Multivariate Analysis of Root Architecture, Morpho-Physiological, and Biochemical Traits Reveals Higher Nitrogen Use Efficiency Heterosis in Maize Hybrids During Early Vegetative Growth
Abstract
:1. Introduction
2. Results
2.1. Genotypic Variation in Root Activity
2.2. Genotypic Variation in Root Characteristics at V5 Stage
2.3. Genotypic Variation in Primary Root Characteristics at V7 Stage
2.4. N-Assimilating Enzymes of N Metabolism and Metabolites
2.5. Genotypic Variation in Physiological Traits
2.6. Genotypic Variation in Morphological Traits
2.7. Plant Biomass N Concentration
2.8. Genetic Variation in Kinetic Parameters Among Maize Genotypes
2.9. Plant Component N Accumulation
2.10. N Use Efficiency Indices
2.11. Heterosis Among Maize Genotypes
2.12. Global ANOVA and Principal Component Analysis
2.12.1. Global ANOVA
2.12.2. Principal Component Analysis (PCA)
2.13. Elucidating Pathways from Root Traits to NUE: A Comprehensive Structural Equation Modeling (SEM) Approach in Maize Genotypes
2.14. Regression and Correlation Analysis of TDM/NUpE/NutE and Agronomic, Root, and NUE-Related, and Physiological Traits
2.14.1. Regression and Correlation of TDM and Root, Agronomic, and Physiological Traits
2.14.2. Regression and Correlation of NUpE and Root, Agronomic, and Physiological Indicators
2.14.3. Regression and Correlation of NUtE and Root, Agronomic, and Physiological Traits
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experimental Design
4.2. Measurements of Plant Traits
4.2.1. Root Characteristics
4.2.2. Measurement of N-Assimilating Enzymatic Activities
4.2.3. Determination of Root Soluble Protein (SP), Free Amino Acids (FAA), Nitrate Content (NC), and Soluble Sugars (SS)
4.2.4. Chlorophyll (Chl) and Carotenoid (Car) Contents
4.2.5. Gas Exchange and Chlorophyll Fluorescence (CF)
4.2.6. Measurement of N Concentration, N Accumulation, and N Efficiency Indices
4.2.7. Heterosis Among Different Genotypes
4.2.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Cereal Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar]
- Duan, F.; Wei, Z.; Soualiou, S.; Zhou, W. Nitrogen partitioning in maize organs and underlined mechanisms from different plant density levels and N application rate in China. Field Crops Res. 2023, 294, 108874. [Google Scholar] [CrossRef]
- Li, D.; Tian, H.; Sheng, Y.; Ren, X.; Zhou, J. Experimental and influencing factors of corn stalk pulling force. Eng. Agric. 2022, 42, e20210219. [Google Scholar] [CrossRef]
- Pu, L.; Yang, J.; Yu, L.; Xiong, C.; Yan, F.; Zhang, Y.; Zhang, S. Simulating Land-Use Changes and Predicting Maize Potential Yields in Northeast China for 2050. Int. J. Environ. Res. Public Health 2021, 18, 938. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agricultural Organization of the United Nations Statistics; FAOSTAT: Rome, Italy, 2022. [Google Scholar]
- Chi, Y.X.; Gao, F.; Muhammad, I.; Huang, J.H.; Zhou, X.B. Effect of water conditions and nitrogen application on maize growth, carbon accumulation and metabolism of maize plant in subtropical regions. Arch. Agron. Soil Sci. 2023, 69, 693–707. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, J.; Zhao, S.; Sha, Y.; Huang, Y.; Hao, Z.; Ke, L.; Chen, F.; Yuan, L.; Mi, G. Nitrogen responsiveness of leaf growth, radiation use efficiency and grain yield of maize (Zea mays L.) in Northeast China. Field Crops Res. 2023, 291, 108806. [Google Scholar] [CrossRef]
- Ying, S.; Webster, B.; Gomez-Cano, L.; Shivaiah, K.-K.; Wang, Q.; Newton, L.; Grotewold, E.; Thompson, A.; Lundquist, P.K. Multiscale physiological responses to nitrogen supplementation of maize hybrids. Plant Physiol. 2024, 195, 879–899. [Google Scholar] [CrossRef]
- Xing, J.; Cao, X.; Zhang, M.; Wei, X.; Zhang, J.; Wan, X. Plant nitrogen availability and crosstalk with phytohormones signallings and their biotechnology breeding application in crops. Plant Biotechnol. J. 2023, 21, 1320–1342. [Google Scholar] [CrossRef]
- Wani, S.H.; Vijayan, R.; Choudhary, M.; Kumar, A.; Zaid, A.; Singh, V.; Kumar, P.; Yasin, J.K. Nitrogen use efficiency (NUE): Elucidated mechanisms, mapped genes and gene networks in maize (Zea mays L.). Physiol. Mol. Biol. Plants 2021, 27, 2875–2891. [Google Scholar] [CrossRef]
