Next Article in Journal
Comprehensive Chloroplast Genomic Insights into Amaranthus: Resolving the Phylogenetic and Taxonomic Status of A. powellii and A. bouchonii
Next Article in Special Issue
Vasodilatory Effect of n-Butanol Extract from Sanguisorba officinalis L. and Its Mechanism
Previous Article in Journal
Three New Records of Pathogens Causing Stem Blight on Vaccinium corymbosum in China
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Nephroprotective Plant Species Used in Brazilian Traditional Medicine for Renal Diseases: Ethnomedical, Pharmacological, and Chemical Insights

by
Rodrigo Moraes Carlesso
1,
Yasmin Louise Ramos Cappellari
1,2,
Daiana Daniele Boeff
1,2,
Alícia da Costa Pereira
1,
Elisa Schmitt Rusch
1,
Thiago de Souza Claudino
3,
Mara Rejane Ritter
4 and
Eduardo Luis Konrath
1,2,*
1
Laboratory of Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
2
Pos-Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (PPGCF-UFRGS), Porto Alegre 90010-150, Brazil
3
Irati Campus, Federal Institute of Education, Science and Technology of Paraná (IFPR), Irati 84500-000, Brazil
4
Department of Botany, Biosciences Institute, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
*
Author to whom correspondence should be addressed.
Plants 2025, 14(5), 648; https://doi.org/10.3390/plants14050648
Submission received: 28 January 2025 / Revised: 16 February 2025 / Accepted: 18 February 2025 / Published: 20 February 2025
(This article belongs to the Special Issue Ethnobotanical and Pharmacological Study of Medicinal Plants)

Abstract

:
The prevalence of kidney-related diseases has been increasing and has emerged globally as a leading cause of mortality, especially in developing countries where they are considered a neglected public health problem. Renal diseases are commonly progressive and may cause irreversible loss of organ function, eventually necessitating renal replacement therapy. Although different pharmaceuticals are considered for the treatment of these pathologies, the uncertain effectiveness and presence of adverse effects have generated a growing need for the development of novel nephroprotective compounds. Because many medicinal herbs are typically used in Brazilian folk medicine to prevent and cure kidney ailments, ethnomedicine may play a promising and strategic role in identifying and adding new potential molecules to the pharmacological arsenal. This review focuses on the use of plants and secondary metabolites belonging to different classes to treat renal diseases, associating the screened plant extracts with the bioactive components present in each species. Flavonoids and triterpenes are notable metabolites that have therapeutic potential. The putative pharmacological mechanisms related to nephroprotective properties are also discussed in in vitro and in vivo models, when available.

1. Introduction

Renal diseases are common global causes of morbidity and mortality that cause an increasing socioeconomic burden on public health programs, particularly in low- and middle-income countries [1]. These conditions may impair both kidney structure and function and are associated with significant adverse clinical outcomes [2]. In addition to their high prevalence, kidney diseases are typically associated with comorbidities, including diabetes, hypertension, and coronary heart disease [3,4]. Currently, the management of renal diseases remains a challenge because of their multifold impact, with more than two million people globally receiving renal replacement therapy in the form of continuous dialysis methods or, eventually, kidney transplantation [5]. Based on the cause, duration, and severity, abnormalities in kidney function can be classified as acute kidney disease (AKD) or chronic kidney disease (CKD) [6,7].
AKD is a life-threatening decline in kidney function that affects the glomerular filtration rate and is more reversible than CKD [8]. Glomerular or tubular injury, trauma, and exposure to nephrotoxic compounds, including medicines and mycotoxins, are associated with this condition [9]. Importantly, persistent and unresolved episodes of acute renal injury are implicated in the progression to CKD and end-stage kidney disease (ESKD), particularly in the elderly [10]. Serum creatine, proteinuria, and microalbuminuria are the current clinical markers for the detection of kidney disease progression; however, these markers are neither specific nor sensitive [8]. Repeated renal injuries may result in glomerulosclerosis, vascular rarefaction, and fibrosis, all of which are associated with CKD and ESRD [11].
In contrast, CKD gradually develops as a systemic kidney disorder associated with renal pathological features or secondary complications of chronic diseases including diabetes and hypertension [3,4]. The diagnosis of CKD is mainly based on the presence of albuminuria for a period or a glomerular filtration rate < 60 mL/min per 1.73 m2 for ≥3 months, which indicates decreased kidney function [12]. According to the World Health Organization (WHO) estimates, approximately 850 million people worldwide are affected by some form of kidney disease, and CKD is projected to become the 5th most common chronic disease by 2040 [6]. Notably, deterioration of renal function is a silent process due to the lack of physical signs, and most affected individuals are asymptomatic until CKD advances to kidney failure [4,13]. The main causes related to the development of AKD and CKD are shown in Figure 1.
Patients with type 2 diabetes and hypertension are more closely affected and experience a substantial reduction in the quality of life with progressive loss of renal function, resulting in kidney failure and high mortality rates. Some non-pharmacological approaches, including a range of lifestyle and dietary strategies (weight loss, protein restriction, blood pressure, and glucose control), can adequately preserve kidney function [14,15]. Traditionally available pharmacological interventions are rarely curative and are classified into three main targets: (i) agents that slow the progression of the disease (angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and sodium-glucose transport protein inhibitors, known as SGLT-2 inhibitors or gliflozins); (ii) agents that reduce cardiovascular risk (lipid, glucose, and blood pressure-lowering drugs); and (iii) agents that manage uremia and associated symptoms (veverimer, loop or thiazide diuretics, and uric acid-lowering drugs) [16,17]. Further clinical evidence shows that newer nonsteroidal mineralocorticoid receptor antagonists play an important role in preventing and managing AKD-CKD transition, acting as antifibrotic and anti-inflammatory agents [18].
In addition to the limited number of nephroprotective therapies available in current clinics, studies have associated an increased risk of adverse outcomes with the use of some agents, including hyperkalemia or uncertain effectiveness of multi-agent renin–angiotensin–aldosterone system blockade and euglycemic ketoacidosis for SGLT-2 inhibitors [16]. Some drug combinations have not shown additional benefits and may induce serious adverse effects including acute kidney injury and renal dysfunction [19]. Moreover, current pharmacological approaches have been shown to mitigate the risk of CKD progression, particularly in patients with diabetes type 2, but are unlikely to slow disease progression, prevent the development of ESRD and cardiovascular disease, or ensure a better health-related quality of life for these patients [20].
Therefore, we considered the research of plant species that may have nephroprotective activity because many of these plants are widely used as folk medicines in Brazil. In this review, we discuss how plants and their active compounds are used to treat conditions (in vitro and in vivo effects) that are consistent with kidney-related diseases. Furthermore, we review and summarize the empirical use of medicinal plants for the treatment of renal symptoms and provide scientific evidence obtained from preclinical studies.

2. Plant Species Used in Brazilian Ethnomedicine with Nephroprotective and Kidney-Related Properties

The primary source of human healthcare has been linked to the millennial use of medicinal plants. The World Health Organization has estimated that four billion people worldwide still rely on traditional remedies, representing 80% of the world’s population [21,22]. Ethnomedicine plays a pivotal role as a validated strategy to identify new natural chemical entities with important pharmacological activities [23,24]. Plant-derived metabolites are often regarded as chemically complex molecules with outstanding and versatile scaffold diversity compared with typical synthetic compounds [25,26]. Screening and identification of novel therapeutic leads are routinely performed using analytical and computational techniques, including high-throughput screening, medicinal chemistry, molecular docking, and omics [27]. The importance of plants in discovering new drug entities is still growing, as approximately half of the new therapeutic agents approved between 1981 and 2019 are recognized as natural products or their synthetic variants based on natural pharmacophoric groups [28].
Brazil contains approximately 45,000 plant species, corresponding to 20–22% of the global flora, many of which are used for medicinal purposes [29]. Various bioactive molecules have been isolated from native Brazilian plants; however, few studies have investigated their mechanisms of action [30]. Global estimates show that only a small percentage of higher plants on the planet have been chemically (15%) or pharmacologically (6%) investigated [31]. In Brazil, a significant number of plant species have historically been used to normalize kidney function, including medicinal allegations as nephroprotective and diuretic agents, stone elimination, and blood depuration. The properties of plant species used in traditional medicine for these purposes compiled from books about medicinal plants and folk medicine published in Brazil (Table 1) are listed in Table 2.

3. Methodology

A comprehensive review of the medicinal plants used in Brazilian traditional medicine as remedies against kidney-related disorders and their associated bioactive compounds was conducted. To perform bibliographic research, ethnobotanical books containing primary surveys and compilations conducted by authors linked to the national scientific academy were searched (Table 1). The literature used in the review covered plants native or exotic to the Brazilian flora present in all biomes in the country using specific keywords in Portuguese such as “diuretic”, “kidney stones”, “blood purifier”, and “kidney disease”, among others. The following information was collected: plant species, vernacular names, parts of the plant used, and related folk medicinal uses (Table 2). All valid scientific names of species, authors, botanical families, and origins were checked using The World Flora Online “http://www.worldfloraonline.org (accessed on 12 October 2024)” and Flora e Funga do Brasil “http://floradobrasil.jbrj.gov.br (accessed on 15 October 2024)”.
The review process was continued by consulting peer-reviewed journal articles available in electronic databases such as Scopus, PubMed, SciFinder, and SciELO and using keywords associated with the scientific names of plants with in vitro, ex vivo, and in vivo nephroprotective activities. Next, the secondary metabolites present in related plant species used in folk medicine were reviewed using the databases mentioned above, and a comprehensive review was further refined by combining keywords related to the in vitro, ex vivo, and in vivo nephroprotective activities of each compound, resulting in a list of bioactive metabolites useful for treating kidney-related disorders (Tables S1 and S2 of the Supporting Information). For all searches, the inclusion criteria were based on the credibility of the sources from which data were collected. No specific restrictions were considered, and all preclinical studies were included and investigated.
The inclusion criteria for the ethnobotanical compilation were as follows: (i) plants species traditionally used in traditional Brazilian medicine specifically for the treatment of kidney-related diseases, (ii) books edited in Brazil based on ethnobotanical studies or compilations of folk medicinal reports published by scientists, and (iii) reports containing the specific botanical epithet. The inclusion criteria for pharmacological evidence were as follows: (i) Brazilian species with traditional reports of nephroprotection, (ii) well-designed studies of pharmacological evaluation (in vitro, in vivo, or in silico), and (iii) bioactive components present in the organs of the species traditionally used for renal diseases. The exclusion criteria applied for medicinal plants were if they were (i) identified only to the genus level, (ii) cited only by their popular names, and (iii) exotic, non-acclimatized plants were excluded, resulting in a complete database final list.

