Oxalis pes-caprae L. (Oxalidaceae): From Invasive Concern to Promising Bioresource for Health and Sustainable Applications
Abstract
:1. Introduction
2. Data Sources
3. Botany, Ecology and Distribution
3.1. Taxonomy and Morphology
3.2. Ecology
3.3. Distribution
Brief History of the Spread of O. pes-caprae in the Mediterranean Region
4. Nutritive Features
5. Phytochemistry
Extraction | Compounds | Reference |
---|---|---|
Ethyl acetate, leaves and twigs | 4′-acetylphenyl 4-hydroxycinnamate; 4′-acetylphenyl sinapate; 4′-acetylphenyl 4-O-methylsinapate; 3′-acetylphenyl 4-methylsinapate; 4′-(1-hydroxyethyl)phenyl sinapate; 4-methylsinapate | [39] |
MeOH, leaves and twigs | (E)-3-methoxyphenyl 4-hydroxycinnamate; 2-methoxyphenyl 3-phenylpropanoate; 2-hydroxyethyl 3-phenylpropanoate; 4,4′-[1,1′-oxybis(ethane-1,1-diyl)]diphenol; dihydrocinnamic acid; 3-methoxyphenol; 2- Methoxyphenol; tangeretin; nobiletin; 5-demethylnobiletin; 4′-demethylnobiletin | [40] |
Water, leaves and twigs | (E)-4-[4-(2-carboxyethenyl)phenoxy]benzoic acid; p-coumaric acid; cis-p-coumaric acid; cinnamic acid; 1,2,3,4-tetrahydro-1-methyl-β-carboline-3-carboxylic acid; 4-hydroxybenzoic acid; 4-(1-hydroxyethyl)phenol; 3-(1-hydroxyethyl)phenol | [40] |
Ethyl acetate, leaves and twigs | (E)-4-(1-(4-(1-hydroxyethyl)phenoxy)ethyl) phenyl 3,4,5-trimethoxycinnamate; loliolide | [41] |
Ethyl acetate, aerial parts | Chlorogenic acid; Quinic ferulate; Luteolin glucosides; Cernuoside | [42] |
MeOH, aerial parts | Chlorogenic acid; Luteolin C-O-diglucoside | [42] |
Boiling water/n-butanol, aerial parts | Chlorogenic acid; Luteolin C-glucoside; Luteolin C-O-diglucoside; Cernuoside | [42] |
Hydroalcoholic (50%), leaves | 7,3′-dimethoxyl-2″-O-glycosyl orientin, 7,3′-dimethoxyl-6-desoxyhexose orientin, 6-hexosyl-8-acetylhexosyl luteolin, vitexin, 7,4′-dimethoxyl-2″-glycosyl vitexin, and 2″-O-rhamnosyl vitexin | [43] |
MeOH 80%, leaves and flowers | luteolin, luteolin-O-dihydrogalloyl-trihexoside, iso-luteolin-O-dihydrogalloyl-trihexosides, kaempferol-di-O-hexosides, kaempferol-O-coumaroyl-hexoside, kaempferol, kaempferol-3-apiosyl-hexoside, isovitexin-O-hexoside, kaempferol-hexoside, kaempferol-di-hexoside, kaempferol-pentose, apigenin-di-C-hexoside, iso-apigenin-di-C-hexosides, and quercetin-O-hexoside | [46] |
Classification | Name | Reference |
---|---|---|
Aldehydes | 3-methyl butanal | [38] |
nonanal | [38] | |
Alcohols | 3-hexen-1-ol | [38] |
phenylethyl alcohol | [38] | |
1-dodecanol | [38] | |
1-tetradecanol | [38] | |
Esters | 4-penten-1-yl acetate | [38] |
pentyl acetate | [38] | |
isoamyl propionate | [38] | |
3-hexenyl acetate | [38] | |
hexyl acetate | [38] | |
pentyl butanoate | [38] | |
isoamyl butanoate | [38] | |
1,1′-bicyclohexyl | [38] | |
ethyl nonanoate | [38] | |
isoamyl benzoate | [38] | |
ethyl dodecanoate | [38] | |
ethyl hexadecanoate | [38] | |
Ethers | diisoamyl ether | [38] |
Carboxylic acids | nonanoic acid | [38] |
Terpenes | linalool | [38] |
α-terpineol | [38] | |
β-caryophyllene | [38] | |
