A Study of the Different Strains of the Genus Azospirillum spp. on Increasing Productivity and Stress Resilience in Plants
Abstract
:1. Introduction
2. Plant Growth Promotion
3. Azospirillum spp. Benefits and Importance
4. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. The roles of a light-dependent protochlorophyllide oxidoreductase (LPOR), and ATP-dependent dark operative protochlorophyllide oxidoreductase (DPOR) in chlorophyll biosynthesis. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12456. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-COVID-19 era. Appl. Sci. 2021, 11, 7889. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini. Rev. Med. Chem. 2021, 21, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H. The effectiveness of Rhizobium bacteria on soil fertility and sustainable crop production under cover and catch crops management and green manuring. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12560. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Lin, M. Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation 2022, 8, 688. [Google Scholar] [CrossRef]
- Boyko, A.S.; Dmitrenok, A.S.; Fedonenko, Y.P.; Zdorovenko, E.L.; Konnova, S.A.; Knirel, Y.A.; Ignatov, V.V. Structural analysis of the O-polysaccharide of the lipopolysaccharide from Azospirillum brasilense Jm6B2 containing 3-O-methyl-D-rhamnose (D-acofriose). Carbohydr. Res. 2012, 355, 92–95. [Google Scholar] [CrossRef]
- Soleymani, A.; Shahrajabian, M.H. The effects of Fe, Mn, and Zn foliar application on yield, ash and protein percentage of forage sorghum in climatic condition of Esfahan. Int. J. Biol. 2023, 4, 92. [Google Scholar] [CrossRef]
- Soleymani, A.; Shahrajabian, M.H. Effect of planting dates and different levels of nitrogen on seed yield and yield components of nuts and sunflower. Res. Crops 2012, 13, 521–524. [Google Scholar]
- Soleymani, A.; Shahrajabian, M.H.; Karimi, M. Growth behaviour of elite barley lines as influenced by planting date and plant densities. Res. Crops 2012, 13, 463–466. [Google Scholar]
- Soleymani, A.; Khoshkharam, M.; Shahrajabian, M.H. Influence of green manures and crop residue management on yield and yield components of silage corn. Res. Crops 2012, 13, 871–876. [Google Scholar]
- Gomez, F.; Martinez-Toledo, M.V.; Salmeron, V.; Rodelas, B.; Gonzalez-Lopez, J. Influence of the insecticides profenofos and diazinon on the microbial activities of Azospirillum brasilense. Chemosphere 1999, 39, 945–957. [Google Scholar] [CrossRef]
- Felker, P.; Medina, D.; Soulier, C.; Velicce, G.; Velarde, M.; Gonzalez, C. A survey of environmental and biological factors (Azospirillum spp., Agrobacterium rhizogenes, Pseudomonas aurantiaca) for their influence in rooting cuttings of Prosopis alba clones. J. Arid Environ. 2005, 61, 227–247. [Google Scholar] [CrossRef]
- Sigida, E.N.; Fedonenko, Y.P.; Zdorovenko, E.L.; Konnova, S.A.; Shashkov, A.S.; Ignatov, V.V.; Knirel, Y.A. Structure of repeating units of a polysaccharide(s) from the lipopolysaccharide of Azospirillum brasilense SR80. Carbohydr. Res. 2013, 371, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Sigida, E.N.; Fedonenko, Y.P.; Shashkov, A.S.; Grinev, V.S.; Zdorovenko, E.L.; Konnova, S.A.; Ignatov, V.V.; Knirel, Y.A. Structural studies of the polysaccharides from the lipopolysaccharides of Azospirillum brasilense Sp246 and SpBr14. Carbohydr. Res. 2014, 398, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Palacios, O.A.; Choix, F.J.; Bashan, Y.; Bashan, L.E.D. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions. Res. Microbiol. 2016, 167, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.J.; Larraburu, E.E.; Llorente, B.E. Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Ind. Crops Prod. 2015, 76, 41–48. [Google Scholar] [CrossRef]
- Volfson, V.; Fibach-Paldi, S.; Paulucci, N.S.; Dardanelli, M.S.; Matan, O.; Burdman, S.; Okon, Y. Phenotypic variation in Azospirillum brasilense Sp7 does not influence plant growth promotion effects. Soil Biol. Biochem. 2013, 67, 255–262. [Google Scholar] [CrossRef]
- Soleymani, A.; Khoshkharam, M.; Shahrajabian, M.H. Germination rate and initial growth of silage corn growth under various fertility systems. Res. Crops 2012, 13, 1035–1038. [Google Scholar]
- Soleymani, A.; Shahrajabian, M.H. Effects of planting dates and row distance on sugar content, root yield and solar radiation absorption in sugar beet at different plant densities. Rom. Agric. Res. 2017, 34, 145–155. [Google Scholar]
- Sigida, E.N.; Dedonenko, Y.P.; Shashkov, A.S.; Zdorovenko, E.L.; Konnova, S.A.; Ignatov, V.V.; Knirel, Y.A. Structure of the polysaccharides from the lipopolysaccharide of Azospirillum brasilense Jm125A2. Carbohydr. Res. 2015, 416, 37–40. [Google Scholar] [CrossRef]
- Wu, G.-K.; Zhao, M.-X.; Chen, S.-R.; Sun, Y.-N.; Qin, S.-F.; Wang, A.-J.; Ye, Q.-F.; Alwathnani, H.; You, L.-X.; Rensing, C. Antioxidant CeO2 doped with carbon dots enhance ammonia production by an electroactive Azospirillum humicireducens SgZ-5T. Chemosphere 2023, 341, 140094. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. The insight and survey on medicinal properties and nutritive components of shallot. J. Med. Plants Res. 2019, 13, 452–457. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Soybean seeds treated with single walled carbon naotubes (SwCNTs) showed enhanced drought tolerance during germination. Int. J. Adv. Biol. Biomed. Res. 2020, 8, 9–16. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabinan, M.H.; Cheng, Q. Nitrogen fixation and diazotrophs—A review. Rom. Biotechnol. Lett. 2021, 26, 2834–2845. [Google Scholar] [CrossRef]
- Brenholtz, G.R.; Tamir-Ariel, D.; Okon, Y.; Burdman, S. Caortenoid production and phenotypic variation in Azospirillum brasilense. Res. Microbiol. 2017, 168, 493–501. [Google Scholar] [CrossRef]
- Palacios, O.A.; Lopez, B.R.; Palacios-Espinosa, A.; Hernandez-Sandoval, F.E.; de-Bashan, L.E. The immediate effect of riboflavin and lumichrome on the mitigation of saline stress in the microalga Chlorella sorokiniana by the plant-growth-promoting bacterium Azospirillum brasilense. Algal Res. 2021, 58, 102424. [Google Scholar] [CrossRef]
- Pham, T.-M.; Bui, X.D.; Trang, L.V.K.; Le, T.-M.; Nguyen, M.L.; Tringh, D.-M.; Phuong, N.T.D.; Khoo, K.S.; Chew, K.W.; Show, P.L. Isolation of indole-3-acetic acid-producing Azospirillum brasilense from Vietnamese wet rice: Co-immobilization of isolate and microalgae as a sustainable biorefinery. J. Biotechnol. 2022, 349, 12–20. [Google Scholar] [CrossRef]
- Cruz-Hernandez, M.A.; Mendoza-Herrera, A.; Bocanegra-Garcia, V.; Rivera, G. Azospirillum spp. from plant growth-promoting bacteria to their use in bioremediation. Microorganisms 2022, 10, 1057. [Google Scholar] [CrossRef]
- Sigida, E.N.; Shashkov, A.S.; Zdorovenko, E.L.; Konnova, S.A.; Fedonenko, Y.P. Structure of the O-specific polysaccharide from Azospirillum formosense CC-Nfb-7(T). Carbohydr. Res. 2020, 494, 108060. [Google Scholar] [CrossRef]
- Pagnussat, L.A.; Nascimento, M.D.; Maroniche, G.; Gonorazky, G.; Rizza, L.S.; Creus, C.; Curatti, L. Azospitillum baldaniorum improves acclimation, lipid productivity and oxidative response of a microalga under salt stress. Algal Res. 2023, 74, 103192. [Google Scholar] [CrossRef]
- Rozier, C.; Gerin, F.; Czarnes, S.; Legendre, L. Biopriming of maize germination by the plant growth-promotion rhizobacterium Azospirillum lipoferum CRT1. J. Plant Physiol. 2019, 237, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Nia, S.H.; Zarea, M.J.; Rejali, F.; Varma, A. Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. J. Saudi Soc. Agric. Sci. 2012, 11, 113–121. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A love input cropping management tool for sustainable farming vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules 2021, 11, 819. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Cheng, Q.; Sun, W. The importance of neglected and underutilized medicinal plants from South America in modern pharmaceutical sciences. Lett. Drug Des. Discov. 2023, 19, 1688–1706. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Kuang, Y.; Cui, H.; Fu, L.; Sun, W. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses. Curr. Org. Chem. 2023, 27, 782–806. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. The significance and importance of dPCR, qPCR, and SYBR green PCR kit in the detection of numerous diseases. Curr. Pharm. Des. 2024, 30, 169–179. [Google Scholar] [CrossRef]
- Kumar, S.; Kateriya, S.; Singh, V.S.; Tanwar, M.; Agarwal, S.; Singh, H.; Khurana, J.P.; Amla, D.V.; Tripathi, A.L. Bacteriophytochrome controls carotenoid-independent response to photodynamic stress in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7. Sci. Rep. 2012, 2, 872. [Google Scholar] [CrossRef]
- Housh, A.B.; Waller, S.; Sopko, S.; Powell, A.; Benoit, M.; Wilder, S.L.; Guthrie, J.; Schueller, M.J.; Ferrieri, R.A. Azospirillum brasilense bacterial promotes Mn2+ uptake in maize with benefits to leaf photosynthesis. Microorganisms 2022, 10, 1290. [Google Scholar] [CrossRef]
- Cassan, F.; Diaz-Zorita, M. Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biol. Biochem. 2016, 103, 117–130. [Google Scholar] [CrossRef]
- Cuatlayotl-Olarte, R.; Xiqui-Vazquez, M.L.; Reyes-Carmona, S.R.; Mancilla-Simbro, C.; Baca, B.E.; Ramirez-Mata, A. Aldehyde dehydrogenase diversity in Azospirillum genomes. Diversity 2023, 15, 1178. [Google Scholar] [CrossRef]
- Silva, P.S.T.; Cassiolato, A.M.R.; Galindo, F.S.; Jalal, A.; Nogueira, T.A.R.; Oliveira, C.R.D.S.; Filho, M.C.M.T. Azospirillum brasilense and Zinc rates effect on fungal root colonization and yield of wheat-maize in tropical Savannah conditions. Plants 2022, 11, 3154. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Weng, Y.; You, Y.; Xu, Q.; Li, H.; Li, Y.; Liu, H.; Du, S. Inoculation with abscisic acid (ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil. Environ. Poll. 2020, 257, 113497. [Google Scholar] [CrossRef] [PubMed]