4. Nephroprotective Strategies in Acute Kidney Disease and Chronic Kidney Disease

One potential reason for plant-derived phytochemicals being suggested as promising strategies to prevent or treat kidney-related diseases is their complex pleiotropic effects based on potential interactions with different pharmacological sites. Considering that kidney-related diseases involve multiple pathological pathways, the presence of different nephroprotective natural compounds in plant extracts represents a multitarget approach, as they can act synergistically, thus modulating important proteins involved in renal pathogenesis [52].
Diverse experimental non-clinical approaches are currently used to screen the bioactive components of plants traditionally used for their pharmacological activity in kidney disorders, all of which mimic the different processes involved in AKD and CKD (summarized in Figure 2). In vitro models can be quickly performed in batteries and often use human, rat, porcine, or canine renal cell lines, such as glomerular mesangial cells, tubular epithelial cells, interstitial fibroblast cells, podocytes, or renal structures exposed to drug-induced nephrotoxicity. Strategies to target the pharmacological mechanisms in these cells also include incubation with high glucose and glycation end products, chemical ischemia, transforming growth factor β1 (TGF-β1)-induced epithelial to mesenchymal transition, and induction of kidney oxalate crystal deposits [53,54,55,56].
However, in vivo experimental models that expose rats or mice to different etiological factors and conditions are more extensively used to assay molecules or extracts that can potentially block or reverse the progression of kidney diseases. Classically, AKI is induced by the administration of various noxious stimuli including antibiotics, chemotherapeutic agents, aristolochic acid, heavy metals, pesticides, and endogenous toxins (sepsis-induced AKD) [52]. Surgical strategies, such as kidney ischemia-reperfusion and unilateral ureteral obstruction (UUO) models, are low-cost and often used to affect specific physiological components, triggering tubular cell necrosis, apoptosis, inflammation, and oxidative stress damage. Some CKD models include diabetic nephropathy, hypertension-induced renal damage, glomerular injury, and renal mass reduction (5/6 nephrectomy) [57]. Although these models do not fully reproduce human clinical features, they share some common specific cell-signaling pathways and are usually accompanied by a decline in renal function, represented by elevated serum creatinine and urea levels, decreased glomerular filtration rate, tubular lesions, proteinuria, and fibrosis [52].
Considering that CKD may ultimately result in epithelial-to-mesenchymal transition (EMT), renal fibrosis, and nephron loss, novel pharmacological targets focus on the modulation of molecular and cellular cascades related to the deposition of extracellular matrix proteins or fibrinogenesis [58]. Most of these studies have suggested that classical oxidative stress and inflammation biomarkers as well as the activation of epidermal growth factor receptor (EGFR), regulation of cell differentiation and migration pathways (such as Notch, Wnt, Hedgehog, and SOX9), myofibroblast-targeting strategies, TGFβ1 signaling blockers, and inhibition of the Wnt/β-catenin pathway are promising therapeutic approaches [59,60,61].