- Gong, X.; Li, J.; Ma, H.; Chen, G.; Dang, K.; Yang, P.; Wang, M.; Feng, B. Nitrogen deficiency induced a decrease in grain yield related to photosynthetic characteristics, carbon-nitrogen balance and nitrogen use efficiency in proso millet (Panicum miliaceum L.). Arch. Agron. Soil Sci. 2020, 66, 398–413. [Google Scholar] [CrossRef]
- Liu, M.; Wu, X.; Li, C.; Li, M.; Xiong, T.; Tang, Y. Dry matter and nitrogen accumulation, partitioning, and translocation in synthetic-derived wheat cultivars under nitrogen deficiency at the post-jointing stage. Field Crops Res. 2020, 248, 107720. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Lemaire, G. From use efficiency to effective use of nitrogen: A dilemma for maize breeding improvement. Sci. Total Environ. 2022, 826, 154125. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Y.; Xu, G. How does nitrogen shape plant architecture? J. Exp. Bot. 2020, 71, 4415–4427. [Google Scholar] [CrossRef] [PubMed]
- de Vries, W.; Kros, J.; Voogd, J.C.; Ros, G.H. Integrated assessment of agricultural practices on large scale losses of ammonia, greenhouse gases, nutrients and heavy metals to air and water. Sci. Total Environ. 2023, 857, 159220. [Google Scholar] [CrossRef] [PubMed]
- Javed, T.I.I.; Singhal, R.K.; Shabbir, R.; Shah, A.N.; Kumar, P.; Jinger, D.; Dharmappa, P.M.; Shad, M.A.; Saha, D.; Anuragi, H. Recent advances in agronomic and physio-molecular approaches for improving nitrogen use efficiency in crop plants. Front. Plant Sci. 2022, 13, 877544. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, G.; Huang, L.; Qiao, J.; Li, C.; Zhang, M.; Zhao, X.; Liu, J. Nitrogen efficiency and physiological characters of different maize genotypes under nitrogen fertilization reduction. J. Henan Agric. Sci. 2021, 50, 13. [Google Scholar]
- Chen, F.; Liu, J.; Liu, Z.; Chen, Z.; Ren, W.; Gong, X.; Wang, L.; Cai, H.; Pan, Q.; Yuan, L. Breeding for high-yield and nitrogen use efficiency in maize: Lessons from comparison between Chinese and US cultivars. Adv. Agron. 2021, 166, 251–275. [Google Scholar]
- Ibn, R.A.; Ghosh, U.K.; Hossain, M.S.; Mahmud, A.; Saha, A.K.; Rahman, M.M.; Rahman, M.; Siddiqui, M.N.; Khan, M.A.R. Enhancing nitrogen use efficiency in cereal crops: From agronomy to genomic perspectives. Cereal Res. Commun. 2024, 1–16. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Mwafulirwa, L.; Paterson, E.; Cairns, J.E.; Daniell, T.J.; Thierfelder, C.; Baggs, E.M. Genotypic variation in maize (Zea mays) influences rates of soil organic matter mineralization and gross nitrification. New Phytol. 2021, 231, 2015–2028. [Google Scholar] [CrossRef]
- Ji, P.; Cui, Y.; Li, X.; Xiao, K.; Tao, P.; Zhang, Y. Responses of photosynthetic characteristics and enzyme activity of nitrogen metabolism to low nitrogen in maize with different nitrogen tolerance. J. Agric. Biol. Eng. 2020, 13, 133–143. [Google Scholar] [CrossRef]
- Moharramnejad, S.; Shiri, M. Study of genetic diversity in maize genotypes by ear yield and physiological traits. J. Crop Breed. 2020, 12, 30–40. [Google Scholar] [CrossRef]
- Guo, S.; Chen, Y.; Chen, X.; Chen, Y.; Yang, L.; Wang, L.; Qin, Y.; Li, M.; Chen, F.; Mi, G.; et al. Grain mineral accumulation changes in Chinese maize cultivars released in different decades and the responses to nitrogen fertilizer. Front. Plant Sci. 2020, 10, 1662. [Google Scholar] [CrossRef]
- Sandhu, N.; Sethi, M.; Kumar, A.; Dang, D.; Singh, J.; Chhuneja, P. Biochemical and genetic approaches improving nitrogen use efficiency in cereal crops: A review. Front. Plant Sci. 2021, 12, 657629. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, B.-L.; Yu, X.; Gao, J.; Sun, J.; Su, Z.; Yu, S. Physiological basis of heterosis for nitrogen use efficiency of maize. Sci. Rep. 2019, 9, 18708. [Google Scholar] [CrossRef]
- Mahboob, W.; Sarwar, N.; Bin Abdul Hafeez, O.; Arif, M.A.R.; Akhtar, M.; Yang, G. Exploring genotypic variations in cotton associated with growth and nitrogen use efficiency. J. Plant Nutr. 2024, 47, 3231–3250. [Google Scholar] [CrossRef]