β-farnesene | [38] | |
humulene | [38] | |
nerolidol | [38] | |
loliolide | [41] | |
Others | 1,3-bis(1,1-dimethylethyl)benzene | [38] |
4,6-dimethyl dodecane | [38] | |
2,4-bis(1,1-dimethylethyl)phenol | [38] | |
hexadecane | [38] | |
pentadecane | [38] | |
cyclotetradecane | [38] |
6. Biological Activities
6.1. Antioxidant Activity
Activity | Extract | Dose | Reference |
---|---|---|---|
Antioxidant (DPPH test) | Hydroalcoholic (50%), leaves | IC50 17.9 μg/mL | [43] |
n-Hexane, flowers | IC50 24.6 μg/mL | [44] | |
Methanol, flowers | IC50 36.4 μg/mL | [44] | |
Methanol, leaves | IC50 46.3 μg/mL | [44] | |
n-Hexane, leaves | IC50 56.2 μg/mL | [44] | |
Methanol, stems | IC50 57.1 μg/mL | [44] | |
n-Hexane, stems | IC50 66.8 μg/mL | [44] | |
Aqueous, flowers | IC50 114 μg/mL | [46] | |
Methanolic, flowers | IC50 134 μg/mL | [46] | |
Methanol, leaves | IC50 214 μg/mL | [46] | |
Water, leaves | IC50 296 μg/mL | [46] | |
Acetone, leaves | IC50 5.2 μg/mL | [48] | |
Methanol, leaves | IC50 17.3 μg/mL | [48] | |
Water, leaves | IC50 31.4 μg/mL | [48] | |
Ethanol, leaves | IC50 73.2 μg/mL | [48] | |
n-Hexane, leaves | IC50 > 100 μg/mL | [48] | |
Antioxidant (Fe3+ reducing power) | Methanol, stems | 34.98 mg GAE/g | [44] |
Methanol, flowers | 795.8 mg AAE/g | [46] | |
Water, flowers | 690.8 mg AAE/g | [46] | |
Methanol, leaves | 507.8 mg AAE/g | [46] | |
Water, leaves | 387.4 mg AAE/g | [46] | |
Antioxidant (Increase in SOD, CAT, GPx, and GR activity in diabetic mice) | Methanol, flower | 150–250 mg/kg | [46] |
Antioxidant (Increase in DPPH radical scavenging activity in plasma of mice) | Methanol, N.S. | 100–200–400 mg/kg | [49] |
Antioxidant (Increase of liver GSH in mice) | Methanol, N.S. | 100–200–400 mg/kg | [49] |
Antidiabetic (Inhibition of α-amylase) | Methanol, flower | Inhibition of 68% at 187.5 µg/mL | [46] |
Antidiabetic (Inhibition of α-glucosidase) | Methanol, flower | Inhibition of 40% at 222.5 µg/mL | [46] |
Antidiabetic (Inhibition of non-enzymatic glycation) | Methanol, flower | Inhibition ~100% with 1 mg/mL | [46] |
Antidiabetic (Increase in carbohydrate metabolic enzyme activity in mice) | Methanol, flower | 150–250 mg/kg | [46] |
Antibacterial | Ethanol, methanol, acetone, n-hexane, and chloroform, N.S. | 1000, 1500, and 2500 ppm | [29] |
Antifungal | Ethanol, N.S. | 1000 ppm | [29] |
Vascular (Reduction of maximum contraction response to noradrenaline) | Hydroalcoholic (50%), leaves | Reduction of 58.4% with 0.66 mg/mL | [43] |
6.2. Antidiabetic Activity
6.3. Antibacterial and Antifungal Activities
6.4. Vascular Activity
6.5. Neuroprotective Activity
7. Sustainable Agricultural Application
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Early, R.; Bradley, B.; Dukes, J.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef]
- Petsikos, C.; Dalias, P.; Troumbis, A.Y. Effects of Oxalis pes-caprae L. invasion in olive groves. Agric. Ecosyst. Environ. 2007, 120, 325–329. [Google Scholar] [CrossRef]
