flavonoids and Their Pharmacological Activities from Iris tenuifolia Pall. Fitoterapia 2024, 176, 106022. [Google Scholar] [CrossRef] [PubMed]
- Jaegerova, T.; Zlechovcova, M.; Benes, F.; Kronusova, O.; Kastanek, P.; Hajslova, J. Investigation of Iris versicolor Metabolic Profile and Optimization of the Isolation of Bioactive Components on a Semi-Operation Scale. Process Biochem. 2024, 146, 97–108. [Google Scholar] [CrossRef]
- Galfré, A.; Martin, P.; Petrzilka, M. Direct Enantioselective Separation and Olfactory Evaluation of All Irone Isomers. J. Essent. Oil Res. 1993, 5, 265–277. [Google Scholar] [CrossRef]
- Brenna, E.; Fuganti, C.; Serra, S. Applications of Biocatalysis in Fragrance Chemistry: The Enantiomers of α-, β-, and γ-Irones. Chem. Soc. Rev. 2008, 37, 2443–2451. [Google Scholar] [CrossRef]
- Yamazaki, S.; Miyazaki, M. Synthesis and Olfactory Evaluation of (±)-β-Irone. Sci. Rep. 2025, 15, 23477. [Google Scholar] [CrossRef]
- Inoue, T.; Kiyota, H.; Oritani, T. Synthesis of Both Enantiomers of cis-α-Irone and cis-γ-Irone, Principal Constituents of Iris Oil, via Resolution of (±)-2,2,4-Trimethyl-3-Cyclohexene-1-Carboxylic Acid. Tetrahedron Asymmetry 2000, 11, 3807–3818. [Google Scholar] [CrossRef]
- Chen, X.; T, R.; Esque, J.; Zhang, C.; Shukal, S.; Lim, C.C.; Ong, L.; Smith, D.; André, I. Total Enzymatic Synthesis of cis-α-Irone from a Simple Carbon Source. Nat. Commun. 2022, 13, 7421. [Google Scholar] [CrossRef]
- Brenna, E.; Fuganti, C.; Ronzani, S.; Serra, S. Enzyme-Mediated Syntheses of the Enantiomers of γ-Irones. Helv. Chim. Acta 2001, 84, 3650–3666. [Google Scholar] [CrossRef]
- Živković, U.; Avramov, S.; Miljković, D.; Barišić Klisarić, N.; Tubić, L.; Mišić, D.; Šiler, B.; Tarasjev, A. Genetic and Environmental Factors Jointly Impact Leaf Phenolic Profiles of Iris variegata L. Plants 2021, 10, 1599. [Google Scholar] [CrossRef] [PubMed]
- Mykhailenko, O.; Chetvernya, S.; Bezruk, I.; Buydin, Y.; Dhurenko, N.; Palamarchuk, O.; Ivanauskas, L.; Georgiyants, V. Bioactive Constituents of Iris hybrida (Iridaceae): Processing Effect. Biomed. Chromatogr. 2022, 36, e5369. [Google Scholar] [CrossRef]
- Palchetti, E.; Brilli, L.; Padovan, G.; Mariani, G.; Marini, L.; Moretta, M. Effect of Planting Density and Harvesting Age on Iris pallida Lam. Biomass, Morphology and Orris Concrete Production. Agronomy 2025, 15, 1719. [Google Scholar] [CrossRef]
- Ieri, F.; Vignolini, P.; Urciuoli, S.; Pinelli, P.; Romani, A. The Cultivation of Iris pallida as an Opportunity for the Enhancement of Tuscan Agro-Biodiversity and a Resource for the Local Economy. In Innovation, Quality and Sustainability for a Resilient Circular Economy; Springer: Cham, Switzerland, 2024; pp. 217–223. [Google Scholar]
- Pezzarossa, B.; Borghesi, E.; Pini, R.; Bretzel, F.; Maggini, R.; Malorgio, F. Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy Influence of Pedo-Climatic Conditions on the Quality of Iris pallida Rhizomes. Eur. J. Hortic. Sci. 2020, 85, 100–109. [Google Scholar] [CrossRef]
- Ghasemi, G.; Ayyari, M.; Azimi, M.-H.; Ebadi, M.-T. Rapid Alternative of the Post-Harvest Process to Enhance the Irones Content in Iris germanica L. J. Agric. Food Res. 2025, 20, 101748. [Google Scholar] [CrossRef]
- Kara, N.; Baydar, H. Scent Components in Essential Oil, Resinoids and Absolute of Iris (Iris florentina L.). Anadolu J. Agric. Sci. 2014, 29, 70–74. [Google Scholar] [CrossRef]
- Kara, N.; Gürbüzer, G. Effect of Harvest Times on Rhizoma Yield, Essential Oil Content and Composition in Iris germanica L. Species. Turk. J. Agric.—Food Sci. Technol. 2019, 7, 707–713. [Google Scholar] [CrossRef]
- Roger, B.; Jeannot, V.; Fernandez, X.; Cerantola, S.; Chahboun, J. Characterisation and Quantification of Flavonoids in Iris germanica L. and Iris pallida Lam. Resinoids from Morocco. Phytochem. Anal. 2012, 23, 450–455. [Google Scholar] [CrossRef]
- Orris Oil 8002-73-1. Available online: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3187265.htm (accessed on 28 July 2025).