- Ranjan, R.; Yadav, R.; Gaikwad, K.B.; Bainsla, N.K.; Kumar, M.; Babu, P.; Dharmateja, P. Spring wheat’s ability to utilize nitrogen more effectively is influenced by root phene variation. Plants 2023, 12, 1010. [Google Scholar] [CrossRef]
- Iqbal, A.; Qiang, D.; Zhun, W.; Xiangru, W.; Huiping, G.; Hengheng, Z.; Nianchang, P.; Xiling, Z.; Meizhen, S. Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. Plant Physiol. Biochem. 2020, 149, 61–74. [Google Scholar] [CrossRef]
- Lu, J.; Lankhost, J.A.; Stomph, T.J.; Schneider, H.M.; Chen, Y.; Mi, G.; Yuan, L.; Evers, J.B. Root plasticity improves maize nitrogen use when nitrogen is limiting: An analysis using 3D plant modelling. J. Exp. Bot. 2024, 75, 5989–6005. [Google Scholar] [CrossRef]
- Lecarpentier, C.; Pagès, L.; Richard-Molard, C. Genotypic diversity and plasticity of root system architecture to nitrogen availability in oilseed rape. PLoS ONE 2021, 16, e0250966. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Sheng, D.; Zhang, S.; Gu, S.; Yan, Y.; Zhao, F.; Wang, P.; Huang, S. Optimizing root system architecture to improve root anchorage strength and nitrogen absorption capacity under high plant density in maize. Field Crops Res. 2023, 303, 109109. [Google Scholar] [CrossRef]
- Chu, G.; Xu, R.; Chen, S.; Xu, C.; Liu, Y.; Abliz, B.; Zhang, X.; Wang, D. Root morphological-physiological traits for japonica/indica hybrid rice with better yield performance under low N conditions. Food Energy Secur. 2022, 11, e355. [Google Scholar] [CrossRef]
- Ranjan, R.; Yadav, R. Genetics analysis of nitrogen use efficiency component traits under nitrogen-limiting environment. Cereal Res. Commun. 2020, 48, 431–439. [Google Scholar] [CrossRef]
- Fortunato, S.; Nigro, D.; Lasorella, C.; Marcotuli, I.; Gadaleta, A.; de Pinto, M.C. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023, 13, 1771. [Google Scholar] [CrossRef]
- Li, X.; Ji, P.; Zhou, B.; Dong, W.; Zhang, L.; Xiao, K.; Yin, B.; Zhang, Y. Nitrogen partitioning traits and expression patterns of N metabolism-associated genes in maize hybrids with contrasting N utilization efficiencies. Agron. J. 2021, 113, 1439–1456. [Google Scholar] [CrossRef]
- Hassan, M.U.; Islam, M.M.; Wang, R.; Guo, J.; Luo, H.; Chen, F.; Li, X. Glutamine application promotes nitrogen and biomass accumulation in the shoot of seedlings of the maize hybrid ZD958. Planta 2020, 251, 66. [Google Scholar] [CrossRef]
- Meena, R.K.; Reddy, K.S.; Gautam, R.; Maddela, S.; Reddy, A.R.; Gudipalli, P. Improved photosynthetic characteristics correlated with enhanced biomass in a heterotic F 1 hybrid of maize (Zea mays L.). Photosynth. Res. 2021, 147, 253–267. [Google Scholar] [CrossRef]
- Santos, T.d.O.; Amaral Junior, A.T.d.; Bispo, R.B.; Bernado, W.d.P.; Simão, B.R.; de Lima, V.J.; Freitas, M.S.M.; Mora-Poblete, F.; Trindade, R.d.S.; Kamphorst, S.H. Exploring the Potential of Heterosis to Improve Nitrogen Use Efficiency in Popcorn Plants. Plants 2023, 12, 2135. [Google Scholar] [CrossRef]
- Fu, W.; Wang, Y.; Ye, Y.; Zhen, S.; Zhou, B.; Wang, Y.; Hu, Y.; Zhao, Y.; Huang, Y. Grain yields and nitrogen use efficiencies in different types of stay-green maize in response to nitrogen fertilizer. Plants 2020, 9, 474. [Google Scholar] [CrossRef]
- Jan, M.F.; Li, M.; Liaqat, W.; Altaf, M.T.; Liu, C.; Ahmad, H.; Khan, E.H.; Ali, Z.; Barutçular, C.; Mohamed, H.I. Chlorophyll fluorescence: A smart tool for maize improvement. Cereal Res. Commun. 2024, 1–32. [Google Scholar] [CrossRef]
- Srikanth, B.; Subrahmanyam, D.; Sanjeeva Rao, D.; Narender Reddy, S.; Supriya, K.; Raghuveer Rao, P.; Surekha, K.; Sundaram, R.M.; Neeraja, C.N. Promising physiological traits associated with nitrogen use efficiency in rice under reduced N application. Front. Plant Sci. 2023, 14, 1268739. [Google Scholar] [CrossRef] [PubMed]
- Ibraheem, F.; El-Ghareeb, E. Growth and physiological responses of maize inbreds and their related hybrids under sufficient and deficient soil nitrogen. Catrina Int. J. Environ. Sci. 2020, 22, 35–47. [Google Scholar] [CrossRef]