- Umesha, S.; Singh, P.K.; Singh, R.P. Microbial biotechnology and sustainable agriculture. In Biotechnology for Sustainable Agriculture: Chapter 6; Singh, R.L., Monda, S., Eds.; Woodhead Publishing: Cambridge, UK; Elsevier: Chennai, India, 2018; pp. 185–205. [Google Scholar]
- Kong, Z.; Glick, B.R. The role of plant growth-promoting bacteria in metal phytoremediation. Adv. Microb. Physiol. 2017, 71, 97–132. [Google Scholar]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef]
- Goswami, D.; Thakker, J.N.; Dhandhukia, P.C. Portraying mechanisms of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agric. 2016, 2, 1127500. [Google Scholar]
- Mishra, P.K.; Joshi, P.; Suyal, P.; Bisht, J.K.; Bhatt, J.C. Potential of phosphate solubilizing microorganisms in crop production. In Bioresources for Sustainable Plant Nutrient Management; Satish Serial Publishing House: New Delhi, India, 2014; pp. 201–222. [Google Scholar]
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Mechanisms of action of plant growth-promoting bacteria. World J. Microbiol. Biotechnol. 2017, 33, 197. [Google Scholar] [CrossRef]
- Sulbaran, M.; Perez, E.; Ball, M.M.; Bahsas, A.; Yarzabal, L.A. Characterization of the mineral phosphate-solubilizing activity of Pantoea aglomerans MMB051 isolated from an iron-rich soil in southeastern Venezuela (Bolivar State). Curr. Microbiol. 2009, 58, 378–383. [Google Scholar] [CrossRef]
- Mamta, R.P.; Pathania, V.; Gulati, A.; Singh, B.; Bhanwra, R.K.; Tewari, R. Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Appl. Soil Ecol. 2010, 46, 222–229. [Google Scholar] [CrossRef]
- Mehnaz, S.; Weselowsi, B.; Lazarovits, G. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int. J. Syst. Evol. Microbiol. 2007, 57, 620–624. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, M.; Yu, X.; Xie, Z. 7-Hydroxytropolone produced and utilized as an iron-scavenger by Pseudomonas donghuensis. BioMetals 2016, 29, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Lalitha, S. Plant growth-promoting microbes: A boon for sustainable agriculture. In Sustainable Agriculture Towards Food Security; Dhanarajan, A., Ed.; Springer: Singapore, 2017; pp. 125–158. [Google Scholar]
- Khoshkharam, M.; Rezaei, A.; Soleymani, A.; Shahrajabian, M.H. Effects of tillage and residue management on yield components and yield of maize in second cropping after barley. Res. Crops 2010, 11, 659–666. [Google Scholar]
- Vasseur-Coronado, M.; Dupre du Boulois, H.; Pertot, I.; Puopolo, G. Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products. Microbiol. Res. 2021, 245, 126672. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef]
- Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R.A. Comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl. Biochem. Biotechnol. 2015, 176, 670–699. [Google Scholar] [CrossRef]
- Sigida, E.N.; Zdorovenko, E.L.; Shashkov, A.S.; Dmitrenok, A.S.; Kondyurina, N.K.; Konnova, S.A.; Fedonenko, Y.P. Structural studies of the O polysaccharides from the lipopolysaccharides of Azospirillum thiophilum BV-ST and Azospirillum griseum L-25-5w-1T. Carbohydr. Res. 2024, 538, 109089. [Google Scholar] [CrossRef]
- Maroniche, G.A.; Garci, J.E.; Salcedo, F.; Creus, C.M. Molecular identification of Azospirillum spp.: Limitations of 16S rRNA and qualities of rpoD as genetic markers. Microbiol. Res. 2017, 195, 1–10. [Google Scholar] [CrossRef]
- Ben Dekhil, S.; Cahill, M.; Stackebrandt, E.; Sly, L.I. Transfer of Conglomeromonas largomobilis subsp. to the genus Azospirillum as Azospirillum largomobile comb. Nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new types species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst. Appl. Microbiol. 1997, 20, 72–77. [Google Scholar]
- Xie, C.-H.; Yokota, A. Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int. J. Syst. Evol. Microbiol. 2005, 55, 1435–1438. [Google Scholar] [CrossRef]
- Beijerinck, M.W. Uber ein Spirillum, welches frein Stickstoof binden Kann? Zentralbl Bakteriol Parasitenkd Infektionskr 1925, 63, 353–359. [Google Scholar]
- Khammas, K.M.; Ageron, E.; Grimont, P.A.D.; Kaiser, P. Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots. Res. Microbiol. 1991, 140, 679–693. [Google Scholar] [CrossRef]
- Lin, S.Y.; Shen, F.T.; Young, L.S.; Zhu, Z.L.; Chen, W.M.; Young, C.C. Azospirillum formosense sp. nov., a diazotroph from agricultural soil. Int. J. Syst. Evol. Microbiol. 2012, 62, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Lavrinenko, K.; Chernousova, E.; Gridneva, E.; Dubinina, G.; Akimov, V.; Kuever, J.; Lysenko, A.; Grabovich, M. Azospirillum thiphilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int. J. Syst. Evol. Microbiol. 2010, 60, 2832–2837. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, R.; Feng, J.; Wang, C.; Chen, J. Azospirillum griseum sp. nov., isolated from lakewater. Int. J. Syst. Evol. Microbiol. 2019, 69, 3676–3681. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, X.-J.; Liu, H.-C.; Zhou, Y.-G.; Wu, X.-L.; Nie, Y.; Kang, Y.-Q.; Cai, M. Azospirillum oleiclasticum sp. nov, a nitrogeen-fixing and heavy oil degradaing bacterium isolated from an oil production mixture of Yumen Oilfield. Syst. Appl. Microbiol. 2021, 44, 126171. [Google Scholar] [CrossRef]
- Young, C.C.; Hupfer, H.; Siering, C.; Ho, M.J.; Arun, A.B.; Lai, W.A.; Rekha, P.D.; Shen, F.T.; Hung, M.H.; Chen, W.M.; et al. Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 2008, 58, 959–963. [Google Scholar] [CrossRef]
- Lin, S.Y.; Young, C.C.; Hupfer, H.; Siering, C.; Arun, A.B.; Chen, W.M.; Lai, W.A.; Shen, F.T.; Rekha, P.D.; Yassin, A.F. Azospirillum picis sp. nov., isolated from discarded tar. Int. J. Syst. Evol. Microbiol. 2009, 59, 761–765. [Google Scholar] [CrossRef]
- Lin, S.Y.; Liu, Y.C.; Hameed, A.; Hsu, Y.H.; Lai, W.A.; Shen, F.T.; Young, C.C. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int. J. Syst. Evol. Microbiol. 2013, 63, 3762–3768. [Google Scholar] [CrossRef]
- Zhou, S.; Han, L.; Wang, Y.; Yang, G.; Li, Z.; Hu, P. Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. Int. J. Syst. Evol. Microbiol. 2013, 63, 2618–2624. [Google Scholar] [CrossRef]
- Tarrand, J.J.; Krieg, N.R.; Dobereiner, J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Reijerinckia) comb., nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 1979, 24, 967–980. [Google Scholar] [CrossRef]
- Reinhold, B.; Hurek, T.; Fendrik, I.; Pot, B.; Gillis, M.; Kersters, K.; Thielemans, S.; De Ley, J. Azospirillum halopraederens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) kunth). Int. J. Syst. Bacteriol. 1987, 37, 43–51. [Google Scholar] [CrossRef]
- Eckert, B.; Weber, O.B.; Kirchhof, G.; Halbritter, A.; Stoffels, M.; Hartmann, A.; Kirchhof, G.; Halbritter, A.; Eckert, B. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with C4-grass Miscanthus. Int. J. Syst. Evol. Microbiol. 2001, 51, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Wang, H.; Zhang, G.; Hou, W.; Liu, Y.; Wang, E.T.; Tan, Z. Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int. J. Syst. Evol. Microbiol. 2006, 56, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Mehnaz, S.; Weselowski, B.; Lazarovits, G. Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int. J. Syst. Evol. Microbiol. 2007, 57, 2805–2809. [Google Scholar] [CrossRef]
- Mehnaz, S. Secondary metabolites of Pseudomonas aurantiaca and their role in plant growth promotion. In Plant Microbe Symbiosis: Fundamentals and Advances; Arora, N.K., Ed.; Springer: New Delhi, India, 2013; pp. 373–393. [Google Scholar]
- Zhou, Y.; Wei, W.; Wang, X.; Xu, L.; Lai, R. Azospirillum palatum sp. nov. isolated from forest soil in Zhejiang province, China. J. Gen. Appl. Microbiol. 2009, 55, 1–7. [Google Scholar] [CrossRef]
- Lin, S.Y.; Hameed, A.; Liu, Y.C.; Hsu, Y.H.; Lai, W.A.; Shen, F.T.; Young, C.C. Azospirillum soli sp. nov., a nitrogen-fixing species isolated from agricultural soil. Int. J. Syst. Evol. Microbiol. 2015, 65, 4601–4607. [Google Scholar] [CrossRef]
- Young, C.C.; Lin, S.Y.; Hameed, A.; Liu, Y.C.; Hsu, Y.H.; Huang, H.I.; Lai, W.A. Azospirillum Agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. Int. J. Syst. Evol. Microbiol. 2016, 66, 1453–1458. [Google Scholar]
- Cangahuala-Inocente, G.C.; Amaral, F.P.D.; Faleiro, A.C.; Huergo, L.F.; Arisi, A.C.M. Identification of six differentially accumulated proteins of Zea mays seedlings (DKB240 variety) inoculated with Azospirillum brasilense strain FP2. Eur. J. Soil Biol. 2013, 58, 45–50. [Google Scholar] [CrossRef]
- Santos, S.; Neto, I.F.F.; Machado, M.D.; Soares, H.M.V.M. Siderophore production by Bacillus megaterium: Effect of growth phase and cultural conditions. Appl. Biochem. Biotechnol. 2014, 172, 549–560. [Google Scholar] [CrossRef]
- Xie, B.; Xu, K.; Zhao, H.X.; Chen, S.F. Isolation of transposon mutants from Azospirillum brasilense Yu62 and characterization of genes involved in indole-3-acetic acid biosynthesis. FEMS Microbiol. Lett. 2005, 248, 57–63. [Google Scholar] [CrossRef]
- Peng, H.; de-Bashan, L.E.; Higgins, B.T. Azospirillum brasilense reduces oxidative stress in the green microalgae Chlorella sorokiniana under different stressors. J. Biotechnol. 2021, 325, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Pan, W.; Zhang, R.; Lu, Q.; Xue, W.; Wu, C.; Song, B.; Du, S. Inoculation with Bacillus subtilis and Azospirillum brasilense produces abscisic acid that reduces Irt1-mediated cadmium uptake of roots. J. Agric. Food Chem. 2018, 66, 5229–5236. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.C.; Bottini, R.; Piccoli, P.N. Azospirillum brasilense Sp245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul. 2008, 54, 97–103. [Google Scholar] [CrossRef]
- Belimov, A.A.; Dietz, K.J. Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol. Res. 2000, 155, 113–121. [Google Scholar] [CrossRef]
- Rabiei, Z.; Hosseini, S.J.; Pirdashti, H.; Hazrati, S. Physiological and biochemical traits in Coriander affected by plant growth-promoting rhizobacteria under salt stress. Heliyon 2020, 6, e05321. [Google Scholar] [CrossRef]
- Marastoni, L.; Pii, Y.; Maver, M.; Valentinuzzi, F.; Cesco, S.; Mimmo, T. Role of Azospirillum brasilense in triggering different Fe chelate reductase enzymes in cucumber plants subjected to both nutrient deficiency and toxicity. Plant Physiol. Biochem. 2019, 136, 118–126. [Google Scholar] [CrossRef]