- Karpitskiy, D.A.; Bessonova, E.A.; Shishov, A.Y.; Kartsova, L.A. Selective Extraction of Plant Bioactive Compounds with Deep Eutectic Solvents: Iris sibirica L. as Example. Phytochem. Anal. 2024, 35, 53–63. [Google Scholar] [CrossRef]
- The Committee on Herbal Medicinal Products (HMPC), Good Agricultural and Collection Practice (GACP) for Starting Materials of Herbal Origin, European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-agricultural-collection-practice-gacp-starting-materials-herbal-origin-revision-1_en.pdf (accessed on 26 April 2025).
- Cherver, T.; Gonçalves, A.; Lepeule, C. Farm Certification Schemes for Sustainable Agriculture—State of Play and Overview in the EU and in Key Global Producing Countries, Concepts and Methods; European Parliment—AGRI Committe: Brussels, Belgium, 2022; pp. 1–103. [Google Scholar]
- Pan, J.; He, S.; Zheng, J.; Shao, J.; Li, N.; Gong, Y.; Gong, X. The Development of an Herbal Material Quality Control Strategy Considering the Effects of Manufacturing Processes. Chin. Med. 2019, 14, 38. [Google Scholar] [CrossRef]
- Mykhailenko, O.; Ivanauskas, L.; Bezruk, I.; Petrikaitė, V.; Georgiyants, V. Application of Quality by Design Approach to the Pharmaceutical Development of Anticancer Crude Extracts of Crocus sativus Perianth. Sci. Pharm. 2022, 90, 19. [Google Scholar] [CrossRef]
- ISO 18054:2004; Oils of Orris Rhizome (Iris pallida Lam. or Iris germanica L.)—Determination of Irone Content—Method Using Gas Chromatography on a Capillary Column. ISO: Geneva, Switzerland, 2024. Available online: https://www.iso.org/standard/29826.html (accessed on 28 July 2025).
- European Directorate for the Quality of Medicines & HealthCare of the Council of Europe. European Pharmacopoeia, 10th ed.; European Directorate for the Quality of Medicines & HealthCare of the Council of Europe: Strasbourg, France, 2009; Volume 1, ISBN 978-92-871-8912-7. [Google Scholar]
- Gooderham, N.J.; Cohen, S.M.; Eisenbrand, G.; Fukushima, S.; Guengerich, F.P.; Hecht, S.S.; Rietjens, I.M.C.M.; Rosol, T.J.; Davidsen, J.M.; Harman, C.L.; et al. FEMA GRAS Assessment of Natural Flavor Complexes: Sage Oil, Orris Root Extract and Tagetes Oil and Related Flavoring Ingredients. Food Chem. Toxicol. 2023, 179, 113940. [Google Scholar] [CrossRef]
- Rogers, A. Going Back to the Roots: A Phytochemical Investigation of the Use of Iris in the Ancient Mediterranean. Ph.D. Thesis, Wesleyan University, Middletown, CT, USA, 2021. [Google Scholar]
- Pliny, T.E. Pliny Natural History: Book XXI: Chapter IXX 100 AD. Available online: https://www.gutenberg.org/files/61113/61113-h/61113-h.htm#BOOK_XXI_CHAP_19 (accessed on 26 April 2025).