- Liu, L.; Sadras, V.O.; Xu, J.; Hu, C.; Yang, X.; Zhang, S. Genetic improvement of crop yield, grain protein and nitrogen use efficiency of wheat, rice and maize in China. Adv. Agron. 2021, 168, 203–252. [Google Scholar]
- Hawkesford, M.J.; Riche, A.B. Impacts of G × E × M on nitrogen use efficiency in wheat and future prospects. Front. Plant Sci. 2020, 11, 1157. [Google Scholar] [CrossRef]
- Lemaire, G.; Ciampitti, I. Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: A review. Plants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Manschadi, A.; Soltani, A. Variation in traits contributing to improved use of nitrogen in wheat: Implications for genotype by environment interaction. Field Crops Res. 2021, 270, 108211. [Google Scholar] [CrossRef]
- Gheith, E.; El-Badry, O.Z.; Lamlom, S.F.; Ali, H.M.; Siddiqui, M.H.; Ghareeb, R.Y.; El-Sheikh, M.H.; Jebril, J.; Abdelsalam, N.R.; Kandil, E.E. Maize (Zea mays L.) productivity and nitrogen use efficiency in response to nitrogen application levels and time. Front. Plant Sci. 2022, 13, 941343. [Google Scholar] [CrossRef]
- Davies, B.; Coulter, J.A.; Pagliari, P.H. Timing and rate of nitrogen fertilization influence maize yield and nitrogen use efficiency. PLoS ONE 2020, 15, e0233674. [Google Scholar] [CrossRef]
- Ren, H.; Liu, Z.; Wang, X.; Zhou, W.; Zhou, B.; Zhao, M.; Li, C. Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics. J. Integr. Agric. 2024, in press. [Google Scholar] [CrossRef]
- Nasar, J.; Khan, W.; Khan, M.Z.; Gitari, H.I.; Gbolayori, J.F.; Moussa, A.A.; Mandozai, A.; Rizwan, N.; Anwari, G.; Maroof, S.M. Photosynthetic activities and photosynthetic nitrogen use efficiency of maize crop under different planting patterns and nitrogen fertilization. J. Soil Sci. Plant Nutr. 2021, 21, 2274–2284. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Turner, N.C.; Xing, Y.; Li, M.; Guo, T. Determining optimal mulching, planting density, and nitrogen application to increase maize grain yield and nitrogen translocation efficiency in Northwest China. BMC Plant Biol. 2020, 20, 282. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Ming, B.; Evers, J.B.; Li, Y.; Li, S.; Xie, R.; Anten, N.P. Nitrogen availability determines the vertical patterns of accumulation, partitioning, and reallocation of dry matter and nitrogen in maize. Field Crops Res. 2023, 297, 108927. [Google Scholar] [CrossRef]
- Hu, Y.; Zeeshan, M.; Wang, G.; Pan, Y.; Liu, Y.; Zhou, X. Supplementary irrigation and varying nitrogen fertilizer rate mediate grain yield, soil-maize nitrogen accumulation and metabolism. Agric. Water Manag. 2023, 276, 108066. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; An, T.; Chen, Y. Lateral root elongation enhances nitrogen-use efficiency in maize genotypes at the seedling stage. J. Sci. Food Agric. 2022, 102, 5389–5398. [Google Scholar] [CrossRef]
- Li, Y.; Bai, L.; Wei, S.; Wu, H.; Li, R.; Wang, Y.; Wang, Z. Integrating Heterosis for Root Architecture and Nitrogen Use Efficiency of Maize: A Comparison Between Hybrids from Different Decades. Agronomy 2024, 14, 2018. [Google Scholar] [CrossRef]
- Jia, X.; Wu, G.; Strock, C.; Li, L.; Dong, S.; Zhang, J.; Zhao, B.; Lynch, J.P.; Liu, P. Root anatomical phenotypes related to growth under low nitrogen availability in maize (Zea mays L.) hybrids. Plant Soil 2022, 474, 265–276. [Google Scholar] [CrossRef]
- Puccio, G.; Ingraffia, R.; Giambalvo, D.; Amato, G.; Frenda, A.S. Morphological and physiological root traits and their relationship with nitrogen uptake in wheat varieties released from 1915 to 2013. Agronomy 2021, 11, 1149. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef]
- Deng, J.; Ye, J.; Liu, K.; Harrison, M.T.; Zhong, X.; Wang, C.; Tian, X.; Huang, L.; Zhang, Y. Optimizing agronomy improves super hybrid rice yield and nitrogen use efficiency through enhanced post-heading carbon and nitrogen metabolism. Agronomy 2022, 13, 13. [Google Scholar] [CrossRef]
- Fatholahi, S.; Ehsanzadeh, P.; Karimmojeni, H. Ancient and improved wheats are discrepant in nitrogen uptake, remobilization, and use efficiency yet comparable in nitrogen assimilating enzymes capabilities. Field Crops Res. 2020, 249, 107761. [Google Scholar] [CrossRef]