5. Plant Extracts Characterized in In Vitro and In Vivo Studies

According to the collected data, 398 plant species were identified as folk nephroprotective agents, most of which were native to Brazilian flora, resulting in 741 citations. Table 2 provides an overview of their taxonomic distribution, morphological structures, and folk indications. Among them, 235 genera belonging to 91 botanical families were identified. The most cited families with traditional use were Fabaceae, followed by Asteraceae and Rubiaceae (65, 50, and 33 citations, respectively). As for the number of species, the most common families were Fabaceae, followed by Asteraceae and Bignoniaceae (42, 25, and 18 plant species, respectively). These results agree with previous studies indicating that Fabaceae and Asteraceae are among the largest botanical families found in Brazilian territory, thus reinforcing their importance for medicinal use in the country [62].
Roots were the predominant morphological structure of nephroprotective drugs used in household remedies (28.7%), followed by leaves (28.2%), and whole plants (9.6%). The species most commonly cited as useful for the treatment of renal complaints in the context of Brazilian traditional medicine were Persea americana (13 citations), Phyllanthus niruri, and Casearia sylvestris (both with 10 citations). Among these, P. niruri appears to be the most widely investigated plant for kidney diseases, sharing scientific evidence of its biological and pharmacological efficacy attributed to lignans, which are regarded as putative bioactive components (Table 3, Table 4 and Tables S1 and S2). Extracts obtained from P. americana have demonstrated important effects, particularly after in vivo assays. However, pharmacological studies to confirm the nephroprotective therapeutic properties of C. sylvestris are lacking. Notably, P. americana is a plant that shares the highest number of use reports, but is an exotic (non-native) species. This fact is consistent with the higher availability of some species that are cultivated in domestic gardens and also points to the fact that the Brazilian population tends to fill the medicinal gaps not met by native species [63,64].
A detailed list of plant extracts with nephroprotective activity in vitro and in vivo is provided in Table 3 and Table 4. Although these studies reported the effectiveness of the extracts using distinct models, the minimal concentration at which significant effects were achieved, and the half-maximal inhibitory concentration (IC50) were the measurements presented. The most potent extract (Table 3) was the aqueous leaf extract of Guazuma ulmifolia, which displayed an in vitro protective effect at a concentration of 3.125 μg/mL in mouse mesangial cells (SV40MES13) exposed to high glucose concentrations, simulating diabetic glomerulosclerosis [65]. G. ulmifolia is a Brazilian native tree widely found in the country, with edible fruits and known locally as “mutamba”. Decoctions of the leaves, fruits, and stem bark are traditionally used to treat kidney stones and digestive and cardiovascular disorders [66]. Polar extracts obtained from the bark of G. ulmifolia are especially rich in procyanidin oligomers, consisting mainly of [4β → 8]-(−)-epicatechin units, including procyanidin B1 (epicatechin-(4β → 8)-catechin), procyanidin B2 (epicatechin-(4β → 8)-epicatechin), procyanidin B5 (epicatechin-(4β → 6)-epicatechin), procyanidin C1 ([epicatechin-(4β → 8)]2-epicatechin), cinnamtannin A2 ([epicatechin-(4β → 8)]3-epicatechin), and epiphyllocoumarin derivatives [67,68]. The cardioprotective and antihypertensive activities of this species have been demonstrated both in vitro and in vivo and are mainly attributed to the presence of proanthocyanidins and flavonoids [69]. Bioassay-guided fractionation was conducted with a G. ulmifolia bark acetone extract to inhibit angiotensin II binding to the hAT1 receptor, leading to the isolation of a number of bioactive condensed tannins; the most promising compounds are highly polymerized pentamer and hexamer proanthocyanidins [70].
Other potent extracts include P. niruri, a medicinal herb known in Brazil as “stone-breaker” and widely used in household remedies to eliminate renal and urinary calculi, and as diuretic [71]. A hot aqueous plant extract at 5 µg/mL significantly inhibited the endocytic response observed in Madin-Darby canine kidney cells (MDCK) exposed to calcium oxalate (CaOx) crystals without impairing cell viability [53]. Another study demonstrated that the infusion of P. niruri extract inhibited the in vitro growth of CaOx crystals and reduced their aggregation in human urine, which could be useful for the treatment of urolithiasis [72]. Oral administration of an aqueous plant extract (1.25 mg/mL/day) over 42 days in rats induced relaxation, elimination, and dissolution of bladder CaOx stones, possibly by preventing crystal aggregation and promoting glycosaminoglycan adsorption [73]. An important dose-dependent reversion of plasma uric acid in hyperuricemic rats was displayed by the extract and apolar fractions of P. niruri leaves at 50 mg/kg, leading to the isolation of phyllanthin (42), a lignan with anti-hyperuricemic properties comparable to that of allopurinol at a dose of 23.9 µmol/kg [74]. A mechanistic investigation showed that the anti-hyperuricemic activity of the P. niruri methanol extract in animals was associated with the induction of uric acid excretion and in vitro (IC50 = 39.4 µg/mL) and in vivo inhibition of xanthine oxidase activity after intraperitoneal administration.
Studies have also shown that an ethanolic fraction of Phyllanthus amarus decoction induces urinary excretion and produces natriuretic effects at doses ranging from 5 to 80 mg/kg in rats, with evidence that the prostaglandin E2 pathway mediates the diuretic response [75]. The main active constituents of P. amarus are lignans such as phyllanthin and hypophyllanthin (28), which are also related to the pharmacological and biological activities of this species [76].
The hydroethanolic extract of Costus spiralis leaves, traditionally used in Brazilian folk medicine to treat pyelonephritis and kidney stones, significantly reversed renal function after cisplatin-induced nephrotoxic damage in rats at an oral dose of 5 mg/kg [77]. These effects were related to the presence of flavonoids, mainly apigenin glycosides, which partially validated the popular use of this plant. The infusion of Euphorbia serpens aerial parts increased urine volume in rats concomitantly with the loss of electrolytes in a dose-dependent manner, similar to that of the standard drug furosemide. D-mannitol was found to be the main constituent of the plant extract and was primarily associated with its diuretic activity [78]. Bredemeyera floribunda is a medicinal liana used as a remedy to control nephrolithiasis symptoms. A series of in vivo studies have been conducted using the root ethanolic extract, which resulted in a hypotensive response and a direct effect on the glomerular filtration rate after intravenous administration in antidiuretic or water diuretic rats [79,80]. The diuretic and saluretic responses of the extract were suggested to possibly occur via detergent-like interactions with Na+/K+-ATPase in proximal tubular cells, attributed to its triterpenoid saponins known as bredemeyerosides [81].
Table 3. Nephroprotective activities of extracts from Brazilian plants evaluated through in vitro and ex vivo assays.
Table 3. Nephroprotective activities of extracts from Brazilian plants evaluated through in vitro and ex vivo assays.
FamilySpecieMorph.
Struc.
ExtractModelEffective Concentration(s)Effects/MechanismsReference
AsteraceaeAgeratum conyzoidesLeafEtOHCaOx crystallization10 mgAntilithiatic effect[82]
Lychnophora pinasterAerial partEtOHEnzymatic activityIC50 = 73.9 µg/mLInhibition of xanthine oxidase activity[83]
Hex
EtOAcIC50 = 43.2 µg/mL
EtOH
BignoniaceaeSparattosperma leucanthumLeafEtOAcEnzymatic activityIC50 = 107 µg/mLInhibition of xanthine oxidase activity[84]
MeOH
AQ
CostaceaeCostus arabicusWhole plantAQCaOx crystallization-induced MDCK-I cells10, 100 µg/mLAntilithiatic effect[85]
EuphorbiaceaeEuphorbia hirtaLeafAQ, EtOAc,
HEX, MeOH
CaOx crystallization1 mg/mLAntilithiatic effect[86]
FabaceaeCopaifera langsdorffiiLeafHACaOx crystallization0.3, 0.7, 1 mg/mLAntilithiatic effect[87]
LauraceaePersea americanaFruit, seedOilRotenone-induced VERO cells1, 3, 10, 30, 100, 300, 600, 1000 µg/mLCytoprotective effect [88]
LeafExtract (n.d.)
MalvaceaeGuazuma ulmifoliaLeafAQGlu-induced glomerulosclerosis in HRM cells3.25, 6.25 μg/mLReduction in fibronectin levels[65]
Theobroma grandiflorumFruitPulpHigh glucose-induced mouse immortalized mesangial cells10, 50, 100 μg/mLAntiproliferative and anti-inflammatory effects[89]
PhyllanthaceaePhyllanthus niruriWhole plantAQCaOx crystallization 0.0625, 0.125, 0.25, 0.5, 1 mg/mLInhibition of CaOx crystals growth and aggregation[72]
Whole plantAQCaOx crystallization-induced MDCK5, 10, 50, 100, 500, 1000 μg/mLInhibitory effect on the CaOx crystal internalization[53]
LeafMeOHEnzymatic activityIC50 = 39.4 µg/mLInhibition of xanthine oxidase activity[90]
F1IC50 = 427.7 µg/mL
F2IC50 = 86.9 µg/mL
F3IC50 = 28.6 µg/mL
F4IC50 = 22.7 µg/mL
LeafMeOHCaOx crystallization50 mg/mLAntilithiatic effect[91]
AQ50 mg/mL
AQ, Aqueous, CaOx, Calcium oxalate, EtOAc, Ethyl acetate, EtOH, Ethanol, F, Fraction, Glu, Glucose, HEX, Hexane, HRM, Human renal mesangial cells, MDCK, Madin-Darby canine kidney cells, MeOH, Methanol, Morph. Struc., Morphological structure, n.d., not described, VERO, Monkey kidney epithelial cells line.
Table 4. Nephroprotective activities of extracts obtained from Brazilian plants evaluated through in vivo assays.
Table 4. Nephroprotective activities of extracts obtained from Brazilian plants evaluated through in vivo assays.
FamilySpeciesMorph.
Struc.
ExtractExperimental ModelRoute of AdministrationEffective Dose (s)Pharmacological ActivitiesReference
AlismataceaeAquarius grandiflorusLeafAQ (EtOH-F)Male Wistar ratsp.o.300 mg/kgDiuretic and hypotensive effects[92]
Aquarius macrophyllusLeafHAGentamicin- induced kidney injury in male Wistar ratsp.o.30 mg/kgAntidiuretic and nephroprotective effects[93]
ApiaceaeCentella asiaticaLeafEtOHSTZ-induced diabetic nephropathy in male Wistar ratsp.o.400 mg/kgReduction in glomerular and vascular injuries[94]
LeafEtOHSubtotal nephrectomy-induced nephropathy in male Swiss micep.o.840 mg/kgReduction in kidney fibrosis and renal injury[95]
AquifoliaceaeIlex paraguariensisLeaf and stemAQK2Cr2O7-induced nephropathy in Wistar ratsp.o.540 to 600 mgImprovement of glomerular filtration rate and nephroprotective effect[96]
AraceaePistia stratiotesLeafEtOHMale Wistar ratsp.o.200, 400 mg/kgDiuretic effect[97]
Whole plantHARenal ischemia and reperfusion-induced damage in diabetic male Sprague Dawley ratsp.o.100 mg/kgNephroprotective, antiapoptotic, and anti-inflammatory effects [98]
ArecaceaeAcrocomia aculeataRipe fruitPulp oilMale Wistar ratsp.o.300, 700 mg/kgDiuretic effect[99]
AsteraceaeAcanthospermum hispidumAerial partAQ (EtOH-F)Male Wistar ratsp.o., i.d.30, 100, 300 mg/kgAcute hypotensive and absence of diuretic effect[100]
Aerial partAQ (EtOH-F)Female ovariectomized Wistar ratsp.o.30, 100, 300 mg/kgReduction in renovascular hypertension. Saluretic effect[101]
Ageratum conyzoidesLeafAQGentamicin and diet-induced hyperoxaluria and CaOx deposition in male Wistar ratsp.o.400 mg/kgAntiurolithiatic effect[102]
Baccharis trimeraAerial partsAQ (EtOH-F)Female Wistar rats exposed to cholesterol, diabetes and tobacco cigarettesp.o.,30, 100, 300 mg/kgNephroprotective effect in glomeruli, tubules, interstitium, and vessels[103]
Aerial partsAQ (EtOH-F)Male Wistar rats exposed to hookah, alcohol, and energy drinkp.o.30, 100, 300 mg/kgNephroprotective effect[104]
Aerial partsAQ (EtOH-F)Male Wistar rats exposed to cholesterol, diabetes and tobacco cigarettesp.o.30, 100, 300 mg/kgNephroprotective effect[105]
Eclipta prostrataLeafHACisplatin-induced kidney injury in male Wistar ratsp.o.400, 600 mg/kgNephroprotective effect[106]
LeafMeOHGentamicin- induced kidney injury in female Sprague Dawley ratsp.o.300, 600 mg/kgNephroprotective effect
[107]
LeafHAMale Sprague Dawley ratsp.o.14, 28 mg/kgNephroprotective effect. Increase in renal 11β- hydroxysteroid dehydrogenase activity [108]
Lychnophora pinasterAerial partEtOHOxonate-induced hyperuricemia in male Swiss micep.o.40, 125, 375 mg/kgHypouricemic and anti-inflammatory effects[109]
Sonchus oleraceusAerial partEtOHRenal ischemia and reperfusion-induced damage in male Wistar ratsp.o.300 mg/kgNephroprotective effect[110]
BignoniaceaeBignonia binataLeafEtOHCCl4-induced nephrotoxicity in male albino ratsp.o.300 mg/kgn.e.[111]
PEn.e.
EtOAcNephroprotective effect
AQNephroprotective effect
Sparattosperma leucanthumLeafEtOAcOxonate-induced hyperuricemia in male Swiss micep.o.125, 250, 500 mg/kgHypouricemic and anti-inflammatory effects
[84]
MeOH
AQ
BromeliaceaeAnanas comosusRipe fruitEtOHOxalate-induced urolithiasis in male Wistar ratsp.o.500, 750, 1000 mg/kgAntilithiatic and diuretic effects[112]
CelastraceaeMonteverdia ilicifoliaLeafEtOAc-FMale Wistar ratsp.o.30, 100 mg/kgDiuretic effect. Increase in urinary excretion of Na+ and sparing effect of K+ and Cl[113]
CostaceaeCostus spiralisLeafHACisplatin-induced kidney injury in Wistar ratsp.o.5, 15, 30 mg/kgNephroprotective effect[77]
EquisetaceaeEquisetum giganteumWhole plantCHCl3CD1 strain micep.o.50 mg/kgDiuretic effect. Increase in urinary excretion of Na+, Cl and K+[114]
EuphorbiaceaeEuphorbia hirtaWhole plantEtOHNitrobenzene- induced nephrotoxicity in female Wistar ratsp.o.400 mg/kgNephroprotective effect[115]
Euphorbia serpensAerial partsAQMale Wistar ratsp.o.5, 10, 20 mg/mLDiuretic activity, increase in urinary excretion of Na+[78]
Euphorbia thymifoliaWhole plantEtOHEthylene glycol- induced urolithiasis in male Wistar ratsp.o.250, 500 mg/kgAntilithiatic and diuretic effects[116]
FabaceaeAbrus precatoriusStem barkMeOHGentamicin- induced kidney injury in male Wistar ratsp.o.100, 200 mg/kgNephroprotective, antiapoptotic and anti-inflammatory effects[117]
Bauhinia forficataLeafAQNormotensive male Wistar ratsp.o.300 mg/kgDiuretic, anti-natriuretic, and antikaliuretic effects[118]
MeOH100, 300 mg/kgDiuretic effect
EtOAc- BuOH-F30, 100 mg/kgDiuretic, anti-natriuretic, and antikaliuretic effects
CHCl3-F100 mg/kgDiuretic, anti-natriuretic, and antikaliuretic effects
Copaifera langsdorffiiLeafHAEthylene glycol- induced nephrolithiasis in male Wistar ratsp.o.40, 80, 160 mg/kgNephroprotective and antilithiatic effects[87]
Mucuna pruriensLeafHACCl4 and rifampicin-induced nephrotoxicity in male Wistar ratsp.o.50, 100 mg/kgNephroprotective effect[119]
SeedAQArsenic-induced nephrotoxicity in male Wistar ratsp.o.350, 530, 700 mg/kgNephroprotective effect[120]
Senna alataLeafAQAcetaminophen- induced nephrotoxicity in male Sprague Dawley ratsp.o.200 mg/kgNephroprotective effect[121]
LeafHASTZ-induced diabetic nephropathy in Wistar ratsp.o.400 mg/kgNephroprotective effect[122]
Senna occidentalisLeafAQMale and female Wistar ratsp.o.240, 320, 400 mg/kgDiuretic and saluretic effects[123]
LamiaceaeVitex megapotamicaLeafMeOH: H2O (7:3)High fat diet- induced nephropathy in C57BL/6 LDLr-null mice p.o.300 mg/kgNephroprotective effect[124]
LauraceaePersea americanaSeedAQCadmium-induced nephrotoxicity in male Wistar ratsp.o.400 mg/kgNephroprotective, antioxidant and anti-inflammatory effects [125]
Leaf AQNicotinamide and STZ-induced diabetic nephropathy in male Wistar ratsp.o.100 mg/kgNephroprotective effect[126]
MeOH
EtOH
Fruit pulpOilMale diabetic Goto-
Kakizaki rats
p.o.1 mL/250 g
Modulation of the redox state of kidney mitochondrial
glutathione
[127]
Fruit pulpAQCadmium-induced nephrotoxicity in male Wistar ratsp.o.10% of the dietNephroprotective effect. Restoration of memory and learning disabilities caused by cadmium[128]
LeafHAEthylene glycol and NH4Cl-induced urolithiasis in male Sprague Dawley ratsp.o.100, 300 mg/kgAntiurolithic and nephroprotective effects[129]
LythraceaeCuphea carthagenensisLeafAQ (EtOH-F)Ovariectomized hypertensive female Wistar ratsp.o.30, 100, 300 mg/kgCardiorenal protective effect, preservation of renal function[130]
MalvaceaeCeiba pentandraAerial partEtOAc-FMethotrexate- induced kidney injury in male Wistar ratsp.o.400 mg/kgNephroprotective, antiapoptotic and anti-inflammatory effects[131]
Sida rhombifoliaAerial partHASTZ-induced diabetic nephropathy in male Wistar ratsn.d.100, 200 mg/kgNephroprotective effect[132]
Theobroma cacao Polyphenol -FCCl4-induced nephrotoxicity in male F344 ratsp.o.500 mg/kgNephroprotective effect[133]
Theobroma grandiflorumFruitPulpSTZ-induced diabetic nephropathy in male Wistar ratsp.o.1 g/mLNephroprotective and anti-inflammatory effects[89]
MenispermaceaeCissampelos pareiraRootAQEthylene glycol and NH4Cl-induced urolithiasis in male albino ratsp.o.100, 200, 400 mg/kgAntiurolithic and nephroprotective effects[134]
Whole plantHAAcetaminophen- induced nephrotoxicity in male albino ratsp.o.200, 400 mg/kgNephroprotective effect[135]
MyrtaceaeEugenia unifloraLeafHARenal ischemia and reperfusion-induced acute kidney injury in male Wistar ratsp.o.200 mg/kgStabilization of glomerular filtration rate, renal blood flow and renal vascular resistance parameters[136]
LeafAQNormotensive male Wistar ratsp.o.120 mg d.L./kgDiuretic effect. Reduction in Na+ excretion.[137]
PassifloraceaePassiflora edulisFruit peelAQSTZ-induced diabetic nephropathy in male Wistar ratsp.o.400 mg/kgNephroprotective effect[138]
Fruit peelEtOHGentamicin- induced kidney injury in male albino ratsp.o.250, 500 mg/kgNephroprotective effect[139]
PhyllanthaceaePhyllanthus amarusWhole plantEtOHHigh salt diet- induced renal metabolic derangement in male Wistar ratsp.o.75, 100, 150 mg/kgNephroprotective effect[140]
LeafHARifampicin-induced nephrotoxicity in male Wistar ratsp.o.50, 100 mg/kgNephroprotective effect[141]
LeafAQGlycolate-induced hyperoxaluria in male Wistar ratsp.o.3.5 mgDiuretic effect. Reduction in oxalate crystal deposition of Ca2+ kidney content[142]
Aerial partAQGentamicin and acetaminophen- induced kidney injury in male Wistar ratsp.o.100, 200, 400 mg/kgNephroprotective effect[143]
Whole plantAQ (EtOH-F)Male Wistar ratsi.p.5, 10, 20, 40, 80 mg/kgDiuretic and natriuretic effects[75]
Phyllanthus niruriWhole plantAQCaOx-induced urolithiasis in male albino ratsp.o.1.25 mg/mLInhibitory effect of crystal growth[73]
Whole plantAQCaOx-induced urolithiasis in male albino ratsp.o.5 mgInhibitory effect of crystal deposition[144]
LeafMeOHOxonate and uric acid-induced hyperuricemia in male Sprague Dawley ratsi.p.50 mg/kgUricosuric effect, inhibition of xanthine oxidase activity[90]
F 1n.e.
F 2
F 3Inhibition of xanthine oxidase activity
F 4Inhibition of xanthine oxidase activity
LeafMeOHOxonate and uric acid-induced hyperuricemia in male Sprague Dawley ratsi.p.50, 100, 200, 500, 1000 mg/kgAntihyperuricemic effect[74]
F 150 mg/kgn.e.
F 250 mg/kg
F 350 mg/kg
F 450 mg/kgAntihyperuricemic effect
LeafAQSTZ-induced diabetic nephropathy in male Wistar ratsp.o.200, 400 mg/kgNephroprotective effect[145]
LeafAQSTZ/nicotinamide-induced diabetic nephropathy in male Wistar ratsp.o.200, 400 mg/kgNephroprotective, anti-inflammatory, antiapoptotic and antifibrotic effects[146]
Phyllanthus sellowianusStem barkAQFemale Sprague Dawley ratsp.o.400 mg/kgDiuretic effect[147]
Phyllanthus tenellusAerial partsAQ (EtOH-F)Male Sprague Dawley ratsp.o.30, 100, 300 mg/kgAbsence of diuretic effect[148]
PiperaceaePiper peltatumRootHAFemale albino ratsp.o.25, 100, 200 mg/kgDiuretic and saluretic effect[149]
Piper umbellatumLeafMeOHAtherogenic diet- induced renal injury in male Syrian Golden hamstersp.o.0.25 and 1 g/kgNephroprotective effect[150]
PolygalaceaeBredemeyera floribundaRootEtOHMale Wistar ratsi.v.15, 30 mg/kgDiuretic, natriuretic, and kaliuretic effects[79]
0.05 mg/100 gIncrease in glomerular filtration rate, fractional water and sodium excretion and solute clearance[80]
PortulacaceaePortulaca pilosaLeaf, stemHAMale Wistar ratsp.o.400 mg/kgKaliuretic effects[151]
PteridaceaeAdiantum capillus-venerisAerial partHAEthylene glycol and NH4Cl-induced urolithiasis in male Sprague Dawley ratsp.o.127.6, 255.2 mg/kgAntiurolithic and nephroprotective effects[152]
RhamnaceaeAmpelozizyphus amazonicusRootHA (n-BuOH- F)Furosemide-induced diuresis in male Wistar ratsp.o.50 mg/kgAntidiuretic effect[153]
RootEtOHMale Wistar ratsp.o.100 mg/kgDiuretic effect[154]
Saponin-F50, 100, 200, 1000 mg/kgAntidiuretic effect
Saponin- free F50, 100, 200 mg/kgDiuretic effect
RubiaceaeAlibertia edulisLeafAQMale Wistar ratsi.d.200 mg/kgDiuretic effect. Increased excretion of Na+, Cl, K+, Ca2+[155]
Palicourea coriaceaAerial partHAMale Wistar ratsp.o.20, 40, 80 mg/kgDiuretic, natriuretic, and kaliuretic effects[156]
Rudgea viburnoidesLeafAQ2K1C-hypertensive male Wistar ratsp.o.30, 100, 300 mg/kgPreservation of urine excretion and electrolyte levels. Reduction in the progression of cardiorenal disease[157]
LeafHAGentamicin- induced kidney injury in male Wistar ratsp.o.50, 200 mg/kgNephroprotective effect[158]
SapindaceaeCardiospermum halicacabumWhole plantMeOH,
PE
Acetaminophen- induced nephrotoxicity in Wistar ratsp.o.400 mg/kgNephroprotective effect[159]
Whole plantAQGentamicin- induced kidney injury in albino ratsp.o.200, 400 mg/kgNephroprotective effect[160]
TalinaceaeTalinum paniculatumLeaf, stemAQ (EtOH-F)Male Wistar ratsp.o.30, 100, 300 mg/kgDiuretic and saluretic effect
[161]
Leaf HA2K1C-hypertensive male Wistar ratsp.o.100, 300 mg/kgDiuretic and nephroprotective effects[162]
UrticaceaeCecropia pachystachyaLeafEtOH (AQ-F)Subtotal nephrectomy- induced nephropathy in male Wistar ratsp.o.0.5 g/kgNephroprotective and anti-inflammatory effects[163]
LeafAQSubtotal nephrectomy- induced nephropathy in male Wistar ratsp.o.0.6 g/kgReduction in glomerulosclerosis and of the urinary excretion of MCP-1 and TGF-β [164]
Laportea aestuansLeafMeOHArsenite and STZ-induced nephrotoxicity in Wistar ratsp.o.200 mg/kgNephroprotective effect[165]
Urera bacciferaRoot, leaf, stemAQMale Wistar ratsp.o.400 mg/kgDiuretic effect[166]
ViolaceaeAnchietea pyrifoliaLeafAQ (EtOH-F)Male Wistar ratsp.o.30, 100, 300 mg/kgAbsence of diuretic effect. Decreased urine excretion of Na+, K+, and Cl[167]
2K1C 2-Kidney, 1-clip surgery, AQ aqueous, CaOx calcium oxalate, CCl4 carbon tetrachloride, CHCl3 chloroform, EtOAc ethyl acetate, EtOH ethanol, F fraction, HA hydroalcoholic, i.d. intraduodenal administration, i.v. intravenous, K2Cr2O7 potassium dichromate, MeOH methanol, n-BuOH n-butanol, n.e. no effect, NH4Cl ammonium chloride, PE petroleum ether, STZ streptozotocin, mg/kg milligram/kilogram, Morph. Struc. morphological structure, n.d. not described, n.e. no effect, p.o. oral administration.