- Omer, A.M.; Osman, M.S.; Badawy, A.A. Inoculation with Azospirillum brasilense and/or Pseudomonas geniculate reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. Bot. Stud. 2022, 63, 15. [Google Scholar] [CrossRef]
- Cura, J.A.; Franz, D.R.; Filosofia, J.E.; Balestrasse, K.B.; Burgueno, L.E. Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms 2017, 5, 41. [Google Scholar] [CrossRef]
- Bano, W.; Ilyas, N.; Bano, A.; Zafar, N.; Akram, A.; Hassan, F. Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak. J. Bot. 2013, 45, 13–20. [Google Scholar]
- Pan, W.; Lu, Q.; Xu, Q.R.; Zhang, R.R.; Li, H.Y.; Yang, Y.H.; Liu, H.J.; Du, S.T. Abscisic acid-generating bacteria can reduce Cd concentration in pakchoi grown in Cd-contaminated soil. Ecotoxicol. Environ. Saf. 2019, 177, 100–107. [Google Scholar] [CrossRef]
- Cui, Q.; Liu, D.; Chen, H.; Qiu, T.; Zhao, S.; Duan, C.; Cui, Y.; Zhu, X.; Chao, H.; Wang, Y.; et al. Synergistic interplay between Azospirillum brasilense and exogenous signaling molecule H2S promotes Cd stress resistance and growth in pak choi (Brassica chinensis L.). J. Hazard Mat. 2023, 444, 130425. [Google Scholar] [CrossRef] [PubMed]
- Alzate Zuluaga, M.Y.; Miras-Moreno, B.; Monterisi, S.; Rouphael, Y.; Colla, G.; Lucini, L.; Cesco, S.; Pii, Y. Integrated metabolomics and morpho-biochemical analyses reveal a better performance of Azospirillum brasilense over plant-derived biostimulants in counteracting salt stress in tomato. Int. J. Mol. Sci. 2022, 23, 14216. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, M.S.; Raza, M.A.S.; Saleem, M.F.; Khan, I.H.; Ahmad, S.; Iqbal, R.; Manevski, K. Investigating the effect of Azospirillum brasilense and Rhizobium pisi on agronomic traits of wheat (Triticum aestivum L.). Arch. Agron. Soil Sci. 2019, 11, 1554–1564. [Google Scholar] [CrossRef]
- Arzanesh, M.H.; Alikhani, H.A.; Khazavi, K.; Rahimian, H.A.; Miransari, M. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J. Microbiol. Biotechnol. 2011, 27, 197–205. [Google Scholar] [CrossRef]
- Khalid, M.; Bilal, M.; Hassani, D.; Iqbal, H.; Wang, H.; Huang, D. Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Bot. Stud. 2017, 58, 5. [Google Scholar] [CrossRef]
- Vinas, M.; Sabate, J.; Espuny, M.J.; Solanas, A.M. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl. Environ. Microbiol. 2005, 71, 7008–7018. [Google Scholar] [CrossRef]
- Barkay, T.; Navon-Venezia, S.; Ron, E.Z.; Rosenberg, E. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alas an. Appl. Environ. Microbiol. 1999, 65, 2697–2702. [Google Scholar] [CrossRef]
- Muratova, A.I.; Turkovskaia, O.V.; Antoniuk, L.P.; Makarov, O.E.; Pozdniakova, L.I.; Ignatoc, V.V. Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Mikrobiologiia 2005, 4, 48–254. [Google Scholar] [CrossRef]
- Furtak, K.; Gawryjolek, K.; Galazka, A.; Grzadziel, J. The response of red clover (Trifolium pratense L.) to separate and mixed inoculations with Rhizobium leguminosarum and Azospirillum brasilense in presence of polycylic aromatic hydrocarbons. Int. J. Environ. Res. Public Health 2020, 17, 5751. [Google Scholar] [CrossRef]
- Eckford, R.; Cook, F.D.; Saul, D.; Aislabie, J.; Foght, J. Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Appl. Environ. Microbiol. 2002, 68, 5181–5185. [Google Scholar] [CrossRef]
- Al-Mailem, D.M.; Kansour, M.K.; Radwan, S.S. Cross-bioaugmentation among four remote soil samples contaminated with oil exerted just inconsistent effects on oil-bioremediation. Front. Microbiol. 2019, 10, 2827. [Google Scholar] [CrossRef] [PubMed]
- Armendariz, A.L.; Talana, M.A.; Nicotra, M.F.O.; Escudero, L.; Breser, M.L.; Porporatto, C.; Agostini, E. Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiol. Biochem. 2019, 138, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Arora, K.; Sharma, S.; Monti, A. Bio-remediation of Pb and Cd polluted soil switchgrass: A case study in India. Int. J. Phytoremediat. 2016, 18, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Singh, S.; Kumar, V.; Singh, N.; Singh, J. Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms. Int. J. Phytoremediat. 2018, 20, 114–120. [Google Scholar] [CrossRef]
- Peralta, J.M.; Bianucci, E.; Romero-Puertas, M.C.; Furlan, A.; Castro, S.; Travaglia, C. Targeting redox metabolism of the maize-Azospirillum brasilense interaction exposed to arsenic-affected groundwater. Physiol. Plant 2021, 173, 1189–1206. [Google Scholar] [CrossRef]
- Pangussat, L.A.; Maroniche, G.; Curatti, L.; Creus, C. Auxin-dependent alleviation of oxidative stress and growth promotion of Scendesmus obliquus C1S by Azospirillum brasilense. Algal Res. 2020, 47, 101839. [Google Scholar] [CrossRef]
- Muratova, A.Y.; Lyubun, E.V.; Golubev, S.N.; Turkovskaya, O.V. Effect of copper ions on the associations of Azospirillum bacteria with wheat seedlings (Triticum aestivum L.). Vavilov J. Genet. Breed. 2022, 26, 477. [Google Scholar] [CrossRef]
- Mariotti, L.; Scartazza, A.; Curadi, M.; Picciarelli, P.; Toffanin, A. Azospirillum baldaniorum Sp245 induces physiological responses to alleviate the adverse effects of drought stress in purple basil. Plants 2021, 10, 1141. [Google Scholar] [CrossRef]
- Kaushal, M.; Wani, S.P. Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in dryland. Ann. Microbiol. 2016, 66, 35–42. [Google Scholar] [CrossRef]
- Romero, A.M.; Correa, O.S.; Moccia, S.; Rivas, J.G. Effect of Azospirillum-mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato. J. Appl. Microbiol. 2003, 95, 832–838. [Google Scholar] [CrossRef]
- Tortora, M.L.; Diaz-Ricci, J.C.; Pedraza, R.O. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch. Microbiol. 2011, 193, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.F. Systemic acquired resistance induced by localized virus infections in plants. Virology 1961, 14, 340–358. [Google Scholar] [CrossRef] [PubMed]
- Kloepper, J.W.; Tuzun, S.; Kuc, J.A. Proposed definitions related to induced disease resistance. Biocontrol Sci. Technol. 1992, 2, 349–351. [Google Scholar] [CrossRef]
- Foster, L.J.R.; Kwan, B.H.; Vancov, T. Microbial degradation of the organophosphate pesticide, Ethion. FEMS Microbiol. Lett. 2004, 240, 49–53. [Google Scholar] [CrossRef]
- Zhu, J.K.; Hasegawa, P.M.; Bressan, R.A.; Bohnert, H.J. Molecular aspects of osmotic stress in plants. Crit. Rev. Plant Sci. 1997, 16, 253–277. [Google Scholar] [CrossRef]
- Riou, N.; Le Rudulier, D. Osmoregulation in Azospirillum brasilense: Glycine betaine transport enhances growth and nitrogen fixation under salt stress. Microbiology 1990, 136, 1455–1461. [Google Scholar] [CrossRef]
- Dubey, A.P.; Pandey, P.; Mishra, S.; Gupta, P.; Tripathi, A.K. Role of a fasciclin domain protein in photooxidative stress and flocculation in Azospirillum brasilense Sp7. Res. Microbiol. 2021, 172, 103875. [Google Scholar] [CrossRef]
- Lopez, B.R.; Palacios, O.A.; Bashan, Y.; Hernandez-Sandoval, F.; de-Bashan, L.E. Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions. Algal Res. 2019, 44, 101696. [Google Scholar] [CrossRef]
- Maroniche, G.A.; Puente, M.L.; Garcia, J.E.; Mongiardini, E.; Coniglio, A.; Nievas, S.; Labarthe, M.M.; Wisniewski-Dye, F.; Caceres, E.R.; Diaz-Zorita, M.; et al. Phenogenetic profile and agronomic contribution of Azospirillum argentinense Az39T, a reference strain for the South American inoculant industry. Microbiol. Res. 2024, 283, 127650. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 546–556. [Google Scholar] [CrossRef]
- Shahajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric. Scand. Sect. B Soil Plant Sci. 2020, 70, 437–443. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Soleymani, A.; Cheng, Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother. Res. 2020, 2020, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Khoshkharam, M.; Sun, W.; Cheng, Q. The impact of manganese sulfate on increasing grain yield, protein and manganese content of wheat cultivars in semi-arid region. J. Stress Physiol. Biochem. 2020, 16, 76–79. [Google Scholar]
- Shahrajabian, M.H.; Khoshkharam, M.; Sun, W.; Cheng, Q. The influence of increased plant densities and nitrogen fertilizer levels on forage yield, seed yield and qualitative characteristics of forage sorghum (Sorghum bicolor L. Moench). Thai. J. Agric. Sci. 2020, 53, 201–217. [Google Scholar]
- Shirokov, A.; Budanova, A.; Burygin, G.; Evseeva, N.; Matora, L.; Shchyogolev, S. Flagellin of polar flagellum from Azospirillum brasilense Sp245: Isolation, structure, and biological activity. Int. J. Biol. Macromol. 2020, 147, 1221–1227. [Google Scholar] [CrossRef]
- Steenhoudt, O.; Vanderleyden, J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 2000, 4, 487–506. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Archaea, bacteria and termite, nitrogen fixation and sustainable plants production. Not. Bot. Horti. Agrobot. Cluj-Napoca 2021, 49, 12172. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Petropoulos, S.A.; Nazanin, S. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants 2023, 12, 2469. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Kuang, Y.; Wang, N. Amino acids biostimulants and protein hydrolysates in agricultural Sciences. Plants 2024, 13, 210. [Google Scholar] [CrossRef] [PubMed]
- Tugarova, A.V.; Mamchenkova, P.V.; Khanadeev, V.A.; Kamnev, A.A. Selenite reduction by rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterization. New Biotechnol. 2020, 58, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Koul, V.; Kochar, M. A novel essential small RNA, sSp_p6 influences nitrogen fixation in Azospirillum brasilense. Rhizosphere 2021, 17, 100281. [Google Scholar] [CrossRef]
- Garcia, J.E.; Maroniche, G.; Creus, C.; Suarez-Rodriguez, R.; Ramirez-Trujillo, J.A.; Groppa, M.D. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol. Res. 2017, 202, 21–29. [Google Scholar] [CrossRef]
- Cassan, F.; Lopez, G.; Nievas, S.; Coniglio, A.; Torres, D.; Donadio, F.; Molina, R.; Mora, V. What do we know about the publications related with Azospirillum? A metadata-analysis. Microb. Ecol. 2021, 81, 278–281. [Google Scholar] [CrossRef]