- Pereira, A.G.; Fraga-Corral, M.; Garcia-Oliveira, P.; Lourenço-Lopes, C.; Carpena, M.; Prieto, M.A.; Simal-Gandara, J. The Use of Invasive Algae Species as a Source of Secondary Metabolites and Biological Activities: Spain as Case-Study. Mar. Drugs 2021, 19, 178. [Google Scholar] [CrossRef]
- McGaw, L.J.; Omokhua-Uyi, A.G.; Finnie, J.F.; Van Staden, J. Invasive alien plants and weeds in South Africa: A review of their applications in traditional medicine and potential pharmaceutical properties. J. Ethnopharmacol. 2022, 283, 114564. [Google Scholar] [CrossRef]
- Potgieter, L.J.; Gaertner, M.; Kueffer, C.; Larson, B.M.; Livingstone, S.W.; O’Farrell, P.J.; Richardson, D.M. Alien plants as mediators of ecosystem services and disservices in urban systems: A global review. Biol. Invasions. 2017, 19, 3571–3588. [Google Scholar] [CrossRef]
- Kozuharova, E.; Matkowski, A.; Woźniak, D.; Simeonova, R.; Naychov, Z.; Malainer, C.; Mocan, A.; Nabavi, S.M.; Atanasov, A.G. Amorpha fruticosa–A noxious invasive alien Plant in Europe or a medicinal plant against metabolic disease? Front. Pharmacol. 2017, 8, 333. [Google Scholar] [CrossRef]
- Kozuharova, E.; Malfa, G.A.; Acquaviva, R.; Zarev, Y.; Ionkova, I. Utility potential of the aggressive invasive Solanum elaeagnifolium Cav. (Solanaceae) as an option to control its expansion: Bioactive compounds and medicinal properties. Euro. Mediterr. J. Environ. Integr. 2024, 9, 1987–1992. [Google Scholar] [CrossRef]
- Munné-Bosch, S. Achieving the impossible: Prevention and eradication of invasive plants in Mediterranean-type ecosystems. Trends Plant Sci. 2024, 29, 437–446. [Google Scholar] [PubMed]
- Castro, S.; Loureiro, J.; Santos, C.; Ater, M.; Ayensa, G.; Navarro, L. Distribution of flower morphs, ploidy level and sexual reproduction of the invasive weed Oxalis pes-caprae in the western area of the Mediterranean region. Ann. Bot. Lond. 2007, 99, 507–517. [Google Scholar] [CrossRef]
- Gallardo, B. Europe’s top 10 invasive species: Relative importance of climatic, habitat and socio-economic factors. Ethol. Ecol. Evo. 2014, 26, 130–151. [Google Scholar] [CrossRef]
- World Flora Online (WFO). Oxalis sericea Thunb. Available online: http://www.worldfloraonline.org/taxon/wfo-0001089817 (accessed on 9 December 2024).
- Verdaguer, D.; Sala, A.; Vilà, M. Effect of Environmental Factors and Bulb Mass on the Invasive Geophyte Oxalis pes-caprae Development. Acta Oecol. 2010, 36, 92–99. [Google Scholar] [CrossRef]
- Plants of the World Online. Oxalis pes-caprae L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:77223906-1#synonyms (accessed on 4 February 2025).
- Papini, A.; Signorini, M.A.; Foggi, B.; Della Giovampaola, E.; Ongaro, L.; Vivona, L.; Antosuoso, U.; Pani, C.; Bruschi, P. History vs. legend: Retracing invasion and spread of Oxalis pes-caprae L. in Europe and the Mediterranean area. PLoS ONE 2017, 12, e0190237. [Google Scholar] [CrossRef] [PubMed]
- Acta Plantarum. Oxalis pes-caprae L. Available online: https://www.actaplantarum.org/flora/flora_info.php?id=502801 (accessed on 4 February 2025).