- Dubey, R.S.; Srivastava, R.K.; Pessarakli, M. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In Handbook of Plant and Crop Physiology; CRC Press: Boca Raton, FL, USA, 2021; pp. 579–616. [Google Scholar]
- Lu, L.; Zhang, Y.; Li, L.; Yi, N.; Liu, Y.; Qaseem, M.F.; Li, H.; Wu, A.-M. Physiological and transcriptomic responses to nitrogen deficiency in Neolamarckia cadamba. Front. Plant Sci. 2021, 12, 747121. [Google Scholar] [CrossRef] [PubMed]
- Sakuraba, Y. Molecular basis of nitrogen starvation-induced leaf senescence. Front. Plant Sci. 2022, 13, 1013304. [Google Scholar] [CrossRef] [PubMed]
- Nasar, J.; Wang, G.-Y.; Ahmad, S.; Muhammad, I.; Zeeshan, M.; Gitari, H.; Adnan, M.; Fahad, S.; Khalid, M.H.B.; Zhou, X.-B.; et al. Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns. Front. Plant Sci. 2022, 13, 988055. [Google Scholar] [CrossRef]
- Urban, A.; Rogowski, P.; Wasilewska-Dębowska, W.; Romanowska, E. Understanding maize response to nitrogen limitation in different light conditions for the improvement of photosynthesis. Plants 2021, 10, 1932. [Google Scholar] [CrossRef]
- Fathi, A. Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A. Agrisost 2022, 28, 1–8. [Google Scholar]
- Fornari, E.Z.; Gaviraghi, L.; Basso, C.J.; Pinheiro, M.V.M.; Vian, A.L.; Santi, A.L. Relationship between photosynthetic pigments and corn production under nitrogen sources. Pesqui. Agropecu. Trop. 2020, 50, e63661. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, J.; Gao, F.; Liu, P.; Zhao, B.; Zhang, J. Photosynthetic characteristics and chloroplast ultrastructure of summer maize response to different nitrogen supplies. Front. Plant Sci. 2018, 9, 576. [Google Scholar] [CrossRef]
- Wu, Y.-W.; Qiang, L.; Rong, J.-N.; Wei, C.; Liu, X.-L.; Kong, F.-L.; Ke, Y.-P.; Shi, H.-C.; Yuan, J.-C. Effect of Low-Nitrogen Stress on Photosynthesis and Chlorophyll Fluorescence Characteristics of Maize Cultivars with Different Low-Nitrogen Tolerances. J. Integr. Agric. 2019, 18, 1246–1256. [Google Scholar] [CrossRef]
- Kocheva, K.; Kartseva, T.; Nenova, V.; Georgiev, G.; Brestič, M.; Misheva, S. Nitrogen assimilation and photosynthetic capacity of wheat genotypes under optimal and deficient nitrogen supply. Physiol. Mol. Biol. Plants 2020, 26, 2139–2149. [Google Scholar] [CrossRef]
- Peng, J.; Feng, Y.; Wang, X.; Li, J.; Xu, G.; Phonenasay, S.; Luo, Q.; Han, Z.; Lu, W. Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations. Sci. Rep. 2021, 11, 7485. [Google Scholar] [CrossRef]
- Cheema, H.N.; Wang, K.-X.; Ma, H.; Tang, M.; Saba, T.; Hu, T.; Jahandad, A.; Fang, X.; Zhang, K.; Ansar, M.; et al. Unlocking NUE Potential via PASP-Ca Synergist: Insights into physio-biochemical, enzymatic and molecular analyses of contrasting potato genotypes in aeroponics. Plant Soil 2024, 503, 545–567. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, J.; Li, H.; Shi, W.; Polle, A.; Lu, M.; Sun, X.; Luo, Z.-B. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiol. 2015, 35, 1283–1302. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, Y.; Chen, W.; Jin, R.; Kong, F.; Ke, Y.; Shi, H.; Yuan, J. Cultivar differences in root nitrogen uptake ability of maize hybrids. Front. Plant Sci. 2017, 8, 1060. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chen, G.; Di, D.; Kronzucker, H.J.; Shi, W. Higher nitrogen use efficiency (NUE) in hybrid “super rice” links to improved morphological and physiological traits in seedling roots. J. Plant Physiol. 2020, 251, 153191. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, C.; Piao, L.; Yang, F.; Liu, J.; Jan, M.F.; Li, M. Effect of Mn deficiency on carbon and nitrogen metabolism of different genotypes seedlings in maize (Zea mays L.). Plants 2023, 12, 1407. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Balasubramanian, T.; Sadasivam, S. Changes in starch, oil, protein and amino acids in developing seeds of okra (Abelmoschus esculentus L. Moench). Plant Foods Hum. Nutr. 1987, 37, 41–46. [Google Scholar] [CrossRef]