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. The Pigment Compedium: A Dictionary of Historical Pigments; Routlege: London, UK, 2004; ISBN 978-0-08-047376-5. [Google Scholar]
- Oztas, F.; Turkmen, A.; Oztas, H.; Turkmen, M. The Medical Properties of Iris and Its Usage in Pharmaceutical, Perfumery and Cosmetic Industries. Med. Res. Its Appl. 2024, 4, 114–124. [Google Scholar] [CrossRef]
- Lim, T.K. Iris x germanica. In Edible Medicinal and Non-Medicinal Plants: Volume 11 Modified Stems, Roots, Bulbs; Lim, T.K., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 27–40. ISBN 978-3-319-26062-4. [Google Scholar]
- Yeon, J.; Suh, S.; Youn, U.; Bazarragchaa, B.; Enebish, G.; Seo, J. Methanol Extract of Mongolian Iris bungei Maxim. Stimulates 3T3-L1 Adipocyte Differentiation. J. Nanosci. Nanotechnol. 2021, 21, 3943–3949. [Google Scholar] [CrossRef]
- Briot, E. From Industry to Luxury: French Perfume in the Nineteenth Century. Bus. Hist. Rev. 2011, 85, 273–294. [Google Scholar] [CrossRef]
- Hoang, L.; Beneš, F.; Fenclová, M.; Kronusová, O.; Švarcová, V.; Řehořová, K.; Baldassarre Švecová, E.; Vosátka, M.; Hajšlová, J.; Kaštánek, P.; et al. Phytochemical Composition and In Vitro Biological Activity of Iris spp. (Iridaceae): A New Source of Bioactive Constituents for the Inhibition of Oral Bacterial Biofilms. Antibiotics 2020, 9, 403. [Google Scholar] [CrossRef]
- Medic, B.S.; Mujkić, A.J.-; Cubara, B.; Pasic, A.D.-; Kurtovic, J.H.; Bajrović, K.; Omeragić, E.; Dedić, M.; Bogunić, F.; Pojskic, L. Crude Extracts of Three Iris Species as Sources of MRSA Antimicrobial Compounds. Eur. J. Biol. 2024, 83, 182–188. [Google Scholar] [CrossRef]
- Abdel-Baki, P.M.; El-Sherei, M.M.; Khaleel, A.E.; Abdel-Aziz, M.M.; Okba, M.M. Irigenin, a Novel Lead from Iris confusa for Management of Helicobacter pylori Infection with Selective COX-2 and HpIMPDH Inhibitory Potential. Sci. Rep. 2022, 12, 11457. [Google Scholar] [CrossRef]
- Unver, T.; Uslu, H.; Gurhan, I.; Goktas, B. Screening of Phenolic Components and Antimicrobial Properties of Iris persica L. Subsp. Persica Extracts by in Vitro and in Silico Methods. Food Sci. Nutr. 2024, 12, 6578–6594. [Google Scholar] [CrossRef]
- Lê, H.G.; Hwang, B.S.; Choi, J.-S.; Jeong, Y.T.; Kang, J.-M.; Võ, T.C.; Oh, Y.T.; Na, B.-K. Iris Setosa Pall. Ex Link Extract Reveals Amoebicidal Activity against Acanthamoeba castellanii and Acanthamoeba polyphaga with Low Toxicity to Human Corneal Cells. Microorganisms 2024, 12, 1658. [Google Scholar] [CrossRef]
- Kumar, R.; Bhattacharjee, A.; Tiwari, S. Plant-Derived Ribosome-Inactivating Proteins Involved in Defense against Plant Viruses. Eur. J. Plant Pathol. 2022, 162, 515–537. [Google Scholar] [CrossRef]
- Potdar, M.B.; Patil, K.; Usman, M.R.M.; Wadekar, R.R. An Update on the Role of Antioxidants in Health and Disease Prevention. In Antioxidants as Nutraceuticals; Apple Academic Press: Palm Bay, FL, USA, 2025; ISBN 978-1-003-53487-7. [Google Scholar]
- Budzianowska, A.; Banaś, K.; Budzianowski, J.; Kikowska, M. Antioxidants to Defend Healthy and Youthful Skin—Current Trends and Future Directions in Cosmetology. Appl. Sci. 2025, 15, 2571. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants: A Comprehensive Review. Arch. Toxicol. 2025, 99, 1893–1997. [Google Scholar] [CrossRef]