- Kwak, Y.; Shin, J.-H. First Azospirillum genome from aquatic environments: Whole-genome sequence of Azospirillum thiophilum BV-ST, a novel diazotroph harboring a capacity of sulfur-chemolithotrophy from a sulfide spring. Marine Genom. 2016, 25, 21–24. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of Rhizobium, Agrobacterium, Bradyrhizobium, Herbaspirillum, Sinorhizobium in sustainable agricultural production. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12183. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Sustainable approaches to boost yield and chemical constituents of aromatic and medicinal plants by application of biostimulants. Recent Pat. Food Nutr. Agric. 2022, 13, 72–92. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Using bacteria and fungi as plant biostimulants for sustainable agricultural production systems. Recent Pat. Biotechnol. 2022, 17, 206–244. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Cheng, Q.; Sun, W. The effects of amino acids, phenols and protein hydrolysates as biostimulants on sustainable crop production and alleviated stress. Recent Pat. Biotechnol. 2022, 16, 319–328. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev. Org. Chem. 2022, 19, 293–318. [Google Scholar] [CrossRef]
- Rodrigues, G.L.; Matteoli, F.P.; Gazara, R.K.; Rodrigues, P.S.L.; Santos, S.T.D.; Alves, A.F.; Pedrosa-Silva, F.; Oliveira-Pinheiro, I.; Canedo-Alvarenga, D.; Olivares, F.L.; et al. Characterization of cellular, biochemical and genomic features of the diazotrophic plant growth-promoting bacterium Azospirillum sp. UENF-412522, a novel member of the Azospirillum genus. Microbiol. Res. 2022, 254, 126896. [Google Scholar] [CrossRef] [PubMed]
- Sharifsadat, S.Z.; Aghdasi, M.; Ghanati, F.; Aezanesh, M.H. Harmonized biochemical modification of cell walls to get permission for entrance of Azospirillum sp. to rice roots. Plant Sci. 2023, 335, 111823. [Google Scholar] [CrossRef] [PubMed]
- Koul, V.; Kochar, M. A unique small RNA, sSp_p4 governs nutrition stress response and plant growth promoting traits in Azospirillu baldaniorum Sp245. Rhizosphere 2023, 26, 100721. [Google Scholar] [CrossRef]
- Lima-Tenorio, M.K.; Furmam-Cherobim, F.; Karas, P.R.; Hyeda, D.; Takahashi, W.Y.; Pinto Junior, A.S.; Galvao, C.W.; Tenorio-Neto, E.T.; Etto, R.M. Azospirillum brasilense AbV5/6 encapsulation in dual-crosslinked beads based in cationic starch. Carbohydr. Polym. 2023, 308, 120631. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Hungria, M.; Sena, J.V.D.S.; Poggere, G.; Reis, A.R.D.; Correa, R.S. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Appl. Soil Ecol. 2021, 163, 103913. [Google Scholar] [CrossRef]
- Cruz-Hernandez, M.A.; Reyez-Peralta, J.; Mendoza-Herrera, A.; Rivera, G.; Bocanegra-Garcia, V. Characterization of a Microbacterium sp. strain isolated from soils contaminated with hydrocarbons in the Burgos basin, Mexico. Rev. Int. Contam. Ambient. 2021, 37, 227–235. [Google Scholar] [CrossRef]
- Pereyra, M.A.; Garcia, P.; Colabelli, M.N.; Barassi, C.A.; Creus, C.M. A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl. Soil Ecol. 2012, 53, 94–97. [Google Scholar] [CrossRef]
- Travaglia, C.; Masiarelli, O.; Fortuna, J.; Marchetti, G.; Cardozo, P.; Lucero, M.; Zorza, E.; Luna, V.; Reinoso, H. Towards sustainable maize production: Glyphosate detoxification by Azospirillum sp. and Pseudomonas sp. Crop Protect. 2015, 77, 102–109. [Google Scholar] [CrossRef]
- Boyko, A.S.; Konnova, S.; Fedonenko, Y.P.; Zdorovenko, E.L.; Smol Kina, O.N.; Kachala, V.V.; Ignatov, V. Structural and functional peculiarities of the lipopolysaccharide of Azospirillum brasilense SR55, isolated from the roots of Triticum durum. Microbiol. Res. 2011, 166, 585–593. [Google Scholar] [CrossRef]
- Garcia, J.E.; Labarthe, M.M.; Pagnussat, L.A.; Amenta, M.; Creus, C.M.; Maroniche, G.A. Signs of a phyllospheric lifestyle in the genome of the stress-tolerant strain Azospirillum brasilense Az19. Syst. Appl. Microbiol. 2020, 43, 126130. [Google Scholar] [CrossRef] [PubMed]
- Vettori, L.; Russo, A.; Felici, C.; Fiaschi, G.; Morini, S.; Toffanin, A. Improving micropropagation: Effect of Azospirillum brasilense Sp245 on acclimatization of rootstocks of fruit tree. J. Plant Interact. 2010, 5, 249–259. [Google Scholar] [CrossRef]
- Gonzalez, E.J.; Hernandez, J.-P.; de-Bashan, L.E.; Bashan, Y. Dry micro-polymeric inoculant of Azospirillum brasilense is useful for producing mesquite transplants for reforestation of degraded arid zones. Appl. Soil Ecol. 2018, 129, 84–93. [Google Scholar] [CrossRef]
- Barassi, C.A.; Ayrault, G.; Creus, C.M.; Sueldo, R.J.; Sobrero, M.T. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci. Hortic. 2006, 109, 8–14. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth-A critical assessment. Adv. Agron. 2010, 108, 77–136. [Google Scholar]
- Santos, A.R.S.; Etto, R.M.; Furmam, R.W.; Freitas, D.L.D.; Santos, K.F.D.N.; Souza, E.M.D.; Pedrosa, F.D.O.; Ayub, R.A.; Steffens, M.B.R.; Galvao, C.W. Labeled Azospirillum brasilense wild type and excretion-ammonium strains in association with barley roots. Plant Physiol. Biochem. 2017, 118, 422–426. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Cohen, A.C.; Travaglia, C.N.; Bottini, R.; Piccoli, P.N. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 2009, 87, 455–462. [Google Scholar] [CrossRef]
- Cohen, A.C.; Bottini, R.; Pontin, M.; Berli, F.J.; Moreno, D.; Boccanlandro, H.; Travaglia, C.N.; Piccoli, P.N. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol. Plant 2015, 153, 79–90. [Google Scholar] [CrossRef]
- Fukami, J.; Cerezini, P.; Hungria, M. Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express 2018, 8, 73. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae 2023, 9, 193. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods. Mini. Rev. Med. Chem. 2023, 24, 453–477. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid. Curr. Org. Synth. 2023, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W. Five important seeds in traditional medicine, and pharmacological benefits. Seeds 2023, 2, 290–308. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. The golden spice for life: Turmeric with the pharmacological benefits of curcuminoids components, including curcumin, bisdemethoxycurcumin, and demethoxycucrumin. Curr. Org. Synth. 2024, 21, 665–683. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Various techniques for molecular and rapid detection of infectious and epidemic diseases. Lett. Org. Chem. 2023, 20, 779–801. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Survey on multi-omics, and multi-omics data analysis, integration and application. Curr. Pharm. Anal. 2023, 19, 267–281. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. The importance of salicylic acid, humic acid and fulvic acid on crop production. Lett. Drug Discov. 2023, 2023, 1465–1480. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Assessment of wine quality, traceability and detection of grapes wine, detection of harmful substances in alcohol and liquor composition analysis. Lett. Drug Des. Discov. 2024, 21, 1377–1399. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Importance of thymoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits. Lett. Drug Des. Discov. 2024, 21, 209–225. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, N.; Huang, L.; Qian, R.; Lin, X.; Sun, C.; Zhu, Y. Azospirillum brasilense activates peroxidase-mediated cell wall modification to inhibit root cell elongation. iScience 2023, 26, 107144. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Gomes, M.; Castro-Mercado, E.; Pena-Uribe, C.A.; Cruz, H.R.-D.L.; Lopez-Bucio, J.; Garcia-Pineda, E. Azospirillum brasilense Sp245 lipopolysaccharides induce target of rapamycin signaling and growth in Arabidopsis thaliana. J. Plant Physiol. 2020, 253, 153270. [Google Scholar] [CrossRef] [PubMed]
- Bizani, D.; Dominguez, A.P.M.; Brandelli, A. Purification and partial chemical characterization of the antimicrobial peptide cerein 8A. Lett. Appl. Microbil. 2005, 41, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, A.; Abdelsattar, A.M.; Heikal, Y.M.; El-Esawi, M.A. Synergistic effects of Azospirillum brasilense and Bacillus cereus on plant growth, biochemical attributes and molecular genetic regulation of steviol glycosides biosynthetic genes in Stevia rebaudiana. Plant Physiol. Biochem. 2022, 189, 24–34. [Google Scholar] [CrossRef]
- Russo, A.; Vettorti, L.; Felici, C.; Fiaschi, G.; Morini, S.; Toffanin, A. Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J. Biotechnol. 2008, 134, 312–319. [Google Scholar] [CrossRef]
- El-Esawi, M.A.; Al-Ghamdi, A.A.; Ali, H.M.; Alayafi, A.A. Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ. Experim. Bot. 2019, 159, 55–65. [Google Scholar] [CrossRef]
- Agami, R.A.; Ghramh, H.A.; Hashem, M. Seed inoculation with Azospirillum lipoferum alleviates the adverse effects of drought stress on wheat plants. J. Appl. Bot. Food Qual. 2017, 90, 165–173. [Google Scholar]
- El-Ballat, E.M.; Elsilk, S.E.; Ali, H.M.; Ali, H.E.; Hano, C.; El-Esawi, M.A. Metal-resistant PGPR strain Azospirillum brasilense EMCC1454 enhances growth and chromium stress tolerance of chickpea (Cicer arietinum L.) by modulating redox potential, osmolytes, antioxidants, and stress-related gene expression. Plants 2023, 12, 2110. [Google Scholar] [CrossRef]
- Dardanelli, M.S.; Cordoba, F.J.F.D.; Espuny, M.R.; Carvajal, M.A.R.; Diaz, M.E.S.; Serrano, A.M.G.; Okon, Y.; Megias, M. Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and nod factor production under salt stress. Soil Biol. Biochem. 2008, 40, 2713–2721. [Google Scholar] [CrossRef]
- Burdman, S.; Kigel, J.; Okon, Y. Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol. Biochem. 1997, 29, 923–929. [Google Scholar] [CrossRef]
- Vieira, N.D.; Moreira, A.; Moraes, L.A.C.; Cerezini, P.; Filho, C.V.S.; Cardoso, B.M. Response of dry bean to nitrogen fertilization and inoculation with Rhizobium tropici and Azospirillum brasiliensis. Commun. Soil Sci. Plant Anal. 2021, 52, 686–694. [Google Scholar] [CrossRef]