- Sun, S.-W.; Lin, Y.-C.; Weng, Y.-M.; Chen, M.-J. Efficiency improvements on ninhydrin method for amino acid quantification. J. Food Compos. Anal. 2006, 19, 112–117. [Google Scholar] [CrossRef]
- Yokoyama, S.; Hiramatsu, J.-I. A modified ninhydrin reagent using ascorbic acid instead of potassium cyanide. J. Biosci. Bioeng. 2003, 95, 204–205. [Google Scholar] [CrossRef]
- Ahmad, S.; Muhammad, I.; Wang, G.Y.; Zeeshan, M.; Yang, L.; Ali, I.; Zhou, X.B. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biol. 2021, 21, 368. [Google Scholar] [CrossRef]
- Cataldo, D.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Xu, X.; Lu, X.; Tang, Z.; Zhang, X.; Lei, F.; Hou, L.; Li, M. Combined analysis of carotenoid metabolites and the transcriptome to reveal the molecular mechanism underlying fruit colouration in zucchini (Cucurbita pepo L.). Food Chem.-Mol. Sci. 2021, 2, 100021. [Google Scholar] [CrossRef] [PubMed]
- Gourley, C.; Allan, D.; Russelle, M. Plant nutrient efficiency: A comparison of definitions and suggested improvement. Plant Soil 1994, 158, 29–37. [Google Scholar] [CrossRef]
- Moll, R.; Kamprath, E.; Jackson, W. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS, version 4; SmartPLS GmbH: Oststeinbek, Germany, 2022. [Google Scholar]
Genotype | Alpha (α) | Beta (β) | R2 |
---|---|---|---|
Zheng58 | 5.14 ± 0.280 b | 0.022 ± 0.011 b | 0.45 |
Chang 7-2 | 8.42 ± 0.445 ab | 0.289 ± 0.09 ab | 0.58 |
444 | 9.28 ± 4.049 ab | 0.352 ± 0.241 ab | 0.68 |
MO17 | 8.16 ± 0.500 ab | 0.096 ± 0.019 b | 0.94 |
B73 | 12.85 ± 2.56 a | 0.531 ± 0.189 a | 0.87 |
PH6WC | 5.06 ± 0.181 b | 0.035 ± 0.018 b | 0.52 |
PH4CV | 9.93 ± 0.663 ab | 0.183 ± 0.031 ab | 0.97 |
Zheng58 × Chang 7-2 | 15.76 ± 0.887 bc | 0.101 ± 0.03 abc | 0.75 |
444 × Chang 7-2 | 12.68 ± 0.737 cdef | 0.067 ± 0.02 bc | 0.72 |
B73 × Chang 7-2 | 10.21 ± 0.763 f | 0.060 ± 0.03 bc | 0.62 |
PH6WC × Chang 7-2 | 11.23 ± 0.993 f | 0.027 ± 0.01 c | 0.86 |
Zheng58 × MO17 | 11.82 ± 0.382 ef | 0.055 ± 0.01 bc | 0.82 |
444 × MO17 | 17.16 ± 2.092 b | 0.106 ± 0.04 ab | 0.81 |
B73 × MO17 | 13.25 ± 0.568 cdef | 0.059 ± 0.01 bc | 0.89 |
PH6WC × MO17 | 11.96 ± 0.946 def | 0.054 ± 0.03 bc | 0.71 |
Zheng58 × PH4CV | 22.22 ± 0.274 a | 0.170 ± 0.013 a | 0.95 |
444 × PH4CV | 15.12 ± 0.359 bcd | 0.072 ± 0.01 bc | 0.93 |
B73 × PH4CV | 14.96 ± 2.15 bcde | 0.085 ± 0.04 bc | 0.63 |
PH6WC × PH4CV | 13.48 ± 1.36 cdef | 0.074 ± 0.04 bc | 0.77 |
Genotype | Rank | TNA | RNA | SNA |
---|---|---|---|---|
Nitrogen supply = 0.153 g/plant | ||||
Zheng 58 | 15 | 0.183 ± 0.017 | 0.044 ± 0.003 | 0.140 ± 0.015 |
Chang 7-2 | 19 | 0.111 ± 0.022 | 0.031 ± 0.004 | 0.081 ± 0.018 |
444 | 18 | 0.121 ± 0.006 | 0.023 ± 0.001 | 0.099 ± 0.006 |
M017 | 13 | 0.220 ± 0.003 | 0.052 ± 0.002 | 0.168 ± 0.005 |
B73 | 16 | 0.122 ± 0.015 | 0.035 ± 0.004 | 0.088 ± 0.014 |
PH6WC | 17 | 0.172 ± 0.009 | 0.035 ± 0.002 | 0.137 ± 0.008 |
PH4CV | 12 | 0.205 ± 0.013 | 0.050 ± 0.006 | 0.155 ± 0.008 |
Zheng 58 × Chang 7-2 | 10 | 0.231 ± 0.023 | 0.050 ± 0.005 | 0.182 ± 0.019 |
444 × Chang 7-2 | 11 | 0.219 ± 0.015 | 0.035 ± 0.004 | 0.184 ± 0.012 |
B73 × Chang 7-2 | 14 | 0.208 ± 0.016 | 0.045 ± 0.002 | 0.163 ± 0.015 |
PH6WC × Chang 7-2 | 9 | 0.264 ± 0.006 | 0.056 ± 0.005 | 0.208 ± 0.009 |
Zheng 58 × MO17 | 8 | 0.253 ± 0.007 | 0.067 ± 0.003 | 0.186 ± 0.005 |
444 × MO17 | 3 | 0.267 ± 0.015 | 0.052 ± 0.004 | 0.214 ± 0.011 |
B73 × MO17 | 4 | 0.295 ± 0.004 | 0.086 ± 0.006 | 0.210 ± 0.006 |
PH6WC × MO17 | 6 | 0.284 ± 0.014 | 0.084 ± 0.002 | 0.199 ± 0.012 |
Zheng 58 × PH4CV | 1 | 0.296 ± 0.021 | 0.069 ± 0.008 | 0.227 ± 0.014 |
444 × PH4CV | 2 | 0.292 ± 0.004 | 0.052 ± 0.001 | 0.240 ± 0.004 |
B73 × PH4CV | 7 | 0.264 ± 0.021 | 0.056 ± 0.004 | 0.208 ± 0.018 |
PH6WC × PH4CV | 5 | 0.272 ± 0.014 | 0.078 ± 0.002 | 0.194 ± 0.013 |
Mean | Nitrogen | 0.226 ± 0.008 | 0.052 ± 0.002 | 0.173 ± 0.006 |
Nitrogen supply = 0.46 g/plant | ||||
Zheng 58 | 15 | 0.224 ± 0.017 | 0.056 ± 0.005 | 0.168 ± 0.016 |
Chang 7-2 | 19 | 0.190 ± 0.019 | 0.045 ± 0.004 | 0.145 ± 0.014 |
444 | 18 | 0.206 ± 0.028 | 0.033 ± 0.003 | 0.172 ± 0.025 |
M017 | 13 | 0.306 ± 0.013 | 0.060 ± 0.001 | 0.246 ± 0.013 |