6. In Vitro and In Vivo Studies with Plant Secondary Metabolites

Although successful, natural product-based drug discovery for kidney-related diseases has some drawbacks. It is not uncommon to observe a reduction or loss of biological activity throughout the bioactivity-guided fractionation process, possibly because of synergistic interactions among the compounds in unrefined phytocomplex mixtures [168]. Nevertheless, in contrast to extracts and synthetic compounds, single nephroprotective molecules may offer some special features to the limited available therapeutic arsenal, including their diverse chemical diversity and reduction in active doses/concentrations due to the purification of extracts [169]. Tables S1 and S2 of Supporting Information show 74 secondary metabolites belonging to the classes of alkaloids, anthraquinones, coumarins, flavonoids, lignans, phenylpropanoids, saponins, and triterpenes with in vitro and in vivo nephroprotective activities, respectively. The structures of bioactive secondary metabolites are shown in Figure S1. Likewise, as the studies reported the effectiveness of the isolated compounds using distinct models, the minimal concentration at which significant effects were achieved, and the half-maximal inhibitory concentration (IC50) were the measurements presented.
Surprisingly, phytochemical studies of some plant species based on ethnomedical information have resulted in the identification of potent nephrotoxins. For example, aristolochic acid, a compound commonly found in the roots of Aristolochia species and used medicinally for kidney ailments, is associated with nephropathy, renal interstitial fibrosis, and urothelial cancer [170]. Aristolochic acid is currently used in models to induce CKD and screen for new nephroprotective drugs [171]. Controversially, five species from the Aristolochia genus are used as folk blood depuratives and diuretics in Brazil, as shown in Table 2. This fact points to the relevant risks associated with their use of self-care as home remedies.
Polyphenols are among the most potent nephroprotective compounds that have been assayed in vitro. For example, scopoletin (51), a coumarin found in a number of medicinal plants, such as Persea americana and Sida rhombifolia, displayed significant protection in a model of diabetic glomerulosclerosis in rat glomerular mesangial cells exposed to high glucose [172]. At a concentration of 0.1 µM, this compound reduced cell proliferation, inhibited the overexpression of ECM proteins, and reduced connective tissue growth factor and TGF-ꞵ expression, proving that scopoletin could be a potential antifibrotic agent against diabetes-induced nephropathy. Another highlight is that the anthraquinone emodin (16), which is found in Handroanthus impetiginosus and Senna occidentalis, displayed an in vitro protective effect at 0.5 µM against cisplatin-induced damage in human kidney (HEK 293) cells, mostly because of its antioxidant properties [173]. Delphinidin (14), an anthocyanidin commonly found in medicinal edible fruit trees such as Euterpe precatoria and Plinia peruviana, reduced the oxidative injury caused by antimycin a, patulin and insulin in epithelial rat kidney (NRK) cells at 1 µM [174]. Ferulic acid (20), quercetin (48), kaempferol (32), epicatechin (17), and wedelolactone (57) all displayed significant protective effects against nephrotoxic agents at a concentration of 1 µM in renal cell lines [175,176,177,178,179]. The triterpenes betulinic acid (6) and ursolic acid (55) were also effective in mitigating the damage induced by different toxins at concentrations of 0.25 and 1 µM, respectively [180,181].
Several secondary metabolites present in the selected medicinal plants have undergone in vitro to in vivo tests, and their nephroprotective properties have been characterized. For example, it has been suggested that the beneficial properties against nephrolithiasis symptoms described for P. niruri preparations can be attributed to lignans, a class of compounds that are particularly found in other medicinal herbs used to treat kidney-related disorders belonging to the Phyllanthus genus, such as P. amarus, P. tenellus, and P. sellowianus [182]. As previously mentioned, bio-guided fractionation of P. niruri methanol extract and fractions that displayed potent anti-hyperuricemic oral effects in animals afforded three lignans, of which phyllanthin (42) at 10 mg/kg displayed significant and dose-dependent uricosuric action [74]. Although phyllanthin, hypophyllanthine (28), and phyltetralin (43) alone showed no appreciable effect owing to possible synergistic interactions, the first significantly induced changes in urine output and uric acid content in hyperuricemic rats [90]. Therefore, the uricosuric and antiurolithic properties of lignans from Phyllanthus spp. may provide attractive therapeutic alternatives for the management of hyperuricemia and urinary stones.
The flavonoids afzelin (1) and kaempferitrin (31), both kaempferol glucosides isolated from the medicinal plant Bauhinia forficata, demonstrated significant diuretic and saluretic effects after oral administration to rats at low concentrations (0.1 mg/kg) [118,183]. Moreover, afzelin presented acute and subchronic Ca2+-sparing and renoprotective effects in normotensive and hypertensive rats, as well as antiurolithiatic effects in synthetic and rat urine [183], which may support the ethnopharmacological use of this herb for kidney ailments. In a type-1 diabetic model, subcutaneous administration of 0.78 mg/kg/day of apigenin (4) for 10 days attenuated nephropathy features in rats by decreasing the overexpression of dynamin-related protein 1 (Drp1) in kidney tissues [184]. Similarly, epicatechin (17) counteracted the progression of renal damage in rats subjected to a subtotal nephrectomy at a dose of 0.01 mg/kg administered orally for 14 days, preserving renal function and systolic blood pressure [185].
In addition to the in vitro results, oral in vivo pretreatment with betulinic acid (6) mitigated the damage induced by nephrotoxic T-2 mycotoxins in mice [186]. At 0.25 mg/kg, this triterpene reduced the inflammatory response and renal oxidative damage via Nrf2 signaling pathway activation. These results suggest the possibility of conducting clinical trials using betulinic acid to limit the progression of renal disease in humans.