- Signorini, M.A.; Calamassi, R.; Bruschi, P.; Tani, C. Stigma and Style Anatomy and Ultrastructure in Italian Oxalis pes-caprae L. and Their Possible Connection with Self-Incompatibility. Flora 2014, 209, 471–483. [Google Scholar] [CrossRef]
- Sala, A.; Verdaguer, D.; Vilà, M. Sensitivity of the invasive geophyte Oxalis pes-caprae to nutrient availability and competition. Ann. Bot. 2007, 99, 637–645. [Google Scholar] [CrossRef]
- Biondi, E.; Blasi, C. Prodromo Della Vegetazione d’Italia; Ministero dell’Ambiente e della Tutela del Territorio e del Mare: Rome, Italy, 2015. [Google Scholar]
- Mucina, L.; Bültmann, H.; Dierßen, K.; Theurillat, J.-P.; Raus, T.; Čarni, A.; Šumberová, K.; Willner, W.; Dengler, J.; Gavilán García, R.; et al. Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veg. Sci. 2016, 19 (Suppl. 1), 3–264. [Google Scholar] [CrossRef]
- Lo Giudice, V. Effect of Oxalis pes-caprae L. on the Growth of Sour Orange (Citrus aurantium L.) Plants. Atti. Giornate Fitopatol. 1994, 1, 349–356. [Google Scholar]
- Plants of the World Online (POWO). Oxalis pes-caprae L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:375259-1 (accessed on 9 December 2024).
- Saccardo, P.A. Cronologia Della Flora Italiana; Tipografia del Seminario: Padova, Italy, 1909. [Google Scholar]
- Borzì, A. La vegetazione della Conca d’oro. In Palermo e la Conca d’oro; VII Congresso Geografico Italiano: Palermo, Italy, 1910; pp. 81–93. [Google Scholar]
- Maniero, F. Fitocronologia d’Italia; Leo S. Olschki: Firenze, Italy, 2000; p. 289. [Google Scholar]
- Raimondo, F.M.; Mazzola, P. Nota al catalogo ragionato. In Fiori di Sicilia. Acis Hortus Regius. L’Erbario di Giuseppe Riggio (Acireale 1811); Napolone, C., Ed.; Ricci Editore S.r.l.: Parma, Italy, 2007; pp. 338–339. [Google Scholar]
- Napoleone, C. (Ed.) Fiori di Sicilia. Acis Hortus Regius. L’Erbario di Giuseppe Riggio (Acireale 1811); Ricci Editore S.r.l.: Parma, Italy, 2007; p. 397. [Google Scholar]
- Faltein, Z.; Esler, K.J.; Midgley, G.F.; Ripley, B.S. Atmospheric CO2 concentrations restrict the growth of Oxalis pes-caprae bulbs used by human inhabitants of the Paleo-Agulhas plain during the Pleistocene glacials. Quat. Sci. Rev. 2020, 235, 105731. [Google Scholar] [CrossRef]
- De Vynck, J.C.; Van Wyk, B.E.; Cowling, R.M. Indigenous edible plant use by contemporary Khoe-San descendants of South Africa’s Cape South Coast. S. Afr. J. Bot. 2016, 102, 60–69. [Google Scholar] [CrossRef]
- Naila, S.; Ibrar, M. Pharmacological Studies of Oxalis pes-caprae L. Pharmacogn. J. 2018, 10, 705–711. [Google Scholar] [CrossRef]
- Michael, P.W. Studies on Oxalis pes-caprae L. in Australia: II. The control of the pentaploid variety. Weed Res. 1965, 5, 133–140. [Google Scholar] [CrossRef]
- Drobnik, J.; Drobnik, E. Timeline and bibliography of early isolations of plant metabolites (1770–1820) and their impact to pharmacy: A critical study. Fitoterapia 2016, 115, 155–164. [Google Scholar] [CrossRef]
- Noonan, S.C.; Savage, G.P. Oxalate content of foods and its effect on humans. Asia Pac. J. Clin. Nutr. 1999, 8, 64–74. [Google Scholar]
- Stepanova, N.; Tolstanova, G.; Aleksandrova, I.; Korol, L.; Dovbynchuk, T.; Driianska, V.; Savchenko, S. Gut microbiota’s oxalate-degrading activity and its implications on cardiovascular health in patients with kidney failure: A pilot prospective study. Medicina 2023, 59, 2189. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.K.; Nguyen, D.H.; Nguyen, H.V. Effects of processing on oxalate contents in plant foods: A review. J Food Compos. Anal. 2022, 112, 104685. [Google Scholar] [CrossRef]