- Urrea-Valencia, S.; Etto, R.M.; Takahashi, W.Y.; Caires, E.F.; Bini, A.R.; Ayub, R.A.; Stets, M.I.; Cruz, L.M.; Galvao, C.W. Detection of Azospirillum brasilense by aPCR throughout a maize field trial. Appl. Soil Ecol. 2021, 160, 103849. [Google Scholar] [CrossRef]
- Pelloso, M.F.; Filho, P.S.V.; Scapim, C.A.; Ortiz, A.H.T.; Numoto, A.Y.; Freitas, I.R.M. Agronomic performance and quality of baby corn in response to the inoculation of seeds with Azospirillum brasilense and nitrogen fertilization in the summer harvest. Heliyon 2023, 9, e14618. [Google Scholar] [CrossRef]
- Iparraguirre, J.; Llanes, A.; Masciarelli, O.; Zocolo, G.J.; Villasuso, A.L.; Luna, V. Formulation technology: Macrocystis pyrifera extract is a suitable support/medium for Azospirillum brasilense. Algal Res. 2023, 69, 102916. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Pires, R.R.; Rabelo, P.G.; Oliveira, R.C.; Luz, J.M.Q.; Brito, C.H. Implications of Azospirillum brasilense inoculation and nutrient addition on maize in soils of the Brazilian Cerrado under greenhouse and field conditions. Appl. Soil Ecol. 2013, 72, 103–108. [Google Scholar] [CrossRef]
- Gavilanes, F.Z.; Andrade, D.S.; Zucareli, C.; Horacio, E.H.; Yunes, J.S.; Barbosa, A.P.; Alves, L.A.R.; Cruzatty, L.G.; Maddela, N.R.; Guimaraes, M.D.F. Co-inoculation of Anabaena cylindrica with Azospirillum brasilense increases grain yield of maize hybrids. Rhizosphere 2020, 15, 100224. [Google Scholar] [CrossRef]
- Marques, D.M.; Magalhaes, P.C.; Marriel, I.E.; Gomes Junior, C.C.; Silva, A.B.D.; Reis, C.O.D.; Souza, K.R.D.D.; Souza, T.C.D. Does Azospirillum brasilense mitigate water stress and reduce the use of nitrogen fertilizers in maize? S. Afr. J. Bot. 2023, 156, 278–285. [Google Scholar] [CrossRef]
- Garcia, J.E.; Ruiz, M.; Maroniche, G.A.; Creus, C.; Puente, M.; Zawonik, M.S.; Groppa, M.D. Inoculation with Azospirillum argentinense Az19 improves the yield of maize subjected to water deficit at key stages of plant development La inoculacion con Azospirillum argentinense Az19 mejora el rendimiento del maiz expuesto a deficit hidrico durante estadios clave del desarrollo vegetal. Rev. Argent. Microbiol. 2023, 55, 255–261. [Google Scholar] [CrossRef]
- Kandowangko, N.Y.; Suryatmana, G.; Nurlaeny, N.; Simanungkalit, R.D.M. Proline and abscisic acid content in droughted corn plant inoculated with Azospirillum sp. and Arbuscular mycorrhizae fungi. HAYTI J. Biosci. 2009, 16, 15–20. [Google Scholar] [CrossRef]
- Belyakov, A.Y.; Burygin, G.L.; Arbatsky, N.P.; Shashkov, A.S.; Selivanov, N.Y.; Matora, L.Y.; Knirel, Y.A.; Shchyogolev, S.Y. Identification of an O-linked repetitive glycan chain of the polar flagellum flagellin of Azospirillum brasilense Sp7. Carbohydr. Res. 2012, 361, 127–132. [Google Scholar] [CrossRef]
- Baudoin, E.; Nazaret, S.; Mougel, C.; Ranjard, L.; Moenne-Loccoz, Y. Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biol. Biochem. 2009, 41, 409–413. [Google Scholar] [CrossRef]
- Housh, A.B.; Noel, R.; Powell, A.; Waller, S.; Wilder, S.L.; Sopko, S.; Benoit, M.; Powell, G.; Schueller, M.J.; Ferrieri, R.A. Studies using mutant strains of Azospirillum brasilense reveal that atmospheric nitrogen fixation and auxin production are light dependent processes. Microorganisms 2023, 11, 1727. [Google Scholar] [CrossRef] [PubMed]
- Pedrinho, A.; Mendes, L.W.; Barros, F.M.D.R.; Bossolani, J.W.; Kuhn, T.N.; Quecine, M.C.; Andreote, F.D. The interplay between Azospirillum brasilense and the native bacterial communities in the soil and rhizosphere of maize (Zea mays L.). Soil Biol. Biochem. 2024, 189, 109292. [Google Scholar] [CrossRef]
- Zeffa, D.M.; Perini, L.J.; Silva, M.D.; de Sousa, N.V.; Scapim, C.A.; Oliveira, A.L.M.D.; Amaral Junior, A.T.D.; Goncalves, L.S.A. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS ONE 2019, 14, e0215332. [Google Scholar] [CrossRef]
- Prongjunthuek, K.; Meunchang, P.; Panichasakpatana, S. Effects of Azospirillum on germination and seedling growth of commercial sweet corn varieties Insee2 and Hi-Brix3. Songklanakarin J. Sci. Technol. 2019, 41, 838–845. [Google Scholar]
- Sharma, P.; Vasudeva, M. Azide resistant mutants of Acetobacter diazotrophicus and Azospirillum brasilense increase yield and nitrogen content of cotton. J. Plant Interact. 2005, 3, 145–149. [Google Scholar] [CrossRef]
- Galindo, F.S.; Rodrigues, W.L.; Biagini, A.L.C.; Fernandes, G.C.; Baratella, E.B.; Silva Junior, C.A.D.; Buzetti, S.; Filho, M.C.M.T. Assessing forms of application of Azospirillum brasilense associated with silicon use on wheat. Agronomy 2019, 9, 678. [Google Scholar] [CrossRef]
- Galindo, F.S.; Rodriguues, W.L.; Fernandes, G.C.; Boleta, E.H.M.; Jalal, A.; Rosa, P.A.L.; Buzetti, S.; Lavres, J.; Filho, M.C.M.T. Enhancing agronomic efficiency and maize grain yield with Azospirillum brasilense inoculation under Brazilian savannah conditions. Eur. J. Agron. 2022, 134, 126471. [Google Scholar] [CrossRef]
- Pii, Y.; Marastoni, L.; Springeth, C.; Fontanella, M.C.; Beone, G.M.; Cesco, S.; Mimmo, T. Modulation of Fe acquisition process by Azospirillum brasilense in cucumber plants. Environ. Experim. Bot. 2016, 130, 216–225. [Google Scholar] [CrossRef]
- Pereyra, C.M.; Ramella, N.A.; Pereyra, M.A.; Barassi, C.A.; Creus, C.M. Changes in cucumber hypocotyl cell wall dynamics caused by Azospirillum brasilense inoculation. Plant Physiol. Biochem. 2010, 48, 62–69. [Google Scholar] [CrossRef]
- Mangmang, J.S.; Deaker, R.; Rogers, G. Optimal plant growth-promoting concentration of Azospirillum brasilense inoculated to cucumber, lettuce and tomato seeds varies between bacterial strains. Isr. J. Plant Sci. 2015, 62, 145–152. [Google Scholar] [CrossRef]
- Mangmang, J.S.; Deaker, R.; Rogers, G. Response of cucumber seedlings fertilized with fish effluent to Azospirillum brasilense. Int. J. Veg. Sci. 2016, 22, 129–140. [Google Scholar] [CrossRef]
- Yousefi, S.; Kartoolinejad, D.; Bahmani, M.; Naghdi, R. Effect of Azospirillum lipoferum and Azotobacter chroococcum on germination and early growth of hopbush shrub (Dodonaea viscosa L.) under salinity stress. J. Sustain. Forest 2017, 36, 107–120. [Google Scholar] [CrossRef]
- Larrauburu, E.E.; Bususcovich, A.C.; Llorente, B.E. Azospirillum brasilense improves in vitro and ex vitro rooting-acclimatization of jojoba. Sci. Hortic. 2016, 209, 139–147. [Google Scholar] [CrossRef]
- Diaz, P.R.; Merlo, F.; Carrozzi, L.; Valverde, C.; Creus, C.M.; Maroniche, G.A. Lettuce growth improvement by Azospirillum argentinense and fluorescent Pseudomonas co-inoculation depends on strain compatibility. Appl. Soil Ecol. 2023, 189, 104969. [Google Scholar] [CrossRef]
- Couillerot, O.; Bouffaud, M.-L.; Baudoin, E.; Muller, D.; Caballero-Mellado, J.; Moenne-Loccoz, Y. Development of a real-time PCR method to quantify the PGPR strain Azospirillum lipoferum CRT1 on maize seedlings. Soil Biol. Biochem. 2010, 42, 2298–2305. [Google Scholar] [CrossRef]
- Fasciglione, G.; Casanovas, E.M.; Quillehauquy, V.; Yommi, A.K.; Goni, M.G.; Roura, S.I.; Barassi, C.A. Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci. Hortic. 2015, 195, 154–162. [Google Scholar] [CrossRef]
- Oliveira, C.E.S.; Gato, I.M.B.; Moreira, V.A.; Jalal, A.; Oliveira, T.J.S.S.; Oliveira, J.R.; Fernandes, G.C.; Teixeira Filho, M.C.M. Inoculation methods of Azospirillum brasilense in lettuce and arugula in the hydroponic system. Rev. Bras. De Eng. Agrícola E Ambient. 2023, 27, 653–662. [Google Scholar] [CrossRef]
- Oliveira, C.E.D.S.; Jalal, A.; Vitoria, L.S.; Giolo, V.M.; Oliveira, T.J.S.S.; Aguilar, J.V.; Camargos, L.S.D.; Brambilla, M.R.; Fernandes, G.C.; Vargas, P.F.; et al. Inoculation with Azospirillum brasilense strains AbV5 and AbV6 increases nutrition, chlorophyll, and leaf yield of hydroponic lettuce. Plants 2023, 12, 3107. [Google Scholar] [CrossRef]
- Lopez, A.L.O.; Setubal, I.S.; Neto, V.P.D.C.; Zilli, J.E.; Rodrigues, A.C.; Bonifacion, A. Synergism of Bradyrhizobium and Azospirillum baldaniorum improves growth and symbiotic performance in lima bean under salinity by positive modulations in leaf nitrogen compounds. Appl. Soil Ecol. 2022, 180, 104603. [Google Scholar] [CrossRef]
- Santos, M.P.; Martinez, S.J.; Yarte, M.E.; Carletti, S.M.; Larraburu, E.E. Effect of Azospirillum brasilense on the in vitro germination of Eustoma grandiflorum (Raf.) Schinn. (Gentianaceae). Sci. Hortic. 2022, 299, 111041. [Google Scholar] [CrossRef]
- Bartolini, S.; Pappalettere, L.; Toffanin, A. Azospirillum baldaniorum Sp245 induces anatomical changes in cuttings of Olive (Olea europaea L., cultivar Leccino): Preliminary results. Agronomy 2023, 13, 301. [Google Scholar] [CrossRef]
- Hong, L.; Orikasa, Y.; Sakamoto, H.; Ohwada, T. Plant tissue localization and morphological conversion of Azospirillum brasilense upon initial interaction with Allium cepa L. Microorganisms 2019, 7, 275. [Google Scholar] [CrossRef] [PubMed]
- Moreira, B.R.D.A.; Viana, R.D.S.; Favato, V.L.; Figueiredo, P.A.M.D.; Lisboa, L.A.M.; Miasaki, C.T.; Magalhaes, A.C.; Ramos, S.B.; Viana, C.R.D.A.; Trindade, V.D.R.; et al. Azospirillum brasilense can impressively improve growth and development of Urochloa brizantha under irrigation. Agriculture 2020, 10, 220. [Google Scholar] [CrossRef]
- Ratti, N.; Janardhanan, K.K. Response of dual inoculation with VAM and Azospirillum on the yield and oil content of Palmarosa (Cymbopogon martinii var. motia). Microbiol. Res. 1996, 151, 325–328. [Google Scholar] [CrossRef]
- Ejaz, S.; Batool, S.; Anjum, M.A.; Naz, S.; Qayyum, M.F.; Naqqash, T.; Shah, K.H.; Ali, S. Effects of inoculation of root-associative Azospirillum and Agrobacterium strains on growth, yield and quality of pea (Pisum sativum L.) grown under different nitrogen and phosphorus regimes. Sci. Hortic. 2020, 270, 109401. [Google Scholar] [CrossRef]
- Flores, P.; Fenoll, J.; Hellin, P.; Aparicio-Tejo, P. Isotopic evidence of significant assimilation of atmospheric-derived nitrogen fixed by Azospirillum brasilense co-inoculated with phosphate-solubilising Pantoea dispersa in pepper seedling. Appl. Soil Eol. 2010, 46, 335–340. [Google Scholar] [CrossRef]