7. Conclusions

According to the literature review, there is a great diversity of medicinal plants popularly used for the treatment of kidney disorders in Brazil, but only a few of them have been preclinically tested for their potential nephroprotective effects. In contrast, the number of isolated secondary metabolites found in the aforementioned plants was higher, which demonstrates a greater interest in validating the pharmacological potential of single molecules, particularly polyphenols and triterpenes. New nephroprotective agents are needed for the therapeutic arsenal because the drugs currently available are not entirely satisfactory. Flavonoids appeared to be the leading class of compounds investigated for renal disorders, highlighting quercetin, rutin, kaempferol, apigenin, fisetin, and luteolin. Phenylpropanoids, including caffeic, chlorogenic, ellagic, gallic and rosmarinic acids, also shared a large number of scientific reports. Finally, asiatic acid, betulinic acid, lupeol, and ursolic acid were identified as important bioactive nephroprotective triterpenes in this study. Considering that many of these molecules may occur concomitantly in the compiled folk medicinal species, more vigorous efforts directed towards isolation (bioguided assay), as well as clinical assays for potent extracts and/or isolated compounds, are required to establish effectiveness and toxicological data and to ensure their potential use.

8. Future Prospects

A significant number of medicinal plants are commonly used in traditional Brazilian medicine to relieve the symptoms associated with renal diseases. Additionally, available biological and pharmacological reports suggest that several species have their use examined and pre-validated and are considered safe in toxicological studies. This study provides a comprehensive overview of the diverse secondary metabolites belonging to different chemical classes found in the most cited plants, in vitro and in vivo investigations, and their efficacy, presenting the most common mechanisms and active doses/concentrations required to reduce kidney damage. Future research efforts should be directed towards the identification of active compounds for plant species, given the still limited data available on isolated nephroprotective phytochemicals. Complementary information on revealing and comparing the pharmacological potencies of extracts and their derived isolated molecules and clinical trials are also relevant future challenges for the development of new drugs. Experimental findings published over the last few years have confirmed their high potency, offering unique and safe multitarget approaches for the modulation of different signaling pathways involved in kidney diseases. Based on the search conducted, alkaloids, anthraquinones, coumarins, flavonoids, lignans, phenylpropanoids, saponins, and triterpenes provided satisfactory preclinical efficacy and could be recommended for use alone or concomitantly with available nephroprotective synthetic drugs. A drug discovery program to provide nephroprotective products in biodiverse regions is essential for expediting the development of novel products for the benefit of humanity, which has an important impact in underdeveloped countries.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/plants14050648/s1, Table S1: Nephroprotective activities of secondary metabolites found in Brazilian plants evaluated through in vitro assays; Table S2: Nephroprotective activities of secondary metabolites found in native Brazilian plants extracts evaluated through in vivo assays; Figure S1: Molecular structures of secondary metabolites with nephroprotective activity evaluated in vitro and in vivo, shown in Tables S1 and S2 of the supporting information.

Author Contributions

Conceptualization, R.M.C., M.R.R. and E.L.K.; writing—original draft preparation, R.M.C.; writing—review and editing, Y.L.R.C., A.d.C.P., E.S.R. and E.L.K.; software, T.d.S.C.; supervision, D.D.B., T.d.S.C. and E.L.K. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