- Amin, H.I.M.; Hussain, F.H.S.; Najmaldin, S.K.; Thu, Z.M.; Ibrahim, M.F.; Gilardoni, G.; Vidari, G. Phytochemistry and Biological Activities of Iris Species Growing in Iraqi Kurdistan and Phenolic Constituents of the Traditional Plant Iris postii. Molecules 2021, 26, 264. [Google Scholar] [CrossRef]
- Yehia, S.M.; Ayoub, I.M.; Watanabe, M.; Devkota, H.P.; Singab, A.N.B. Metabolic Profiling, Antioxidant, and Enzyme Inhibition Potential of Iris pseudacorus L. from Egypt and Japan: A Comparative Study. Sci. Rep. 2023, 13, 5233. [Google Scholar] [CrossRef]
- Chandni; Ahmad, S.S.; Saloni, A.; Bhagat, G.; Ahmad, S.; Kaur, S.; Khan, Z.S.; Kaur, G.; Abdi, G. Phytochemical Characterization and Biomedical Potential of Iris kashmiriana Flower Extracts: A Promising Source of Natural Antioxidants and Cytotoxic Agents. Sci. Rep. 2024, 14, 24785. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, H.-J.; Yoon, E.-J.; Lee, H.; Ji, Y.; Kim, Y.; Park, S.-J.; Kim, J.; Bae, S. Protective Effect of Iris germanica L. Rhizome-Derived Exosome against Oxidative-Stress-Induced Cellular Senescence in Human Epidermal Keratinocytes. Appl. Sci. 2023, 13, 11681. [Google Scholar] [CrossRef]
- Bilal, M.; Naz, A.; Khan, A.; Salman; Ghaffar, R.; Abrar, A. Assessment of Iris albicans Lange as Potential Antimicrobial and Analgesic Agent. PLoS ONE 2023, 18, e0280127. [Google Scholar] [CrossRef]
- Michalak, A.; Krauze-Baranowska, M.; Migas, P.; Kawiak, A.; Kokotkiewicz, A.; Królicka, A. Iris pseudacorus as an Easily Accessible Source of Antibacterial and Cytotoxic Compounds. J. Pharm. Biomed. Anal. 2021, 195, 113863. [Google Scholar] [CrossRef]
- Tie, F.-F.; Fu, Y.-Y.; Hu, N.; Chen, Z.; Wang, H.-L. Isolation of Oligostilbenes from Iris lactea Pall. var. chinensis (Fisch.) Koidz and Their Anti-Inflammatory Activities. RSC Adv. 2022, 12, 32912–32922. [Google Scholar] [CrossRef]
- Abdullah, F.O. Phytochemical Identification by LC-ESI MS/MS Method of the Iris barnumiae Methanolic Extract and Its Antiproliferative and Apoptosis-Inducing Effects. Biomass Convers. Biorefinery 2024, 14, 30983–30995. [Google Scholar] [CrossRef]
- Ranđelović, D.; Jakovljević, K.; Zeremski, T.; Pošćić, F.; Baltrėnaitė-Gedienė, E.; Noulas, C.; Mašková, P.; Jurković, J.; Baragaño Coto, D.; Milićević, T.; et al. Phytoremediation Potential of Metallophytes in Europe: Progress, Enhancement Strategies, and Biomass Utilisation. J. Environ. Manag. 2025, 391, 126516. [Google Scholar] [CrossRef]
- Greksa, A.; Mihajlović, I.; Ljubojević, M.; Blagojević, B.; Vijuk, M.I.; Podunavac-Kuzmanović, S.; Kovačević, S.; Štrbac, M.P. Investigation of Juncus and Iris Plant Potential—Two Native Serbian Species for Utilization in Nature-Based Solutions towards Improving the Quality of Water Contaminated with Zinc and Supporting Biodiversity. Sustainability 2024, 16, 6467. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, Z.; Yang, X.; Sheng, L.; Mao, H.; Zhu, S. Metagenomics Reveal Arbuscular Mycorrhizal Fungi Altering Functional Gene Expression of Rhizosphere Microbial Community to Enhance Iris tectorum’s Resistance to Cr Stress. Sci. Total Environ. 2023, 895, 164970. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Huang, H.; Oda, M.; Soda, S. Constructed Wetlands Planted with Iris for Treatment of Wastewater Simulating a Typical Mine Drainage in Japan: Effects of Organic-Feeding on Removal of Zn and Cd. J. Asia-Jpn. Res. Inst. Ritsumeikan Univ. 2024, 6, 35. [Google Scholar] [CrossRef]