- Salgado, N.; Silva, M.A.; Figueira, M.E.; Costa, H.S.; Albuquerque, T.G. Oxalate in Foods: Extraction Conditions, Analytical Methods, Occurrence, and Health Implications. Foods 2023, 12, 3201. [Google Scholar] [CrossRef] [PubMed]
- Cassland, P.; Sjöde, A.; Winestrand, S.; Jönsson, L.J.; Nilvebrant, N.O. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications. Appl. Biochem. Biotech. 2010, 161, 255–263. [Google Scholar] [CrossRef]
- Misiewicz, B.; Mencer, D.; Terzaghi, W.; VanWert, A.L. Analytical Methods for Oxalate Quantification: The Ubiquitous Organic Anion. Molecules 2023, 28, 3206. [Google Scholar] [CrossRef]
- Clemente-Villalba, J.; Burló, F.; Hernández, F.; Carbonell-Barrachina, Á.A. Potential Interest of Oxalis pes-caprae L., a Wild Edible Plant, for the Food and Pharmaceutical Industries. Foods 2024, 13, 858. [Google Scholar] [CrossRef] [PubMed]
- DellaGreca, M.; Purcaro, R.; Previtera, L.; Zarrelli, A. Phenyl cinnamate derivatives from Oxalis pes-caprae. Chem. Biodivers. 2008, 5, 2408–2414. [Google Scholar] [CrossRef]
- DellaGreca, M.; Previtera, L.; Purcaro, R.; Zarrelli, A. Phytotoxic aromatic constituents of Oxalis pes-caprae. Chem. Biodivers. 2009, 6, 459–465. [Google Scholar] [CrossRef]
- DellaGreca, M.; Previtera, L.; Zarrelli, A. A new aromatic component from Oxalis pes-caprae. Nat. Prod. Res. 2010, 24, 958–961. [Google Scholar] [CrossRef]
- Güçlütürk, I.; Detsi, A.; Weiss, E.K.; Ioannou, E.; Roussis, V.; Kefalas, P. Evaluation of anti-oxidant activity and identification of major polyphenolics of the invasive weed Oxalis pes-caprae. Phytochem. Analysis. 2012, 23, 642–646. [Google Scholar] [CrossRef]
- Gaspar, M.C.; Fonseca, D.A.; Antunes, M.J.; Frigerio, C.; Gomes, N.G.; Vieira, M.; Santos, A.E.; Cruz, M.T.; Cotrim, M.D.; Campos, M.G. Polyphenolic characterisation and bioactivity of an Oxalis pes-caprae L. leaf extract. Nat. Prod. Res. 2017, 32, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Gul, F.; Khan, I.; Iqbal, J.; Abbasi, B.A.; Shahbaz, A.; Capasso, R.; Amaro-Estrada, I.; Bin Jardan, J.A.; Cossio-Bayugar, R.; T Mahmood, T. Phytochemistry, biological activities and in silico molecular docking studies of Oxalis pes-caprae L. compounds against SARS-CoV-2. J. King Saud Univ. Sci. 2022, 34, 102136. [Google Scholar] [CrossRef]
- Lahlali, M.; Manaut, N.; Boualy, B.; Loudiki, M.; Douma, M. First report of the anti-cyanobacterial activity of the invasive weed Oxalis pes-caprae L. against Microcystis aeruginosa growth. Desalin. Water Treat. 2023, 296, 41–48. [Google Scholar]
- Kabach, I.; Bouchmaa, N.; Zouaoui, Z.; Ennoury, A.; El Asri, S.; Laabar, A.; Oumeslakht, L.; Cacciola, F.; El Majdoub, Y.O.; Mondello, L.; et al. Phytochemical profile and antioxidant capacity, α-amylase and α-glucosidase inhibitory activities of Oxalis pes-caprae extracts in alloxan-induced diabetic mice. Biomed. Pharmacother. 2023, 160, 114393. [Google Scholar] [CrossRef]
- Gülçin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Ondua, M.; Njoya, E.M.; Abdalla, M.A.; McGaw, L.J. Anti-inflammatory and antioxidant properties of leaf extracts of eleven South African medicinal plants used traditionally to treat inflammation. J. Ethnopharmacol. 2019, 234, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Belghoul, M.; Baghiani, A.; Khennouf, S.; Arrar, L. Sub-acute oral toxicity and in vivo antioxidant properties of Oxalis cernua. S. Afr. J. Bot. 2020, 133, 91–97. [Google Scholar] [CrossRef]
- Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A.; et al. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef]
- Di Giacomo, C.; Malfa, G.A.; Tomasello, B.; Bianchi, S.; Acquaviva, R. Natural Compounds and Glutathione: Beyond Mere Antioxidants. Antioxidants 2023, 12, 1445. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Yan, L.J. Protein oxidative modifications: Beneficial roles in disease and health. J. Biochem. Pharmacol. Res. 2013, 1, 15. [Google Scholar]
- Song, Q.; Liu, J.; Dong, L.; Wang, X.; Zhang, X. Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomed. Pharmacother. 2021, 140, 111750. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Cheng, K.W.; Xiao, J.; Wang, M. The multifunctional roles of flavonoids against the formation of advanced glycation end products (AGEs) and AGEs-induced harmful effects. Trends Food Sci. Technol. 2020, 103, 333–347. [Google Scholar] [CrossRef]
- Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A. Antimicrobial Effect of Different Herbal Plant Extracts against Different Microbial Population. Saudi J. Biol. Sci. 2020, 27, 3221–3227. [Google Scholar] [CrossRef]
- Aprilita, R.; Maksum, R.; Abdul, M.; Suyatna, F. Screening angiotensin converting enzyme (ACE) inhibitor activity of antihypertensive medicinal plants from Indonesia. Int. J. Pharm. Teach. Pract. 2013, 4, 527–532. [Google Scholar]
- Afifi, F.U.; Khalil, E.; Abdalla, S. Effect of isoorientin isolated from Arum palaestinum on uterine smooth muscle of rats and guinea pigs. J. Ethnopharmacol. 1999, 65, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, D.A.; Ferreira, M.; Campos, M.G.; Antunes, P.E.; Antunes, M.J.; Cotrim, M.D. Vascular effects of a polyphenolic fraction from Oxalis pes-caprae L.: Role of α-adrenergic receptors Sub-types. Nat. Prod. Res. 2020, 34, 3369–3372. [Google Scholar] [CrossRef]
- Lorenzo, P.; Galhano, C.; Dias, M.C. Organic Waste from the Management of the Invasive Oxalis pes-caprae as a Source of Nutrients for Small Horticultural Crops. Plants 2024, 13, 2358. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
Class (%) | Flowers | Leaves | Stems |
---|---|---|---|
Carbohydrates | 62.6 | 45.9 | 73.3 |
Fats | 6.7 | 12.7 | 3.5 |
Proteins | 13.5 | 19.4 | 8.9 |
Dietary Fibers | 30.7 | 28.7 | 36.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malfa, G.A.; Bianchi, S.; Spadaro, V.; Di Giacomo, C.; Raimondo, F.M.; Acquaviva, R. Oxalis pes-caprae L. (Oxalidaceae): From Invasive Concern to Promising Bioresource for Health and Sustainable Applications. Plants 2025, 14, 578. https://doi.org/10.3390/plants14040578
Malfa GA, Bianchi S, Spadaro V, Di Giacomo C, Raimondo FM, Acquaviva R. Oxalis pes-caprae L. (Oxalidaceae): From Invasive Concern to Promising Bioresource for Health and Sustainable Applications. Plants. 2025; 14(4):578. https://doi.org/10.3390/plants14040578
Chicago/Turabian StyleMalfa, Giuseppe Antonio, Simone Bianchi, Vivienne Spadaro, Claudia Di Giacomo, Francesco Maria Raimondo, and Rosaria Acquaviva. 2025. "Oxalis pes-caprae L. (Oxalidaceae): From Invasive Concern to Promising Bioresource for Health and Sustainable Applications" Plants 14, no. 4: 578. https://doi.org/10.3390/plants14040578
APA StyleMalfa, G. A., Bianchi, S., Spadaro, V., Di Giacomo, C., Raimondo, F. M., & Acquaviva, R. (2025). Oxalis pes-caprae L. (Oxalidaceae): From Invasive Concern to Promising Bioresource for Health and Sustainable Applications. Plants, 14(4), 578. https://doi.org/10.3390/plants14040578