The authors are thankful to FAPERGS, CNPq, and CAPES.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Ene-Iordache, B.; Perico, N.; Bikbov, B.; Carminati, S.; Remuzzi, A.; Perna, A.; Islam, N.; Bravo, R.F.; Aleckovic-Halilovic, M.; Zou, H.; et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): A cross-sectional study. Lancet Glob. Health 2016, 4, e307–e319. [Google Scholar] [CrossRef]
  2. Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, C.-Y.; Floyd, T.; Al-Aly, Z. Analysis of the global burden of disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 2018, 94, 567–581. [Google Scholar] [CrossRef] [PubMed]
  3. Borg, R.; Carlson, N.; Søndergaard, J.; Persson, F. The growing challenge of chronic kidney disease: An overview of current knowledge. Int. J. Nephrol. 2023, 2023, 9609266. [Google Scholar] [CrossRef] [PubMed]
  4. Ali, A.; Mulatu, K.; Feleke, S.F.; Wassie, G.T. Prevalence of chronic kidney disease and associated factors among patients with underlying chronic disease at Dessie Referral Hospital, East Amhara Region, Ethiopia. Front. Epidemiol. 2023, 3, 1154522. [Google Scholar] [CrossRef] [PubMed]
  5. National Kidney Foundation. World Kidney Day. Chronic Kidney Disease. Available online: http://www.worldkidneyday.org/faqs/chronic-kidney-disease (accessed on 15 June 2024).
  6. International Society of Nephrology. ISN Framework for Developing Dialysis Programs in Low-Resource Settings, Brussels, Belgium. 2021. Available online: http://www.theisn.org/wp-content/uploads/2021/03/ISN-Framework-Dialysis-Report-HIRES.pdf (accessed on 23 May 2024).
  7. Lameire, N.H.; Levin, A.; Kellum, J.A.; Cheung, M.; Jadoul, M.; Winkelmayer, W.C.; Stevens, P.E. Harmonizing acute and chronic kidney disease definition and classification: Report of a kidney disease: Improving global outcomes (KDIGO) consensus conference. Kidney Int. 2021, 100, 516–526. [Google Scholar] [CrossRef] [PubMed]
  8. Tan, H.L.; Yap, J.Q.; Qian, Q. Acute kidney injury: Tubular markers and risk for chronic kidney disease and end-stage kidney failure. Blood Purif. 2016, 41, 144–150. [Google Scholar] [CrossRef]
  9. Perazella, M.A.; Rosner, M.H. Drug-induced acute kidney injury. Clin. J. Am. Soc. Nephrol. 2022, 17, 1220–1233. [Google Scholar] [CrossRef] [PubMed]
  10. Palant, C.E.; Amdur, R.L.; Chawla, L.S. The acute kidney injury to chronic kidney disease transition: A potential opportunity to improve care in acute kidney injury. Contrib. Nephrol. 2016, 187, 55–72. [Google Scholar] [PubMed]
  11. Langenberg, C.; Bagshaw, S.M.; May, C.N.; Bellomo, R. The histopathology of septic acute kidney injury: A systematic review. Crit. Care 2008, 12, R38. [Google Scholar] [CrossRef]
  12. Levey, A.S.; Coresh, J. Chronic kidney disease. Lancet 2012, 379, 165–180. [Google Scholar] [CrossRef]
  13. Dwyer, J.P.; Parving, H.H.; Hunsicker, L.G.; Ravid, M.; Remuzzi, G.; Lewis, J.B. Renal dysfunction in the presence of normoalbuminuria in type 2 diabetes: Results from the DEMAND study. Cardiorenal Med. 2012, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
  14. Kelly, J.T.; Su, G.; Zhang, L.; Qin, X.; Marshall, S.; González-Ortiz, A.; Clase, C.M.; Campbell, K.L.; Xu, H.; Carrero, J.J. Modifiable lifestyle factors for primary prevention of CKD: A systematic review and meta-analysis. J. Am. Soc. Nephrol. 2021, 32, 239–253. [Google Scholar] [CrossRef]
  15. Palmer, S.C.; Maggo, J.K.; Campbell, K.L.; Craig, J.C.; Johnson, D.W.; Sutanto, B.; Ruospo, M.; Tong, A.; Strippoli, G.F. Dietary interventions for adults with chronic kidney disease. Cochrane Database Syst. Rev. 2017, 4, CD011998. [Google Scholar] [CrossRef]
  16. Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef] [PubMed]
  17. Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int. J. Mol. Sci. 2021, 22, 9221. [Google Scholar] [CrossRef]
  18. Barrera-Chimal, J.; Girerd, S.; Jaisser, F. Mineralocorticoid receptor antagonists and kidney diseases: Pathophysiological basis. Kidney Int. 2019, 96, 302–319. [Google Scholar] [CrossRef] [PubMed]
  19. Fried, L.F.; Emanuele, N.; Zhang, J.H.; Brophy, M.; Conner, T.A.; Duckworth, W.; Leehey, D.J.; McCullough, P.A.; O’Connor, T.; Palevsky, P.M.; et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J. Med. 2013, 369, 1892–1903. [Google Scholar] [CrossRef]
  20. Mende, C.W. Chronic kidney disease and SGLT2 inhibitors: A review of the evolving treatment landscape. Adv. Ther. 2022, 39, 148–164. [Google Scholar] [CrossRef]
  21. Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed]
  22. WHO (World Health Organization). WHO Traditional Medicine Strategy 2002–2005, Geneva. Available online: https://www.who.int/publications/i/item/WHO-EDM-TRM-2002.1 (accessed on 15 June 2024).
  23. Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta 2013, 21830, 3670–3695. [Google Scholar] [CrossRef] [PubMed]
  24. Brusotti, G.; Cesari, I.; Dentamaro, A.; Caccialanza, G.; Massolini, G. Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. J. Pharm. Biomed. Anal. 2014, 87, 218–228. [Google Scholar] [CrossRef] [PubMed]
  25. Li, G.; Lou, H.X. Strategies to diversify natural products for drug discovery. Med. Res. Rev. 2018, 38, 1255–1294. [Google Scholar] [CrossRef] [PubMed]
  26. Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
  27. Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st Century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [PubMed]
  28. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
  29. Ministério do Meio Ambiente e Mudança do Clima, Biodiversidade e Biomas, Brazil. 2024. Available online: https://www.gov.br/mma/pt-br/assuntos/biodiversidade-e-biomas (accessed on 30 September 2024).
  30. Dutra, R.C.; Campos, M.M.; Santos, A.R.; Calixto, J.B. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol. Res. 2016, 112, 4–29. [Google Scholar] [CrossRef]
  31. Braga, F.C. Brazilian traditional medicine: Historical basis, features and potentialities for pharmaceutical development. J. Trad. Chin. Med. Sci. 2021, 8, S44–S50. [Google Scholar]
  32. Di Stasi, L.C.; Hiruma-Lima, C.A. Plantas Medicinais na Amazônia e Mata Atlântica, 2nd ed.; Editora UNESP: São Paulo, Brazil, 2002; pp. 1–595. [Google Scholar]
  33. Lorenzi, H.; Matos, F.J. Plantas Medicinais No Brasil: Nativas e Exóticas, 2nd ed.; Instituto Plantarum: São Paulo, Brazil, 2008; pp. 1–544. [Google Scholar]
  34. Cruz, G.L. Dicionário das Plantas Úteis do Brasil, 2nd ed.; Editora Civilização Brasileira: Rio de Janeiro, Brazil, 1979; pp. 1–599. [Google Scholar]
  35. Balbach, A. Flora Nacional na Medicina Doméstica, 2nd ed.; Edel: São Paulo, Brazil, 1974; pp. 1–915. [Google Scholar]
  36. La Cruz, M.G. Plantas Medicinais de Mato Grosso: A Farmacopéia Popular dos Raizeiros, 1st ed.; Carlini & Caniato: Cuiabá, Brazil, 2008; pp. 1–224. [Google Scholar]
  37. Guarim Neto, G. Plantas Utilizadas na Medicina Popular do Estado de Mato Grosso, 1st ed.; CNPq: Brasília, Brazil, 1987; pp. 1–58. [Google Scholar]
  38. Teske, M.; Trentini, A.M. Compêndio de Fitoterapia: Herbarium, 4th ed.; Herbarium Laboratório Botânico: Curitiba, Brazil, 1995; pp. 1–317. [Google Scholar]
  39. Silva Araújo, J.E.; Lucas, V. Catálogo de Extratos Fluidos; Silva Araújo e Cia. Ltda: Rio de Janeiro, Brazil, 1930; pp. 1–185. [Google Scholar]
  40. Almeida, E.R. Plantas Medicinais Brasileiras: Conhecimentos Populares e Científicos; Hemus Editora: São Paulo, Brazil, 1993; pp. 1–342. [Google Scholar]
  41. Borrás, M.R.L. Plantas da Amazônia: Medicinais ou Mágicas? Plantas Comercializadas no Mercado Municipal Adolpho Lisboa; Valer Editora: Manaus, Brazil, 2003; pp. 1–322. [Google Scholar]
  42. Camargo, M.T.L.A. Plantas Medicinais e de Rituais Afro-Brasileiros II: Estudo Etnofarmacobotânico; Ícone: São Paulo, Brazil, 1998; pp. 1–232. [Google Scholar]
  43. Villas Bôas, G.K.; Galvão, M.; Machado, M.N.; Fraga, S.A.P.M. Conhecimento Popular de Plantas Medicinais do Extremo Sul da Bahia, 1st ed.; Outras Expressões: São Paulo, Brazil, 2018; pp. 1–174. [Google Scholar]
  44. Grandi, T.S.M. Tratado das Plantas Medicinais: Mineiras, Nativas e Cultivadas, Adaequatio, 1st ed.; Estúdio: Belo Horizonte, Brazil, 2014; pp. 1–1204. [Google Scholar]
  45. Coletto, L.M.M.; Pereira, B.M.R.; Cardozo Junior, E.L.; Zardinello, A.; Souza, H.A.S.; Lawich, M.C. Plantas Medicinais: Nativas dos Remanescentes Florestais do Oeste do Paraná, 1st ed.; Itaipu Binacional: Foz do Iguaçu, Brazil, 2010; pp. 1–107. [Google Scholar]
  46. Alice, C.B.; Siqueira, N.C.S.; Mentz, L.A.; Silva, G.A.A.B.; José, K.F.D. Plantas Medicinais de Uso Popular—Atlas Farmacognóstico, 1st ed.; Editora da ULBRA: Canoas, Brazil, 1995; pp. 1–205. [Google Scholar]
  47. Braga, R. Plantas do Nordeste, Especialmente do Ceará, 3rd ed.; Fundação Vingt-Un Rosado: Mossoró, Brazil, 2001; pp. 1–526. [Google Scholar]
  48. Magalhães, K.N.; Bandeira, M.A.M.; Monteiro, M.P. Plantas Medicinais da Caatinga do Nordeste Brasileiro: Etnofarmacopeia do Professor Francisco José de Abreu Matos, 1st ed.; Imprensa Universitária: Fortaleza, Brazil, 2020; pp. 1–250. [Google Scholar]
  49. Almeida, S.P.; Proença, C.E.B.; Sano, S.M.; Ribeiro, J.F. Cerrado: Espécies Vegetais Úteis, 1st ed.; Embrapa-CPAC: Planaltina, Brazil, 1998; pp. 1–464. [Google Scholar]
  50. Rodrigues, V.E.G.; Carvalho, D.A. Plantas Medicinais No Domínio dos Cerrados; Imprenta UFLA: Lavras, Brazil, 2001; pp. 1–180. [Google Scholar]
  51. Pott, A.; Pott, V.J. Plantas do Pantanal, 1st ed.; EMBRAPA-SPI: Brasília, Brazil, 1994; pp. 1–320. [Google Scholar]
  52. Castañeda, R.; Cáceres, A.; Cruz, S.M.; Aceituno, J.A.; Marroquín, E.S.; Barrios Sosa, A.C.; Strangman, W.K.; Williamson, R.T. Nephroprotective plant species used in traditional Mayan Medicine for renal-associated diseases. J. Ethnopharmacol. 2023, 301, 115755. [Google Scholar] [CrossRef]
  53. Campos, A.H.; Schor, N. Phyllanthus niruri inhibits calcium oxalate endocytosis by renal tubular cells: Its role in urolithiasis. Nephron 1999, 81, 393–397. [Google Scholar] [CrossRef]
  54. Chen, B.L.; Wang, L.T.; Huang, K.H.; Wang, C.C.; Chiang, C.K.; Liu, S.H. Quercetin attenuates renal ischemia/reperfusion injury via an activation of AMP-activated protein kinase-regulated autophagy pathway. J. Nutr. Biochem. 2014, 25, 1226–1234. [Google Scholar] [CrossRef]
  55. Jeon, G.Y.; Nam, M.H.; Lee, K.W. Inhibitory effect of caffeic acid on advanced glycation end product-induced renal fibrosis in vitro: A potential therapeutic target. J. Food Sci. 2021, 86, 579–586. [Google Scholar] [CrossRef]