- Brunhoferova, H.; Venditti, S.; Laczny, C.C.; Lebrun, L.; Hansen, J. Bioremediation of 27 Micropollutants by Symbiotic Microorganisms of Wetland Macrophytes. Sustainability 2022, 14, 3944. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Niu, Y.; Zhang, Z.; Liu, J.; Wang, X.; Wang, J.; Li, J.; Wang, L. Enhanced Cadmium Adsorption Mechanisms Utilizing Biochar Derived from Different Parts of Wetland Emergent Plants Iris sibirica L. Processes 2025, 13, 1520. [Google Scholar] [CrossRef]
- Yu, J.; Lee, J.-H.; Song, M.-H.; Keum, Y.-S. Metabolomic Responses of Lettuce (Lactuca sativa) to Allelopathic Benzoquinones from Iris Sanguinea Seeds. J. Agric. Food Chem. 2023, 71, 5143–5153. [Google Scholar] [CrossRef] [PubMed]
- Sothearith, Y.; Appiah, K.S.; Sophea, C.; Smith, J.; Samal, S.; Motobayashi, T.; Fujii, Y. Influence of β-Ionone in the Phytotoxicity of the Rhizome of Iris pallida Lam. Plants 2024, 13, 326. [Google Scholar] [CrossRef]
- Shurigin, V.; Alimov, J.; Davranov, K.; Gulyamova, T.; Egamberdieva, D. The Diversity of Bacterial Endophytes from Iris pseudacorus L. and Their Plant Beneficial Traits. Curr. Res. Microb. Sci. 2022, 3, 100133. [Google Scholar] [CrossRef]
- Oloumi, H.; Khaleghi, M.; Dalvand, A. Isolation and Identification of Endophytic Actinobacteria from Iris persica and Echium amoenum Plants and Investigation of Their Effects on Germination and Growth of Wheat Plant. Food Sci. Nutr. 2023, 11, 5296–5303. [Google Scholar] [CrossRef]
Irone Isomers | Origin | Prevalence in Orris | Compound Scent |
---|---|---|---|
cis-α-irone | natural [8] | major constituent [149,150,151] | floral, green, light, [150], fine iris scent [148], woody and fruity [147] |
trans-α-irone | natural [8] | minor constituent [149] | weak scent [149], sweet, dry, violet, rosy [147] |
cis-γ-irone | natural [8] | major constituent [149,150] | floral, sweet, green [150], strong powdery [149], woody, dry, rosy [147] |
trans-γ-irone | possibly occurs by isomerization from trans-α-irone [148], most likely an artifact from processing/aging | minor constituent [148] | soft orris butter, weak [148], woody [152], chemical-like [147] |
β-irone | not biosynthetic, an artifact occurring from processing/aging [8] | minor constituent [149] | strong transparent fruity/green top note, rich violet floral middle note, lasting powdery and woody note [149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crișan, I. The Genus Iris Tourn. ex L.: Updates on Botany, Cultivation, Novel Niches and Impactful Applications. Plants 2025, 14, 2870. https://doi.org/10.3390/plants14182870
Crișan I. The Genus Iris Tourn. ex L.: Updates on Botany, Cultivation, Novel Niches and Impactful Applications. Plants. 2025; 14(18):2870. https://doi.org/10.3390/plants14182870
Chicago/Turabian StyleCrișan, Ioana. 2025. "The Genus Iris Tourn. ex L.: Updates on Botany, Cultivation, Novel Niches and Impactful Applications" Plants 14, no. 18: 2870. https://doi.org/10.3390/plants14182870
APA StyleCrișan, I. (2025). The Genus Iris Tourn. ex L.: Updates on Botany, Cultivation, Novel Niches and Impactful Applications. Plants, 14(18), 2870. https://doi.org/10.3390/plants14182870