- Amor, F.M.D.; Serrano-Martinez, A.; Fortea, M.I.; Legua, P.; Nunez-Delicado, E. The effect of plant-associative bacteria (Azospirillum and Pantoea) on the fruit quality of sweet pepper under limited nitrogen supply. Sci. Hortic. 2008, 117, 191–196. [Google Scholar] [CrossRef]
- Rai, R. Effect of Azospirillum brasilense strains on the iron uptake and N2-fixation by roots by Cheena (Panicum miliaceum) genotypes. J. Plant Nutr. 1988, 11, 871–879. [Google Scholar] [CrossRef]
- Mehmood, T.; Li, G.; Anjum, T.; Akram, W. Azospirillum lipoferum strain AL-3 reduces early blight disease of potato and enhance yield. Crop Protect. 2021, 139, 105349. [Google Scholar] [CrossRef]
- Naqqash, T.; Malik, K.A.; Imran, A.; Hameed, S.; Shahid, M.; Hanif, M.K.; Majeed, A.; Iqbal, M.J.; Qaisrani, M.M.; Elsas, J.D.V. Inoculation with Azospirillum spp. acts as the liming source for improving growth and nitrogen use efficiency of potato. Front. Plant Sci. 2022, 13, 929114. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Garcia, G.; Balaguera-Lopez, H.E.; Hernandez, J.P. Effect of plant growth-promoting bacteria Azospirillum brasilense on the physiology of radish (Raphanus sativus L.) under waterlogging stress. Agronomy 2022, 12, 726. [Google Scholar] [CrossRef]
- Prusty, S.; Sahoo, R.K.; Sharaya, R.; Tuteja, N.; Gill, S.S. Unraveling the potential of native Azotobacter and Azospirillum spp. formulation for sustainable crop production of rice (Oryza sativa L. var. Khandagiri). S. Afr. J. Bot. 2023, 162, 10–19. [Google Scholar] [CrossRef]
- Asiloglu, R.; Shiroishi, K.; Suzuki, K.; Turgay, O.C.; Murase, J.; Harada, N. Protist-enhanced survival of a plant growth promoting rhizobacteria Azospirillum sp. B510, and the growth of rice (Oryza sativa L.) plants. Appl. Soil Ecol. 2020, 154, 103599. [Google Scholar] [CrossRef]
- Chamam, A.; Sanguin, H.; Bellvert, F.; Meiffren, G.; Comte, G.; Wisniewski-Dye, F.; Bertrand, C.; Prigent-Combaret, C. Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry 2013, 87, 65–77. [Google Scholar] [CrossRef]
- Yasuda, M.; Isawa, T.; Shinozaki, S.; Minamisawa, K.; Nakashita, H. Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci. Biotechnol. Biochem. 2009, 73, 2595–2599. [Google Scholar] [CrossRef]
- Kusajima, M.; Shima, S.; Fujita, M.; Minamisawa, K.; Che, F.-S.; Yamakawa, H.; Nakashita, H. Involvement of ethylene signaling in Azospirillum sp. B510-induced disease resistance in rice. Biosci. Biotechnol. Biochem. 2018, 9, 1522–1526. [Google Scholar] [CrossRef]
- Yasuda, M.; Dastogeer, K.M.G.; Sarkodee-Addo, E.; Tokiwa, C.; Isawa, T.; Shinozaki, S.; Okazaki, S. Impact of Azospirillum sp. B510 on the rhizosphere microbiome of rice under field conditions. Agronomy 2022, 12, 1367. [Google Scholar] [CrossRef]
- Mattos, M.L.T.; Valgas, R.A.; Martins, J.F.D.S. Evaluation of the agronomic efficiency of Azospirillum brasilense strains Ab-V5 and Ab-V6 in flood-irrigated rice. Agronomy 2022, 12, 3047. [Google Scholar] [CrossRef]
- Masuda, S.; Sasaki, K.; Kazama, Y.; Kisara, C.; Takeda, S.; Hanzawa, E.; Minamisawa, K.; Sato, T. Mapping of quantitative trait loci related to primary rice root growth as a response to inoculation with Azospirillum sp. strain B510. Commun. Integr. Biol. 2018, 11, 1–6. [Google Scholar] [CrossRef]
- Cortes-Patino, S.; Vargas, C.; Alvarez-Florez, F.; Bonilla, R.; Estrada-Bonilla, G. Potential of Herbaspirillum and Azospirillum consortium to promote growth of perennial ryegrass under water deficit. Microorganisms 2021, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, M.; Srivastava, S. Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur. J. Soil Biol. 2009, 45, 73–80. [Google Scholar] [CrossRef]
- Morgenstern, E.; Okon, Y. The effect of Azospirillum brasilense and auxin on root morphology in seedlings of Sorghum biocolor × Sorghum sudanense. Arid Soil Res. Rehab. 1987, 1, 115–127. [Google Scholar] [CrossRef]
- Souza, J.F.; Rigueira, J.P.S.; Albuquerque, C.J.B.; Junior, V.R.R.; Santos, A.S.D.; Carvalho, C.D.C.S.; Leal, D.B.; Mendes, B.M.; Parrella, R.A.D.C.; Silva, R.K.O.D.J.; et al. Yield and nutritional value of silage of different sorghum hybrids inoculated with Azospirillum brasilense. J. Applied Anim. Res. 2023, 51, 424–433. [Google Scholar] [CrossRef]
- Reis, A.F.D.B.; Rosso, L.H.M.; Adee, E.; Davidson, D.; Kovacs, P.; Purcell, L.C.; Below, F.E.; Casteel, S.N.; Knott, C.; Kandel, H.; et al. Seed inoculation with Azospirillum brasilense in the U.S. soybean systems. Field Crops Res. 2022, 283, 108573. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Roberto, L.D.A.; Hungria, M.; Correa, R.S.; Magri, E.; Correia, T.D. Meta-analysis of maize responses to Azospirillum brasilense inoculation in Brazil: Benefits and lessons to improve inoculation efficiency. Appl. Soil Ecol. 2022, 170, 104276. [Google Scholar] [CrossRef]
- Juge, C.; Prevost, D.; Bertrand, A.; Bipfubusa, M.; Chalifour, F.-P. Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azosipirllum and arbuscular mycorrhizae. Appl. Soil Ecol. 2012, 61, 147–157. [Google Scholar] [CrossRef]
- Molla, A.H.; Shamsuddin, Z.H.; Saud, H.M. Mechanism of root growth and promotion of nodulation in vegetable soybean by Azospirillum Brasilense. Commun. Soil Sci. Plant Anal. 2001, 32, 13–14. [Google Scholar] [CrossRef]
- Bellone, C.H.; Bellone, S.C.D.; Cordileone, V. Related growth parameters in soybean plants inoculated with Azospirillum brasilense. J. Crop Improve. 2011, 25, 472–487. [Google Scholar] [CrossRef]
- Armendariz, A.L.; Talano, M.A.; Oller, A.L.W.; Medina, M.I.; Agostini, E. Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. J. Environ. Sci. 2015, 33, 203–210. [Google Scholar] [CrossRef]
- Prando, A.M.; Barbosa, J.Z.; Oliveira, A.B.D.; Nogueira, M.A.; Possamai, E.J.; Hungria, M. Benefits of soybean co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: Large-scale validation with farmers in Brazil. Eur. J. Agron. 2024, 155, 127112. [Google Scholar] [CrossRef]
- Guerrero-Molina, M.F.; Winik, B.C.; Pedraza, R.O. More than rhizosphere colonization of strawberry plants by Azospirillum brasilense. Appl. Soil Ecol. 2012, 61, 205–212. [Google Scholar] [CrossRef]
- Saad, M.S.; Sabuddin, A.S.A.; Yunus, A.G.; Shamsuddin, Z.H. Effects of Azospirillum inoculation on sweetpotato grown on sandy tin-tailing soil. Commun. Soil Sci. Plant Anal. 1999, 30, 1583–1592. [Google Scholar] [CrossRef]
- Scudeletti, D.; Crusciol, C.A.C.; Momesso, L.; Bossolani, J.W.; Moretti, L.G.; Oliveira, E.D.; Tubana, B.S.; Silva, M.D.A.; Castro, S.G.D.; Hungria, M. Inoculation with Azospirillum brasilense as a strategy to enhance sugarcane biomass production and bioenergy potential. Eur. J. Agron. 2023, 144, 126749. [Google Scholar] [CrossRef]
- Romero, A.M.; Vega, D.; Correa, O.S. Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Appl. Soil Ecol. 2014, 82, 38–43. [Google Scholar] [CrossRef]
- Fujita, M.; Kusajima, M.; Okumura, Y.; Nakajima, M.; Minamisawa, K.; Nakashita, H. Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in tomato. Biosci. Biotechnol. Biochem. 2017, 81, 1657–1662. [Google Scholar] [CrossRef]
- Andrade-Sifuentes, A.; Fortis-Hernandez, M.; Preciado-Rangel, P.; Orozco-Vidal, J.A.; Yescas-Coronado, P.; Rueda-Puente, E.O. Azospirillum brasilense and solarized manure on the production and phytochemical quality of tomato fruits (Solanum lycopersicum L.). Agronomy 2020, 10, 1956. [Google Scholar] [CrossRef]
- Baudoin, E.; Lerner, A.; Mirza, M.S.; Zemrany, H.E.; Prigent-Combaret, C.; Jurkevich, E.; Spaepen, S.; Vanderleyden, J.; Nazaret, S.; Okon, Y.; et al. Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Res. Microbiol. 2010, 161, 219–226. [Google Scholar] [CrossRef]
- Galindo, F.S.; Pagliari, P.H.; Silva, E.C.D.; Silva, V.M.; Fernandes, G.C.; Rodrigues, W.L.; Ceu, E.G.O.; Lima, B.H.D.; Jalal, A.; Muraoka, T.; et al. Co-inoculation with Azospirillum brasilense and Bradyrhizobium sp. enhances nitrogen uptake and yield in field-grown cowpea and did not change N-fertilizer recovery. Plants 2022, 11, 1847. [Google Scholar] [CrossRef]
- Pereyra, M.A.; Ballesteros, F.M.; Creus, C.M.; Sueldo, R.J.; Barassi, C.A. Seedlings growth promotion by Azospirillum brasilense under normal and drought conditions remains unaltered in Tebuconazole-treated wheat seeds. Eur. J. Soil Biol. 2009, 45, 20–27. [Google Scholar] [CrossRef]
- Pereyra, M.A.; Zalazar, C.A.; Barassi, C.A. Root phospholipids in Azospirillum-inoculated wheat seedlings exposed to water stress. Plant Phsyiol. Biochem. 2006, 44, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, A.; Zawonik, M.; Benavides, M.P.; Groppa, M.D. Azospirillum brasilense Az39 restricts cadmium entrance into wheat plants and mitigates cadmium stress. Plant Sci. 2021, 312, 111056. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, M.S.; Ali, H.H.; Erinle, K.O.; Wani, S.H.; Okon, O.G.; Nadeem, M.A.; Nawaz, M.; Bodlah, M.A.; Waqas, M.M.; Iqbal, J.; et al. Inoculation of Azospirillum brasilense and exogenous application of trans-zeatin riboside alleviates arsenic induced physiological damages in wheat (Triticum aestivum). Environ. Sci. Pollut. Res. 2022, 29, 33909–33919. [Google Scholar] [CrossRef] [PubMed]
- Kazi, N.; Deaker, R.; Wilson, N.; Muhammad, K.; Trethowan, R. The response of wheat genotypes to inoculation with Azospirillum brasilense in the field. Field Crops Res. 2016, 196, 368–378. [Google Scholar] [CrossRef]
- Ramirez-Mata, A.; Racheco, M.R.; Moreno, S.J.; Xiqui-Vazquez, M.L.; Baca, B.E. Versatile use of Azospirillum brasilense strains tagged with egfp and mCherry genes for the visualization of biofilms associated with wheat roots. Microbiol. Res. 2018, 215, 155–163. [Google Scholar] [CrossRef]
- Diaz-Zortia, M.; Fernandez-Canigia, M.V. Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur. J. Soil Biol. 2009, 45, 3–11. [Google Scholar] [CrossRef]
- Farag, M.A.; Ryu, C.M.; Sumner, L.W.; Pare, P.Q. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 2006, 67, 2262–2268. [Google Scholar] [CrossRef]