  56. Lai, P.B.; Zhang, L.; Yang, L.Y. Quercetin ameliorates diabetic nephropathy by reducing the expressions of transforming growth factor-β1 and connective tissue growth factor in streptozotocin-induced diabetic rats. Ren. Fail. 2012, 34, 83–87. [Google Scholar] [CrossRef] [PubMed]
  57. Bao, Y.W.; Yuan, Y.; Chen, J.H.; Lin, W.Q. Kidney disease models: Tools to identify mechanisms and potential therapeutic targets. Zool. Res. 2018, 39, 72–86. [Google Scholar] [PubMed]
  58. Ruiz-Ortega, M.; Rayego-Mateos, S.; Lamas, S.; Ortiz, A.; Rodrigues-Diez, R.R. Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol. 2020, 16, 269–288. [Google Scholar] [CrossRef] [PubMed]
  59. Koga, K.; Yokoi, H.; Mori, K.; Kasahara, M.; Kuwabara, T.; Imamaki, H.; Ishii, A.; Mori, K.P.; Kato, Y.; Ohno, S.; et al. MicroRNA-26a inhibits TGF-β-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy. Diabetologia 2015, 58, 2169–2180. [Google Scholar] [CrossRef] [PubMed]
  60. Edeling, M.; Ragi, G.; Huang, S.; Pavenstadt, H.; Susztak, K. Developmental signalling pathways in renal fibrosis: The roles of Notch, Wnt and Hedgehog. Nat. Rev. Nephrol. 2016, 12, 426–439. [Google Scholar] [CrossRef] [PubMed]
  61. Zhou, L.; Li, Y.; Zhou, D.; Tan, R.J.; Liu, Y. Loss of klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. 2013, 24, 771–785. [Google Scholar] [CrossRef] [PubMed]
  62. Giulietti, A.M.; Harley, R.M.; De Queiroz, L.P.; Wanderley, M.G.L.; Van den Berg, C. Biodiversity and conservation of plants in Brazil. Conserv. Biol. 2005, 19, 632–639. [Google Scholar] [CrossRef]
  63. Leitão, F.; Leitão, S.G.; Fonseca-Kruel, V.S.; Silva, I.M.; Martins, K.S. Medicinal plants traded in the open-air markets in the State of Rio de Janeiro, Brazil: An overview on their botanical diversity and toxicological potential. Rev. Bras. Farmacogn. 2014, 24, 225–247. [Google Scholar] [CrossRef]
  64. Mariano, L.N.B.; Boeing, T.; da Silva, R.C.V.; da Silva, L.M.; Gasparotto-Júnior, A.; Cechinel-Filho, V.; de Souza, P. Exotic medicinal plants used in Brazil with diuretic properties: A review. Chem. Biodivers. 2022, 19, e202200258. [Google Scholar] [CrossRef]
  65. Prahastuti, S.; Hidayat, M.; Hasiana, S.T.; Widowati, W.; Amalia, A.; Qodariah, R.L.; Rizal, R.; Kusuma, H.S.; Khoiriyah, Z. Ethanol extract of jati belanda (Guazuma ulmifolia L.) as therapy for chronic kidney disease in in vitro model. J. Rep. Pharm. Sci. 2019, 8, 229. [Google Scholar]
  66. Pereira, G.A.; Peixoto Araujo, N.M.; Arruda, H.S.; Farias, D.P.; Molina, G.; Pastore, G.M. Phytochemicals and biological activities of mutamba (Guazuma ulmifolia Lam.): A review. Food Res. Int. 2019, 126, 108713. [Google Scholar] [CrossRef] [PubMed]
  67. Maldini, M.; Di Micco, S.; Montoro, P.; Darra, E.; Mariotto, S.; Bifulco, G.; Pizza, C.; Piacente, S. Flavanocoumarins from Guazuma ulmifolia bark and evaluation of their affinity for STAT1. Phytochem. 2013, 86, 64–71. [Google Scholar] [CrossRef]
  68. Rocha, J.C.; Pedrochi, F.; Hernandes, L.; de Mello, J.C.; Baesso, M.L. Ex vivo evaluation of the percutaneous penetration of proanthocyanidin extracts from Guazuma ulmifolia using photoacoustic spectroscopy. Anal. Chim. Acta 2007, 587, 132–136. [Google Scholar] [CrossRef]
  69. dos Santos, J.M.; Alfredo, T.M.; Antunes, K.Á.; da Cunha, J.D.S.M.; Costa, E.M.A.; Lima, E.S.; Silva, D.B.; Carollo, C.A.; Schmitz, W.O.; Boleti, A.P.A.; et al. Guazuma ulmifolia Lam. decreases oxidative stress in blood cells and prevents doxorubicin-induced cardiotoxicity. Oxidative Med. Cell. Longev. 2018, 2018, 2935051. [Google Scholar] [CrossRef] [PubMed]
  70. Caballero-George, C.; Vanderheyden, P.M.; De Bruyne, T.; Shahat, A.A.; Van den Heuvel, H.; Solis, P.N.; Gupta, M.P.; Claeys, M.; Pieters, L.; Vauquelin, G.; et al. In vitro inhibition of [3H]-angiotensin II binding on the human AT1 receptor by proanthocyanidins from Guazuma ulmifolia bark. Planta Med. 2002, 68, 1066–1071. [Google Scholar] [CrossRef]
  71. Lee, N.Y.; Khoo, W.K.; Adnan, M.A.; Mahalingam, T.P.; Fernandez, A.R.; Jeevaratnam, K. The pharmacological potential of Phyllanthus niruri. J. Pharm. Pharmacol. 2016, 68, 953–969. [Google Scholar] [CrossRef]
  72. Barros, M.E.; Schor, N.; Boim, M.A. Effects of an aqueous extract from Phyllanthus niruri on calcium oxalate crystallization in vitro. J. Urol. Res. 2003, 30, 374–379. [Google Scholar] [CrossRef] [PubMed]
  73. Freitas, A.M.; Schor, N.; Boim, M.A. The effect of Phyllanthus niruri on urinary inhibitors of calcium oxalate crystallization and other factors associated with renal stone formation. BJU Int. 2002, 89, 829–834. [Google Scholar] [CrossRef] [PubMed]
  74. Murugaiyah, V.; Chan, K.L. Antihyperuricemic lignans from the leaves of Phyllanthus niruri. Planta Med. 2006, 72, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
  75. Yao, A.; Kamagate, M.; Amonkan, A.K.; Chabert, P.; Kpahé, F.; Koffi, C.; Kouame, M.; Auger, C.; Kati-Coulibaly, S.; Schini-Kerth, V.; et al. The acute diuretic effect of an ethanolic fraction of Phyllanthus amarus (Euphorbiaceae) in rats involves prostaglandins. BMC Complement. Altern. Med. 2018, 18, 94. [Google Scholar] [CrossRef]
  76. Patel, J.R.; Tripathi, P.; Sharma, V.; Chauhan, N.S.; Dixit, V.K. Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. J. Ethnopharmacol. 2011, 138, 286–313. [Google Scholar] [CrossRef]
  77. Amorim, J.M.; Ribeiro de Souza, L.C.; Lemos de Souza, R.A.; da Silva Filha, R.; de Oliveira Silva, J.; de Almeida Araújo, S.; Tagliti, C.A.; Simões e Silva, A.C.; Castilho, R.O. Costus spiralis extract restores kidney function in cisplatin-induced nephrotoxicity model: Ethnopharmacological use, chemical and toxicological investigation. J. Ethnopharmacol. 2022, 299, 115510. [Google Scholar] [CrossRef] [PubMed]
  78. Garro, M.F.; Gil, R.A.; Leporati, J.; Garro, H.A. Diuretic activity of Euphorbia serpens extracts in Wistar rats. Nat. Prod. Res. 2023, 38, 2140–2144. [Google Scholar] [CrossRef]
  79. Bevevino, L.H.; Vieira, F.S.; Cassola, A.C.; Sanioto, S.M. Effect of crude extract of roots of Bredemeyera floribunda Willd. I, Effect on arterial blood pressure and renal excretion in the rat. J. Ethnopharmacol. 1994, 43, 197–201. [Google Scholar] [CrossRef] [PubMed]
  80. Bevevino, L.H.; Aires, M.M. Effect of crude extract of roots of Bredemeyera floribunda Willd. II, Effect on glomerular filtration rate and renal tubular function of rats. J. Ethnopharmacol. 1994, 43, 203–207. [Google Scholar] [CrossRef]
  81. do Daros, M.D.; Matos, F.J.; Parente, J.P. A new triterpenoid saponin, bredemeyeroside B. from the roots of Bredemeyera floribunda. Planta Med. 1996, 62, 523–527. [Google Scholar] [CrossRef] [PubMed]
  82. Tailor, C.; Goyal, A. In vitro antilithiatic activity of alcoholic leaf extract of Ageratum conyzoides L. World J. Pharm. Res. 2013, 2, 2269–2276. [Google Scholar]
  83. Filha, Z.S.; Vitolo, I.F.; Fietto, L.G.; Lombardi, J.A.; Saúde-Guimarães, D.A. Xanthine oxidase inhibitory activity of Lychnophora species from Brazil (“Arnica”). J. Ethnopharmacol. 2006, 107, 200679–200682. [Google Scholar]
  84. Lemos Lima, R.C.; Ferrari, F.C.; Souza, M.R.; Sá Pereira, B.M.; Paula, C.A.; Saúde-Guimarães, D.A. Effects of extracts of leaves from Sparattosperma leucanthum on hyperuricemia and gouty arthritis. J. Ethnopharmacol. 2015, 161, 194–199. [Google Scholar] [CrossRef] [PubMed]
  85. Cógáin, M.R.; Linnes, M.P.; Lee, H.J.; Krambeck, A.E.; Mendonça Uchôa, J.C.; Kim, S.H.; Lieske, J.C. Aqueous extract of Costus arabicus inhibits calcium oxalate crystal growth and adhesion to renal epithelial cells. Urolithiasis 2015, 43, 119–124. [Google Scholar] [CrossRef] [PubMed]
  86. Pauzi, A.N.; Muhammad, N.; Sairi, N.H.; Tuan Putra, T.N.M.; Gul, M.T.; Rahim, N.F.A.; Marzuki, N.A.S.; Abu Bakar, M.F.; Talip, B.A.; Abdullah, N. The effect of different solvent extraction towards antiurolithiatic properties of Euphorbia hirta and Orthosiphon stamineus. IOP Conf. Ser. Earth Environ. Sci. 2019, 269, 012040. [Google Scholar] [CrossRef]
  87. Oliveira, R.B.; Coelho, E.B.; Rodrigues, M.R.; Costa-Machado, A.R.; Sousa, J.P.; Berretta, A.A.; Bastos, J.K. Effect of the Copaifera langsdorffii Desf. leaf extract on the ethylene glycol-induced nephrolithiasis in rats. Evid. Based Complement. Alternat. Med. 2013, 2013, 131372. [Google Scholar] [CrossRef]
  88. Queiroz Junior, N.F.; Steffani, J.A.; Machado, L.; Longhi, P.J.H.; Montano, M.A.E.; Martins, M.; Machado, S.A.; Machado, A.K.; Cadoná, F.C. Antioxidant and cytoprotective effects of avocado oil and extract (Persea americana Mill) against rotenone using monkey kidney epithelial cells (Vero). J. Toxicol. Environ. Health A 2021, 84, 875–890. [Google Scholar] [CrossRef] [PubMed]
  89. Punaro, G.R.; Lima, D.Y.; Rodrigues, A.M.; Pugliero, S.; Mouro, M.G.; Rogero, M.M.; Higa, E.M.S. Cupuaçu extract reduces nitrosative stress and modulates inflammatory mediators in the kidneys of experimental diabetes. Clin. Nutr. 2019, 38, 364–371. [Google Scholar] [CrossRef] [PubMed]
  90. Murugaiyah, V.; Chan, K.L. Mechanisms of antihyperuricemic effect of Phyllanthus niruri and its lignin constituents. J. Ethnopharmacol. 2009, 124, 233–239. [Google Scholar] [CrossRef]
  91. Khare, P.; Mishra, V.K.; Arun, K.; Bais, N.; Singh, R. Study on in vitro anti-lithiatic activity of Phyllanthus niruri Linn. leaves by homogeneous precipitation and turbiditory method. Int. J. Pharm. Pharm. Sci. 2014, 6, 124–127. [Google Scholar]
  92. Prando, T.B.; Barboza, L.N.; Araújo, V.O.; Gasparotto, F.M.; Souza, L.M.; Lourenço, E.L.; Gasparotto Junior, A. Involvement of bradykinin B2 and muscarinic receptors in the prolonged diuretic and antihypertensive properties of Echinodorus grandiflorus (Cham. & Schltdl.) Micheli. Phytomedicine 2016, 23, 1249–1258. [Google Scholar] [PubMed]
  93. Portella, V.G.; Cosenza, G.P.; Diniz, L.R.; Pacheco, L.F.; Cassali, G.D.; Caliari, M.V.; Brandão, M.G.; Vieira, M.A. Nephroprotective effect of Echinodorus macrophyllus Micheli on gentamicin-induced nephrotoxicity in rats. Nephron Extra 2012, 2, 177–183. [Google Scholar] [CrossRef] [PubMed]
  94. Setyaningsih, W.A.W.; Arfian, N.; Fitriawan, A.S.; Yuniartha, R.; Sari, D.C.R. Ethanolic extract of Centella asiatica treatment in the early stage of hyperglycemia condition inhibits glomerular injury and vascular remodeling in diabetic rat model. Evid. Based Complement Alternat. Med. 2021, 6, 6671130. [Google Scholar] [CrossRef]
  95. Arfian, N.; Setyaningsih, W.A.W.; Anggorowati, N.; Romi, M.M.; Sari, D.C.R. Ethanol extract of Centella asiatica (Gotu Kola) attenuates tubular injury through inhibition of inflammatory cytokines and enhancement of anti-fibrotic factor in mice with 5/6 subtotal nephrectomy. Malays. J. Med. Sci. 2019, 26, 53–63. [Google Scholar] [CrossRef]