B73 | 16 | 0.253 ± 0.017 | 0.046 ± 0.002 | 0.207 ± 0.015 |
PH6WC | 17 | 0.181 ± 0.002 | 0.036 ± 0.002 | 0.146 ± 0.001 |
PH4CV | 12 | 0.324 ± 0.010 | 0.066 ± 0.004 | 0.258 ± 0.007 |
Zheng 58 × Chang 7-2 | 10 | 0.349 ± 0.007 | 0.075 ± 0.002 | 0.275 ± 0.007 |
444 × Chang 7-2 | 11 | 0.317 ± 0.015 | 0.058 ± 0.003 | 0.258 ± 0.013 |
B73 × Chang 7-2 | 14 | 0.281 ± 0.010 | 0.057 ± 0.003 | 0.224 ± 0.007 |
PH6WC × Chang 7-2 | 9 | 0.317 ± 0.018 | 0.066 ± 0.006 | 0.251 ± 0.013 |
Zheng 58 × MO17 | 8 | 0.349 ± 0.008 | 0.092 ± 0.004 | 0.257 ± 0.005 |
444 × MO17 | 3 | 0.434 ± 0.022 | 0.121 ± 0.009 | 0.313 ± 0.014 |
B73 × MO17 | 4 | 0.395 ± 0.020 | 0.104 ± 0.007 | 0.291 ± 0.014 |
PH6WC × MO17 | 6 | 0.358 ± 0.009 | 0.092 ± 0.010 | 0.267 ± 0.001 |
Zheng 58 × PH4CV | 1 | 0.489 ± 0.017 | 0.110 ± 0.007 | 0.379 ± 0.013 |
444 × PH4CV | 2 | 0.441 ± 0.008 | 0.091 ± 0.002 | 0.351 ± 0.008 |
B73 × PH4CV | 7 | 0.376 ± 0.025 | 0.091 ± 0.011 | 0.286 ± 0.020 |
PH6WC × PH4CV | 5 | 0.371 ± 0.013 | 0.107 ± 0.003 | 0.263 ± 0.009 |
Mean | Nitrogen | 0.324 ± 0.011 | 0.073 ± 0.003 | 0.250 ± 0.008 |
ANOVA | ||||
G | *** | *** | *** | |
N | *** | *** | ** | |
G × N | *** | *** | *** |
Genotype | Rank | NUE | NUpE | NutE |
---|---|---|---|---|
Nitrogen supply = 0.153 g/plant | ||||
Zheng 58 | 15 | 42.28 ± 3.06 | 1.20 ± 0.11 | 35.44 ± 0.76 |
Chang 7-2 | 18 | 29.80 ± 5.94 | 0.73 ± 0.14 | 40.88 ± 0.22 |
444 | 19 | 26.49 ± 1.10 | 0.79 ± 0.04 | 33.46 ± 0.46 |
M017 | 13 | 51.28 ± 0.32 | 1.44 ± 0.02 | 35.67 ± 0.74 |
B73 | 17 | 29.62 ± 2.92 | 0.8 ± 0.10 | 37.26 ± 1.03 |
PH6WC | 16 | 43.11 ± 0.63 | 1.19 ± 0.01 | 36.37 ± 0.18 |
PH4CV | 14 | 45.09 ± 2.94 | 1.34 ± 0.09 | 33.71 ± 0.23 |
Zheng 58 × Chang 7-2 | 8 | 82.39 ± 7.47 | 1.51 ± 0.15 | 54.62 ± 0.46 |
444 × Chang 7-2 | 11 | 74.42 ± 5.78 | 1.43 ± 0.11 | 51.86 ± 1.08 |
B73 × Chang 7-2 | 12 | 68.39 ± 5.01 | 1.36 ± 0.11 | 50.30 ± 0.29 |
PH6WC × Chang 7-2 | 9 | 86.38 ± 1.80 | 1.72 ± 0.04 | 50.09 ± 0.73 |
Zheng 58 × MO17 | 10 | 80.72 ± 2.02 | 1.65 ± 0.05 | 48.89 ± 1.14 |
444 × MO17 | 4 | 87.19 ± 3.76 | 1.74 ± 0.09 | 50.07 ± 0.72 |
B73 × MO17 | 3 | 93.84 ± 0.32 | 1.93 ± 0.03 | 49.01 ± 0.64 |
PH6WC × MO17 | 5 | 92.75 ± 5.37 | 1.85 ± 0.09 | 50.01 ± 0.78 |
Zheng 58 × PH4CV | 1 | 94.16 ± 4.88 | 1.93 ± 0.14 | 48.80 ± 0.87 |
444 × PH4CV | 2 | 93.14 ± 1.65 | 1.91 ± 0.03 | 48.78 ± 0.43 |
B73 × PH4CV | 7 | 86.78 ± 6.17 | 1.73 ± 0.14 | 50.33 ± 1.12 |
PH6WC × PH4CV | 6 | 89.83 ± 4.95 | 1.77 ± 0.09 | 50.59 ± 0.20 |
Nitrogen | 68.33 ± 3.34 | 1.48 ± 0.05 | 45.06 ± 0.95 | |
Nitrogen supply = 0.46 g/plant | ||||
Zheng 58 | 15 | 15.77 ± 0.45 | 0.49 ± 0.04 | 32.59 ± 1.42 |
Chang 7-2 | 18 | 15.88 ± 1.72 | 0.41 ± 0.04 | 38.40 ± 0.35 |
444 | 19 | 13.99 ± 1.64 | 0.45 ± 0.06 | 31.47 ± 1.42 |
M017 | 13 | 21.32 ± 0.46 | 0.67 ± 0.03 | 32.10 ± 0.83 |
B73 | 17 | 17.82 ± 1.17 | 0.55 ± 0.04 | 32.43 ± 0.16 |
PH6WC | 16 | 12.64 ± 0.62 | 0.37 ± 0.02 | 33.86 ± 0.46 |
PH4CV | 14 | 21.8 ± 0.84 | 0.70 ± 0.02 | 30.95 ± 0.38 |
Zheng 58 × Chang 7-2 | 8 | 37.46 ± 1.32 | 0.76 ± 0.02 | 49.33 ± 0.96 |
444 × Chang 7-2 | 11 | 31.72 ± 1.45 | 0.69 ± 0.03 | 46.10 ± 0.59 |
B73 × Chang 7-2 | 12 | 26.97 ± 1.35 | 0.61 ± 0.02 | 44.12 ± 0.81 |
PH6WC × Chang 7-2 | 9 | 31.44 ± 1.68 | 0.69 ± 0.04 | 45.68 ± 0.51 |
Zheng 58 × MO17 | 10 | 32.84 ± 1.07 | 0.76 ± 0.02 | 43.31 ± 0.46 |
444 × MO17 | 4 | 43.90 ± 2.80 | 0.94 ± 0.05 | 46.48 ± 0.65 |
B73 × MO17 | 3 | 37.07 ± 1.56 | 0.86 ± 0.04 | 43.16 ± 0.32 |
PH6WC × MO17 | 5 | 34.32 ± 1.51 | 0.78 ± 0.02 | 44.00 ± 0.93 |
Zheng 58 × PH4CV | 1 | 47.16 ± 1.21 | 1.06 ± 0.04 | 44.35 ± 0.52 |
444 × PH4CV | 2 | 40.38 ± 0.88 | 0.96 ± 0.02 | 42.09 ± 0.18 |
B73 × PH4CV | 7 | 38.34 ± 3.06 | 0.82 ± 0.06 | 46.87 ± 1.49 |
PH6WC × PH4CV | 6 | 36.88 ± 0.85 | 0.81 ± 0.03 | 45.82 ± 0.72 |
Nitrogen | 29.35 ± 1.43 | 0.7 ± 0.02 | 40.69 ± 0.83 | |
ANOVA | ||||
G | *** | *** | *** | |
N | *** | *** | ** | |
G × N | *** | *** | * |
Variable | Unit | AH (%) | MPH (%) | Range of MPH (%) |
---|---|---|---|---|
Root activity | µg/g/h | 42.74 | 58.94 | 33.03 to 89.70 |
Root length | cm | 42.78 | 61.03 | 4.88 to 116.08 |
Root surface area | cm2 | 15.39 | 34.10 | −0.82 to 85.24 |