- Piccinin, G.G.; Braccini, A.L.; Dan, L.G.M.; Scapim, C.A.; Ricci, T.T.; Bazo, G.L. Efficiency of seed inoculation with Azospirillum brasilense on agronomic characteristics and yield of wheat. Ind. Crops Prod. 2013, 43, 393–397. [Google Scholar] [CrossRef]
- Alhammad, B.A.; Zaheer, M.S.; Ali, H.H.; Hameed, A.; Ghanem, K.Z.; Seleiman, M.F. Effect of co-application of Azospirillum brasilense and Rhizobium pisi on wheat performance and soil nutrient status under deficit and partial root drying stress. Plants 2023, 12, 3141. [Google Scholar] [CrossRef]
- Zakharova, E.A.; Iosipenko, A.D.; Ignatov, V.V. Effect of water-soluble vitamins on the production of indole-3-acetic acid by Azospirillum brasilense. Microbiol. Res. 2000, 155, 209–214. [Google Scholar] [CrossRef]
- Zarea, M.J.; Hajinia, S.; Karimi, N.; Goltapeh, E.M.; Rejali, F.; Varma, A. Effect of Prifiormospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol. Biochem. 2012, 45, 139–146. [Google Scholar] [CrossRef]
- Fincheira, P.; Venthur, H.; Mutis, A.; Parada, M.; Quiroz, A. Growth promotion of Lactuca sativa in response to volatie organic compounds emitted from diverse bacterial species. Microbiol. Res. 2016, 193, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.E.; Miguel, M.J.; Mori, G.B. Effect of root exudates on the exopolysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress. FEMS Microbiol. Lett. 2003, 219, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Kannapiran, E.; Ramkumar, V.S. Inoculation effect of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth of black gram (Phaseolus mungo Roxb; Eng). Ann. Biol. Res. 2011, 2, 615–621. [Google Scholar]
- Kechid, M.; Maougal, R.T.; Belhaddad, K.; Reghis, D.; Djekoun, A. Effect of Azospirillum brasilense and Bacillus subtilis inoculation on durum wheat growth response under four inoculation methods. Biol. Life Sci. Forum 2024, 31, 19. [Google Scholar] [CrossRef]
- Khalil, M.R.; Felix-Gastelum, R.; Penuelas-Rubio, O.; Argentel-Martinez, L.; Maldonado-Mendoza, I.E. Rhizospheric bacteria for use in preventing Fusarium wilt and crown root rot of tomato under natural field conditions. Can. J. Plant Pathol. 2022, 44, 836–848. [Google Scholar] [CrossRef]
- Khan, M.R.; Kounsar, K.; Hamid, A. Effect of certain rhizobacteria and antagonistic fungi on root-nodulation and root-knot nematode disease of green gram (Vigna radiata (L.) Wilczek-India). Nematol. Meditter. 2002, 30, 85–89. [Google Scholar]
- Khoshkharam, M.; Shahrajabian, M.H. Growth and yield parameters of triticale as influenced by methanol foliar application under water stress. J. Stress Physiol. Biochem. 2021, 17, 13–22. [Google Scholar]
- Llorente, B.E.; Alasia, M.A.; Larraburu, E.E. Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant. New Biotechnol. 2016, 33, 32–40. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Biostimulant and beyond: Bacillus spp., the important plant growth-promoting rhizobacteria (PGPR)-based biostimulant for sustainable agriculture. Earth Syst. Environ. 2025, 1, 1–30. [Google Scholar] [CrossRef]
Mechanism | Azospirillum Strains | Key Points | Reference |
---|---|---|---|
Hydrocarbon pollution | A. brasilense; Azospirillum sp. | Effective in microbial communities which can break down hydrocarbons. | [100] |
A. brasilense SR80; A. brasilense MT814302; A. brasilense MT814301; A. brasilense MT814300; A. brasilense AF411852; Azospirillum sp. | Biodegrade phenol, benzoate, and crude oil. | [101,102,103,104] | |
A. brasilense strain 11; A. brasilense Az39; Azospirillum sp. | Some bacteria were found in biofilms which decompose hydrocarbons. | [105,106] | |
Heavy metal pollution | Azospirillum sp.; A. brasilense; A. baldaniorum | Tolerate lead, copper, cadmium, and arsenic. | [107,108,109] |
Azospirillum sp.; A. brasilense; A. baldaniorum | Significant effects on the content of photosynthetic pigments in corn in the presence of arsenic. | [109] | |
Azospirillum sp.; A. brasilense Sp245; A. baldaniorum | Effective in reducing cadmium toxicity for barley, pak choi, and Arabidopsis. | [110] | |
Azospirillum sp.; A. brasilense; A. baldaniorum | Decrease copper stress in wheat. | [111] | |
Azospirillum sp.; A. brasilense; A. baldaniorum Sp245 | Reduce copper stress in cucumber. | [112] | |
Infection of plants with phytopathogens | A. brasilense Sp245; A. brasilense Sp7; Azospirillum sp. BNM64 | Able to biologically control phytopathogens. | [113,114] |
A. brasilense; Azospirillum sp. ERC2; Azospirillum sp. REC3 | Induction of changes in the host plant metabolism, and the synthesis of siderophores which can limit the availability of Fe to phytopathogens. | [115] | |
A. brasilense; Azospirillum sp. | Limit the development of phytopathogens via the induction of systemic resistance in plants. | [116,117] | |
Pesticide pollution | Azospirillum sp. | Degrade the pesticide Ethion. | [118] |
Osmotic stress | A. brasilense; Azospirillum sp. | The main osmolytes are glycine-betaine, soluble sugars, and prolines which can be reduced through osmotic stress. | [119] |
A. brasilense Sp7; Azospirillum sp. | Can use osmoadaptation to increase growth and nitrogen fixation under salt stress conditions. | [120] |
Plant | Plant Family | Azospirillum Species | Key Points | Reference |
---|---|---|---|---|
Arabidopsis (Arabidopsis thaliana) | Brassicaceae | A. brasilense | Changes root system architecture, leading to major transcriptional changes in nitrogen metabolism and carbon process. Improves stiffened cell walls and peroxidase activity. | [175] |
A. brasilense | Increases shoot fresh weight, seed yield, and rosette diameters under cadmium and drought stress. | [86,87] | ||
A. brasilense Sp245 | Influences the growth of plants through a mechanism involving target rapamycin. | [176] | ||
A. brasilense Sp245 | Increases yield and yield components. | [176] | ||
Barley (Hordeum vulgare) | Poaceae | A. lipoferum | Increases root elongation and root biomass under cadmium stress. | [88] |
Basil (Ocimum basilicum L.) | Lamiaceae | A. brasilense Sp245 | Its benefits on the basis of Azospirillum brasilense Sp245 were significantly associated with the synthesis of phytohormones. | [112] |
Candyleaf (Stevia rebaudiana) | Asteraceae | A. brasilense | Significant upregulation of genes accountable for the biosynthesis of steviol glycosides (UGT76G1, UGT74G1, UGT85C2, Kaurene oxidase, entKO) | [177] |
Cherry pulm (Prunus cerasifera L.) | Rosaceae | A. brasilense Sp245 | Promotes the rooting of explants. | [178] |
Chickpea (Cicer arietinum L.) | Fabaceae | A. lipoferum FK1 | Decreases the inhibitory effects of salinity through stress-related genes, antioxidant machinery, and modulating osmolytes. | [179] |
A. brasilense EMCC1454 | Increases plant growth, and reduce chromium toxicity effects by modulating photosynthesis, antioxidant machinery, stress-related gene expression, and osmolyte production. | [180,181,182] | ||
Common bean (Phaseolus vulgaris L.) | Fabaceae | A. brasilense CD | Decreases the negative effects of salt stress. | [183] |
A. brasilense | Positively influences shoot and root dry weight. | [184] | ||
A. brasilense | Increases grain yield, number of pods per pot, pod weight, and number of grains per pod. | [185] | ||
Coriander (Coriandrum sativum) | Apiaceae | A. brasilense | Increases dry weight, fresh weight, total plant fresh weight, total plant dry weight under salinization. | [89] |
Corn (Zea mays L.) | Poaceae | A. brasilense AbV5/AbV6 | Seed inoculation can increase crude protein content, lead nitrogen content, starch content, and total sugar content of baby corn crops. | [186,187] |
A. brasilense Az39 | Increases plant growth as it has a high amount of cytokinins, auxins, and gibberellins. | [188] | ||
A. brasilense AZ | Under water stress, it can promote maize root attributes. | [189,190,191] | ||
A. brasilense Az1 and Az2 | Inoculation with it is an ecologically and economically viable technology. | [191] | ||
A. argentinense Az19 | Prevents the negative impacts of water deficits, especially at the flowering stage, on maize growth. | [192] | ||
Azospirillum sp. Sp7 | Increases the tolerance of seedlings to drought. | [193,194] | ||
A. lipoferum CRT1 | Increases yield and yield components. | [195] | ||
A. lipoferum HM053 | Stimulates photosynthesis and increases chlorophyll concentration. | [196] | ||
A. brasilense | Influences seedlings at the early stages, and ultimately influence the final growth. | [197] | ||
A. brasilense Ab-V5 | Increases nitrogen use efficiency and improve biochemical characteristics. | [198] | ||
Cucumber (Cucumis sativus) | Cucurbitaceae | A. brasilense | Under copper stress, it enhances root weight, root length, and root tips. | [90] |
Sweet corn (Zea mays L. Saccarata) | Poaceae | A. brasilense (LB1-1, LB1-2, LB1-3, and LB1-4) | Significantly increases plant growth. | [199] |
Cotton (Gossypium hirsutum) | Malvaceae | A. brasilense | Increases plant height, yield, total nitrogen content, and high biomass on cotton varieties (H-117, HD-123). | [200] |
Cowpea (Vigna unguiculata (L.) Walp.) | Fabaceae | A. brasilense Ab-V5 and Ab-V6 | Improves the growth of cowpea. | [201] |
A. brasilense | Increases plant biomass, grain yield, and photosynthetic pigments. | [202] | ||
Cucumber (Cucumis sativus L.) | Cucurbitaceae | A. brasilense Cd (DSM-1843) | Decreases the stress signs caused by both the double Fe and Cu, Cu toxicity, and Cu deficiency, and improve the root system. | [90] |
A. brasilense | Modulates Fe acquisition in plants by differently triggering gene transcription. | [203] | ||
A. brasilense Sp245 | It has been considered as a general plant root colonizer. | [204] | ||
A. brasilense Sp7, Sp7-S, and Sp245 | Inoculated seedlings produce greater root biomass, longer roots, and higher total phosphorus content. | [205,206] | ||
Flax (Linum usitatissimum) | Linaceae | A. brasilense | Increases root length, shoot length, dry weight of shoot, fresh weight of shoot, dry weight of root, and the number of leaves under salinization. | [91] |
Hopbush shrub (Dodonaea viscosa L.) | Sapindaceae | A. lipoferum | Favorably affects plant growth parameters, stem length, root length, and stem fresh and dry weights. | [207] |
Jojoba (Simmondsia chinensis L.) | Simmondsiaceae | Azospirillum sp. Az39 | Induces jojoba rooting, rooting percentage, survival rate, and acclimatization. | [208] |
Lettuce (Lactuca sativa L.) | Asteraceae | A. argentinense Az39 | Dual inoculation of Pseudmonas strain and Azospirillum significantly influences plant growth, extended root survival, and increased chemical components. | [209] |
A. lipoferum CRT1 | It has positive effects on seedlings growth. | [210] | ||
Azospirillum sp. | Seed inoculation with Azospirillum improves biomass and lettuce quality of plants under salt-stress conditions. | [211] | ||
A. brasilense AbV5 and AbV6 | Increases cell membrane integrity index, net photosynthesis rate, relative water content, stomatal conductance, and total chlorophyll. | [212] | ||
A. brasilense AbV5 and AbV6 | Increases the accumulation of K, P, N, Ca, Mg, B, S, Mn, Fe, and Zn in plants. | [213] | ||
Lima bean (Phaseolus lunatus L.) | Fabaceae | A. baldaniorum Sp245 | Under salt stress, its inoculation can attenuate the negative impacts of salt stress, improving the growth and symbiotic performance of lima bean. | [214] |
Lisianthus (Eustoma grandiflorum (Raf.) Schinn. | Gentianaceae | A. brasilense Az39 | Significantly increases leaf area, number of leaves, dry and fresh weight of seedlings, number and length of roots, leaves thickness, diameter of the vascular bundle, and root thickness. | [215] |
Maize (Zea mays) | Poaceae | A. brasilense; A. lipoferum | Increases total biomass and plant height. | [92,93] |
Olive (Olea europaea L.) | A. baldaniorum Sp245 | Induces cellular activities and improve the rooting rate of cuttings. | [216] | |
Onion (Allium cepa L.) | Amaryllidaceae | A. brasilense 1224T | Significantly increases onion yield. | [217] |
Pak choi (Brassica chinensis L.) | Brassicaceae | A. brasilense | Promotes antioxidant enzyme content, shoot biomass, and reduce Cd translocation factors. | [94,95] |
Palisade grass (Urochloa brizantha) | Poaceae | A. brasilense CNPSo 2083 (Ab-V5) and CNPSo 2084 (Ab-V6) | Increases growth and development of seedlings. | [218] |
Palmarosa (Cymbopogon martinii) | Poaceae | A. brasilense | Stimulates VAM colonization and promotes VAM spore population. | [219] |
Pea (Pisum sativum L.) | Fabaceae | Azospirillum spp. Er-20 | Increases photosynthetic pigments, chlorophyll a and b, total carotenoids, total phenolics, and chlorophyll concentrations. | [220] |
Pepper (Capsicum annuum L.) | Solanaceae | Azospirillum spp. | Supply a notable amount of nitrogen to pepper seedlings. | [221] |
A. brasilense | Increases potential availability of nutrients for uptake, particularly for fruit quality characteristics. | [222] | ||
Proso millet (Panicum miliaceum) | Poaceae | A. brasilense RAU-1 and RAU-2 | Significantly boosts the uptake of Fe and total yield. | [223] |
Potato (Solanum tuberosum L.) | Solanaceae | A. lipoferum AL-3 | Helps potato plants resist against blight disease via induced systemic resistance as well as induced to increase the quantity of total phenolics, and defense-related enzymes such as polyphenol oxidase, peroxidase, and phenylalanine ammonia lyase. | [224] |
Azospirillum spp. | Improves nitrogen use efficiency and enhance plant growth. | [225] | ||
Purple basil (Ocimum basilicum L.) | Lamiaceae | A. baldaniorum Sp245 | Strong correlation with the synthesis of phytohormones. | [112] |
Radish (Raphanus sativus L.) | Brassicaceae | A. brasilense Cd DMS 1843 | Responsible for improving and activating some physiological mechanisms of the plant. | [226] |
Rice (Oryza sativa L.) | Poaceae | Azospirillum spp. Az2 and As 5 | Azospirillum spp. indicates notable higher nitrogen fixation and N2-ase activity. | [227] |
Azospirillum spp. | Combined application of Azospirillum spp. and Azotobacter improves development and the growth of rice. | [227] | ||
Azospirillum sp. B510 | Increases nitrogen uptake and plant growth, and it can be considered as a key solution for chemical-free sustainable agriculture. | [228] | ||
A. lipoferum 4B | Induces the improvement of plant secondary metabolites. | [229] | ||
Azospirillum sp. B510 | Induces disease resistance in rice, caused by Magnaporthe oryzae. | [230,231] | ||
Azospirillum sp. B510 | Influences the bacterial community structure and increases transcriptomic response in roots and shoots. | [232] | ||
A. brasilense Ab-V5 and Ab-V6 | Combined with nitrogen fertilizer, it enhances the dry mass of the aerial part of rice and grain yield. | [233] | ||
A. brasilense; A. irakens | Increases total nitrogen and activity of nitrate reductase content. | [147] | ||
Azospirillum sp. B510 | Significantly controls and improves root growth. | [234] | ||
Ryegrass (Lolium perenne L.) | Poaceae | A. brasilense D7 | Increases plant growth through volatile organic compounds. | [235] |
Sorghum (Sorghum bicolor L.) | Poaceae | A. brasilense SM | Beneficially and positively influences the growth of sorghum. | [236] |
A. brasilense | Has a positive effect on root development, and the probable role of auxin in this process. | [237] | ||
A. brasilense | It can be applied as a nitrogen fertilization strategy, and improved dry matter production. | [238] | ||
Soybean (Glycine max (L.) Merr.) | Fabaceae | A. brasilense | Its inoculation or co-inoculation can increase seed protein and plant growth of plants. | [239] |
A. brasilense Ab-V5 and Ab-V6 | Promotes grain yield and growth parameters and mitigatesthe impacts of water stress on plants. | [240] | ||
Azospirillum spp. | Increases root biomass, and improved proline content. | [241] | ||
A. brasilense | Increases nodulation, grain yield, and nitrogen fixation. | [242,243] | ||
A. brasilense Az39 | Safely and appropriately increases growth and yield of soybean exposed to As. | [244] | ||
A. brasilense Ab-V5 and Ab-V6 | Increases grain yield and nodulation. | [245] | ||
Strawberry (Fragaria ananassa, Duch.) | Rosaceae | A. brasilense REC3 and PEC5 | Leads to better growth which can contribute to a sustainable agricultural practice. | [246] |
Sweet-potato (Ipomoea batatas (L.) Lam.) | Convolvulaceae | A. brasilense | Positive influence on root yield, provides beneficial impacts on plant root association. | [247] |
Sugarcane (Saccharum spp.) | Poaceae | A. brasilense | Increases plant cane and ratoon as well as stalk yield and stalk production. | [248] |
A. brasilense | Increases sugarcane productivity at the tillering and sprouting stages with high potential to improve economic and agronomic benefits. | [248] | ||
Sweet leaf (Stevia rebaudiana (Bertoni) | Asteraceae | A. brasilense | Increases the physio-biochemical and growth of plants. | [178] |
Tomato (Solanum lycopersicum L.) | Solanaceae | A. brasilense BNM65 | Induces higher leaf area and total biomass. | [249] |
Azospirillum sp. B510 | Activates the innate immune system against bacterial leaf spot. | [250] | ||
A. brasilense (DSM 1843, Leibniz-Institute DMSZ, Braunschweig, Germany) | Combined application with solarized manure improves root length, growth emergence, final yield, protein, and lipids in plants. | [251] | ||
A. brasilense | Increases root biomass under salinization. | [96] | ||
Wheat (Triticum aestivum L.) | Poaceae | A. brasilense Sp245 | Positive effect on yield and yield components. | [252,253] |
A. brasilense Sp245 | Increases coleoptile length, root surface, and dry and fresh weight. | [254] | ||
A. brasilense Sp245 | Protects seedlings from water deficiency through changes in fatty acid in roots. | [255] | ||
A. brasilense Az39 | Reduces plant damages caused by stresses. | [256] | ||
A. brasilense Az39 | Reduces Cd entrance into wheat roots and reduces Cd/Fe imbalance. | [256] | ||
Azospirillum spp. | Increases tolerance to salinity, and influences proline accumulation, photosynthetic pigment contents, and uptake of water. | [257,258,259] | ||
Azospirillum spp. INTA Az-39 | Shows more vigorous vegetative growth, with higher root and shoot dry matter accumulation. | [260,261] | ||
A. brasilense | Makes partial biological nitrogen production possible. | [262] | ||
A. brasilense | Results in higher grain yield, higher number of grains per spike, and higher crop growth rate. | [263] | ||
A. brasilense EPS | Induces root growth. | [264,265,266,267] | ||
A. brasilense | Improves a thousand grain weight, grain yield per plant, plant height, spike length, and the number of grains and spikelets per spike under Arsenic stress. | [97] | ||
A. lipoferum | Increases final yield under drought stress. | [98] | ||
White clover (Trifolium repens) | Fabaceae | A. brasilense | Increases root length and shoot height under salinization. | [99] |
Durum wheat (Triticum durum) | Poaceae | A. brasilense | Stimulates the growth of the plant, the length of roots and leaves and chlorophyll. | [268,269,270,271,272] |
Yellow lapacho (Handroanthus ochraceus) | Bignoniaceae | A. brasilense Cd and Az39 | Leads to the highest root index, smaller number and size of stomata, and high development of dendritic trichomes. | [273,274] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Shahrajabian, M.H.; Wang, N. A Study of the Different Strains of the Genus Azospirillum spp. on Increasing Productivity and Stress Resilience in Plants. Plants 2025, 14, 267. https://doi.org/10.3390/plants14020267
Sun W, Shahrajabian MH, Wang N. A Study of the Different Strains of the Genus Azospirillum spp. on Increasing Productivity and Stress Resilience in Plants. Plants. 2025; 14(2):267. https://doi.org/10.3390/plants14020267
Chicago/Turabian StyleSun, Wenli, Mohamad Hesam Shahrajabian, and Na Wang. 2025. "A Study of the Different Strains of the Genus Azospirillum spp. on Increasing Productivity and Stress Resilience in Plants" Plants 14, no. 2: 267. https://doi.org/10.3390/plants14020267
APA StyleSun, W., Shahrajabian, M. H., & Wang, N. (2025). A Study of the Different Strains of the Genus Azospirillum spp. on Increasing Productivity and Stress Resilience in Plants. Plants, 14(2), 267. https://doi.org/10.3390/plants14020267