Root volume | cm3 | 32.71 | 66.02 | −9.95 to 217.30 |
Root diameter | Mm | 6.43 | 11.70 | −5.58 to 40.75 |
Root NR activity | nmol/g/h FW | −2.56 | 4.44 | −14.07 to 18.82 |
Root GS activity | U/g FW | 8.40 | 12.57 | 0.04 to 30.52 |
Leaf NR activity | nmol/g/h FW | 56.45 | 60.91 | 53.07 to 68.04 |
Leaf GS activity | U/g FW | 15.31 | 26.18 | 7.88 to 43.69 |
Free amino acid | mg/g FW | −27.13 | −19.83 | −44.71 to −0.63 |
Nitrate content | mg/g FW | 4.97 | 8.92 | −1.24 to 20.25 |
soluble protein | mg/g FW | 1.69 | 4.54 | −1.58 to 16.35 |
Soluble sugar | mg/g FW | −18.54 | −13.17 | −31.10 to 1.88 |
Chlorophyll a | mg/g FW | 3.72 | 11.77 | −8.12 to 36.70 |
Chlorophyll b | mg/g FW | −1.82 | 10.52 | −10.88 to 49.03 |
Chlorophyll a+b | mg/g FW | 3.56 | 11.35 | −4.11 to 37.16 |
Carotenoid | mg/g FW | 2.56 | 12.17 | −17.28 to 49.07 |
Photosynthetic rate | µmol m−2 s−1 | 0.16 | 3.56 | −12.12 to 25.87 |
Transpiration rate | mmol m−2 s−1 | 0.33 | 3.63 | −7.71 to 12.65 |
Stomatal conductance | mmol H2O m−2 s−1 | 3.80 | 9.81 | −10.30 to 25.04 |
Intercellular CO2 concentration | µmol CO2 mol−1 air | 3.36 | 5.76 | −3.91 to 14.61 |
Fv/Fm | - | 8.97 | 11.52 | 5.04 to 28.17 |
Y (II) | - | 6.60 | 10.91 | −0.55 to 22.33 |
Leaf area | cm2/plant | 43.94 | 56.48 | 25.39 to 84.23 |
Plant height | m | 25.40 | 32.15 | 20.62 to 48.78 |
Root dry weight | g/plant | 72.92 | 102.20 | 60.77 to 137.44 |
Shoot dry weight | g/plant | 100.79 | 122.10 | 81.96 to 154.16 |
Total dry weight | g/plant | 92.01 | 116.05 | 75.01 to 139.47 |
Root N concentration | % | −21.03 | −18.05 | −30.72 to −3.99 |
Shoot N concentration | % | −34.31 | −30.56 | −37.29 to −21.97 |
Total N concentration | % | −28.0 | −25.89 | −29.59 to −21.98 |
Root N accumulation | g/plant | 43.98 | 66.79 | 28.83 to 105.76 |
Shoot N accumulation | g/plant | 32.90 | 53.65 | 22.72 to 80.49 |
Total N accumulation | g/plant | 35.99 | 56.29 | 28.84 to 77.42 |
NUpE | g/g | 37.09 | 58.19 | 27.19 to 78.77 |
NutE | g/g | 32.69 | 37.65 | 26.76 to 45.51 |
NUE | g/g | 94.30 | 119.81 | 73.83 to 148.68 |
Inbred Lines | Breeding/Provide Institution | Year |
---|---|---|
Zheng 58 | Henan Academy of Agricultural Sciences | 1993 |
Chang 7-2 | Henan Academy of Agricultural Sciences | 1991 |
444 | Jilin Academy of Agricultural Sciences | 1984 |
MO17 | University of Missouri, USA | 1970s |
B73 | Lowa State University, USA | 1972 |
PH6WC | Pioneer Hi-Bred, USA | 1997 |
PH4CV | Pioneer Hi-Bred, USA | 1996 |
Hybrids | ||
Zheng58 × Chang7-2 | Zheng58 × MO17 | Zheng58 × PH4CV |
444 × Chang7-2 | 444 × MO17 | 444 × PH4CV |
B73 × Chang7-2 | B73 × MO17 | B73 × PH4CV |
PH6WC × Chang7-2 | PH6WC × MO17 | PH6WC × PH4CV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jan, M.F.; Li, M.; Liu, C.; Liaqat, W.; Altaf, M.T.; Barutçular, C.; Baloch, F.S. Multivariate Analysis of Root Architecture, Morpho-Physiological, and Biochemical Traits Reveals Higher Nitrogen Use Efficiency Heterosis in Maize Hybrids During Early Vegetative Growth. Plants 2025, 14, 399. https://doi.org/10.3390/plants14030399
Jan MF, Li M, Liu C, Liaqat W, Altaf MT, Barutçular C, Baloch FS. Multivariate Analysis of Root Architecture, Morpho-Physiological, and Biochemical Traits Reveals Higher Nitrogen Use Efficiency Heterosis in Maize Hybrids During Early Vegetative Growth. Plants. 2025; 14(3):399. https://doi.org/10.3390/plants14030399
Chicago/Turabian StyleJan, Muhammad Faheem, Ming Li, Changzhuang Liu, Waqas Liaqat, Muhammad Tanveer Altaf, Celaleddin Barutçular, and Faheem Shehzad Baloch. 2025. "Multivariate Analysis of Root Architecture, Morpho-Physiological, and Biochemical Traits Reveals Higher Nitrogen Use Efficiency Heterosis in Maize Hybrids During Early Vegetative Growth" Plants 14, no. 3: 399. https://doi.org/10.3390/plants14030399
APA StyleJan, M. F., Li, M., Liu, C., Liaqat, W., Altaf, M. T., Barutçular, C., & Baloch, F. S. (2025). Multivariate Analysis of Root Architecture, Morpho-Physiological, and Biochemical Traits Reveals Higher Nitrogen Use Efficiency Heterosis in Maize Hybrids During Early Vegetative Growth. Plants, 14(3), 399. https://doi.org/10.3390/plants14030399