  96. Muccillo-Baisch, A.L.; Moura, F.R.; Penteado, J.O.; Fernandes, C.L.F.; Costa Bueno, E.; Menestrino Garcia, E. Silva Júnior, F.M.R. Beneficial effects of mate-herb, Ilex paraguariensis St. Hil. against potassium dichromate-induced oxidative stress and nephrotoxicity. J. Toxicol. Environ. Health A 2023, 86, 446–457. [Google Scholar] [CrossRef]
  97. Sahu, R.K.; Roy, A.; Jha, A.K.; Sharma, U. Diuretic activity of Pistia stratioides leaf extract in rats. Int. Res. J. Pharm. 2009, 2, 149–152. [Google Scholar]
  98. Bhavsar, V.P.; Patel, A.; Vaghasiya, J.D.; Padhiyar, S.; Patel, T.B. Pistia stratiotes has renoprotective potentials in ischemia reperfusion injury in normal and diabetic rats. Indian J. Pharmacol. 2023, 55, 367–375. [Google Scholar] [CrossRef] [PubMed]
  99. Lescano, C.H.; Iwamoto, R.D.; Sanjinez-Argandoña, E.J.; Kassuya, C.A. Diuretic and anti-inflammatory activities of the microencapsulated Acrocomia aculeata (Arecaceae) oil on Wistar rats. J. Med. Food. 2015, 18, 656–662. [Google Scholar] [CrossRef] [PubMed]
  100. Tirloni, C.A.S.; Lívero, F.A.D.R.; Palozi, R.A.C.; Silveira, R.C.A.; Vasconcelos, P.C.P.; Souza, R.I.C.; Dos Santos, A.C.; Almeida, V.P.; Manfron Budel, J.; Souza, L.M.; et al. Ethnopharmacological investigations of the cardio-renal properties of a native species from the region of Pantanal, state of Mato Grosso do Sul, Brazil. J. Ethnopharmacol. 2017, 206, 125–134. [Google Scholar] [CrossRef] [PubMed]
  101. Palozi, R.A.C.; Schaedler, M.I.; Tirloni, C.A.S.; Silva, A.O.; Lívero, F.A.D.R.; Souza, R.I.C.; Dos Santos, A.C.; Prando, T.B.L.; Souza, L.M.; Gasparotto Junior, A. Roles of nitric oxide and prostaglandins in the sustained antihypertensive effects of Acanthospermum hispidum DC. on ovariectomized rats with renovascular hypertension. Evid. Based Complement. Alternat. Med. 2017, 2017, 2492483. [Google Scholar] [CrossRef]
  102. Gindhi, S.; Methra, T.; Chandu, B.R.; Boyina, R.; Dasari, V. Antiurolithiatic and in vitro antioxidant activity of leaves of Ageratum conyzoides in rat. World J. Pharm. Pharm. Sci. 2013, 2, 636–649. [Google Scholar]
  103. Mendes, T.C.; Silva, G.R.D.; Silva, A.O.; Schaedler, M.I.; Guarnier, L.P.; Palozi, R.A.C.; Signor, C.T.; Bosco, J.D.D.; Auth, P.A.; Amaral, E.C.; et al. Hepato- and cardioprotective effects of Baccharis trimera (Less.) DC. against multiple risk factors for chronic noncommunicable diseases. An. Acad. Bras. Cienc. 2021, 93, e20200899. [Google Scholar] [CrossRef]
  104. Amaral, E.C.; Silva, G.R.; Abreu Braga, F.; Palozi, R.A.; Lorençone, B.R.; Marques, A.A.M.; Moreno, K.T.; Leite, P.R.T.; Barboza, L.N.; Souza, R.I.; et al. Cardioprotective effects of Baccharis trimera (Less.) DC in a rodent model of hookah, alcohol, and energy drink exposure. Bol. Latinoam. Caribe Plant Med. Aromat. 2023, 22, 377–392. [Google Scholar]
  105. Souza, M.M.Q.; Silva, G.R.D.; Cola, I.M.; Silva, A.O.; Schaedler, M.I.; Guarnier, L.P.; Palozi, R.A.C.; Barboza, L.N.; Menetrier, J.V.; Froelich, D.L.; et al. Baccharis trimera (Less.) DC: An innovative cardioprotective herbal medicine against multiple risk factors for cardiovascular disease. J. Med. Food. 2020, 23, 676–684. [Google Scholar] [CrossRef]
  106. Iqbal, M.O.; Sial, A.S.; Akhtar, I.; Naeem, M.; Hazafa, A.; Ansari, R.A.; Rizvi, S.A.A. The nephroprotective effects of Daucus carota and Eclipta prostrata against cisplatin-induced nephrotoxicity in rats. Bioengineered 2021, 12, 12702–12721. [Google Scholar] [CrossRef] [PubMed]
  107. Dungca, N.T.P. Protective effect of the methanolic leaf extract of Eclipta alba (L.) Hassk. (Asteraceae) against gentamicin-induced nephrotoxicity in Sprague Dawley rats. J. Ethnopharmacol. 2016, 184, 18–21. [Google Scholar] [CrossRef] [PubMed]
  108. Xu, C.; Wei, B.; Fu, X.; Luo, M.; Liu, S.; Li, R.; Ren, B.; Tang, L. Effect of Eclipta prostrata on 11beta-hydroxysteroid dehydrogenase in rat liver and kidney. Evid. Based Complement. Alternat. Med. 2014, 2014, 651053. [Google Scholar] [CrossRef] [PubMed]
  109. Martins de Sá Müller, C.; Coelho, G.B.; Paula Michel Araújo, M.C.; Saúde-Guimarães, D.A. Lychnophora pinaster ethanolic extract and its chemical constituents ameliorate hyperuricemia and related inflammation. J. Ethnopharmacol. 2019, 242, 112040. [Google Scholar] [CrossRef] [PubMed]
  110. Torres-González, L.; Cienfuegos-Pecina, E.; Perales-Quintana, M.M.; Alarcon-Galvan, G.; Muñoz-Espinosa, L.E.; Pérez-Rodríguez, E.; Cordero-Pérez, P. Nephroprotective effect of Sonchus oleraceus extract against kidney injury induced by ischemia-reperfusion in Wistar rats. Oxid. Med. Cell Longev. 2018, 2018, 9572803. [Google Scholar] [CrossRef]
  111. Samy, M.N.; Hamed, A.N.E.; Mahmoud, B.K.; Attia, E.Z.; Abdelmohsen, U.R.; Fawzy, M.A.; Attya, M.E.; Kamel, M.S. LC-MS-based identification of bioactive compounds and hepatoprotective and nephroprotective activities of Bignonia binata leaves against carbon tetrachloride-induced injury in rats. Nat. Prod. Res. 2022, 36, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
  112. Sayed, A.A.; Fahmy, S.R.; Soliman, A.M.; Mohamed, D.M. Antinephrolithiatic activity of Ananas comosus extract against experimentally induced renal calculi in rats. Pak. J. Pharm. Sci. 2020, 33, 1679–1688. [Google Scholar]
  113. Leme, T.S.; Prando, T.B.; Gasparotto, F.M.; Souza, P.; Crestani, S.; Souza, L.M.; Cipriani, T.R.; Lourenço, E.L.; Gasparotto, A., Jr. Role of prostaglandin/cAMP pathway in the diuretic and hypotensive effects of purified fraction of Maytenus ilicifolia Mart ex Reissek (Celastraceae). J. Ethnopharmacol. 2013, 150, 154–161. [Google Scholar] [CrossRef]
  114. Pérez Gutiérrez, R.M.; Laguna, G.Y.; Walkowski, A. Diuretic activity of Mexican Equisetum. J. Ethnopharmacol. 1985, 14, 269–272. [Google Scholar] [CrossRef] [PubMed]
  115. Suganya, S.; Sophia, D.; Raj, C.A.; Rathi, M.A.; Thirumoorthi, L.; Meenakshi, P.; Kumar, D.G.; Gopalakrishnan, V.K. Amelioration of nitrobenzene-induced nephrotoxicity by the ethanol extract of the herb Euphorbia hirta. Pharmacognosy Res. 2011, 3, 201–207. [Google Scholar] [PubMed]
  116. Siva Jyothi, C.H.; Babu, P.; Karimulla, S.K.; Gobinath, M. Preventive effect of Euphorbia thymifolia Linn against ethylene glycol-induced urolithiasis in male Wistar albino rats. Int. J. Res. Pharm. Sci. 2017, 8, 590–595. [Google Scholar]
  117. Falayi, O.O.; Oyagbemi, A.A.; Omobowale, T.O.; Ayodele, E.A.; Adedapo, A.D.; Yakubu, M.A.; Adedapo, A.A. Nephroprotective properties of the methanol stem extract of Abrus precatorius on gentamicin-induced renal damage in rats. J. Complement. Integr. Med. 2018, 16, 1–14. [Google Scholar] [CrossRef]
  118. Souza, P.; Silva, L.M.; Boeing, T.; Somensi, L.B.; Cechinel-Zanchett, C.C.; Campos, A.; Krueger, C.M.A.; Bastos, J.K.; Cechinel-Filho, V.; Andrade, S.F. Influence of prostanoids in the diuretic and natriuretic effects of extracts and kaempferitrin from Bauhinia forficata Link leaves in rats. Phytother. Res. 2017, 31, 1521–1528. [Google Scholar] [CrossRef]
  119. Ogunmoyole, T.; Ola-Awe, A.M.; Fatile, O.G. Ethanolic extract of Mucuna pruriens leaves ameliorates carbon tetrachloride and rifampicin-induced hepatotoxicity and nephrotoxicity in Wistar albino rat. BMC Complement. Med. Ther. 2021, 21, 282. [Google Scholar] [CrossRef] [PubMed]
  120. Concessao, P.; Bairy, L.K.; Raghavendra, A.P. Protective effect of Mucuna pruriens against arsenic-induced liver and kidney dysfunction and neurobehavioral alterations in rats. Vet. World. 2020, 13, 1555–1566. [Google Scholar] [CrossRef]
  121. Abu, I.; Fazel, M.F. Alleviation of renal oxidative stress by Cassia alata in acetaminophen-induced nephrotoxic rats. Int. J. Res. Pharm. Sci. 2018, 9, 44–50. [Google Scholar]
  122. Sugumar, M.; Doss, D.V.A.; Maddisetty, P.N.P. Hepato-renal protective effects of hydroethanolic extract of Senna alata on enzymatic and nonenzymatic antioxidant systems in streptozotocin induced diabetic rats. Integr. Med. Res. 2016, 5, 276–283. [Google Scholar] [CrossRef] [PubMed]
  123. Ntchapda, F.; Barama, J.; Kemeta Azambou, D.R.; Etet, P.F.; Dimo, T. Diuretic and antioxidant activities of the aqueous extract of leaves of Cassia occidentalis (Linn.) in rats. Asian Pac. J. Trop. Med. 2015, 8, 685–693. [Google Scholar] [CrossRef] [PubMed]
  124. Araújo, V.O.; Gasparotto, F.M.; Pires, V.A.; Maciel, A.A.; Ortmann, C.F.; Cardozo Junior, E.L.; Lourenço, E.L.; Gasparotto Junior, A. Renoprotective effects of Vitex megapotamica (Spreng.) Moldenke in C57BL/6 LDLr-null mice undergoing high fat diet. Evid. Based Complement. Alternat. Med. 2015, 2015, 475380. [Google Scholar] [CrossRef]
  125. Osukoya, O.A.; Oyinloye, B.E.; Ajiboye, B.O.; Olokode, K.A.; Adeola, H.A. Nephroprotective and anti-inflammatory potential of aqueous extract from Persea americana seeds against cadmium-induced nephrotoxicity in Wistar rats. Biometals 2021, 34, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
  126. Kouamé, N.M.; Koffi, C.; N’Zoué, K.S.; Yao, N.A.R.; Doukouré, B.; Kamagaté, M. Comparative antidiabetic activity of aqueous, ethanol, and methanol leaf extracts of Persea americana and their effectiveness in type 2 diabetic rats. Evid. Based Complement. Alternat. Med. 2019, 16, 5984570. [Google Scholar]
  127. Ortiz-Avila, O.; Figueroa-García, M.D.; García-Berumen, C.I.; Calderón-Cortés, E.; Mejía-Barajas, J.A.; Rodriguez-Orozco, A.R.; Mejía-Zepeda, R.; Saavedra-Molina, A.; Cortés-Rojo, C. Avocado oil induces long-term alleviation of oxidative damage in kidney mitochondria from type 2 diabetic rats by improving glutathione status. J. Bioenerg. Biomembr. 2017, 49, 205–214. [Google Scholar] [CrossRef] [PubMed]
  128. Anjum, S.; Ali, H.; Naseer, F.; Abduh, M.S.; Qadir, H.; Kakar, S.; Waheed, Y.; Ahmad, T. Antioxidant activity of Carica papaya & Persea americana fruits against cadmium induced neurotoxicity, nephrotoxicity, and hepatotoxicity in rats with a computational approach. J. Trace Elem. Med. Biol. 2024, 81, 127324. [Google Scholar]
  129. Wientarsih, I.; Purwono, R.; Prasetyo, B.; Aldobrata, A. Anti-lithiasis activity of avocado (Persea americana Mill) leaves extract in white male rats. Hayati J. Biosci. 2012, 19, 49–52. [Google Scholar] [CrossRef]
  130. Schaedler, M.I.; Palozi, R.A.C.; Tirloni, C.A.S.; Silva, A.O.; Araújo, V.O.; Lourenço, E.L.B.; Souza, L.M.; Lívero, F.A.D.R.; Gasparotto Junior, A. Redox regulation and NO/cGMP plus K+ channel activation contributes to cardiorenal protection induced by Cuphea carthagenensis (Jacq.) J.F. Macbr. in ovariectomized hypertensive rats. Phytomedicine 2018, 51, 7–19. [Google Scholar] [CrossRef] [PubMed]
  131. Abouelela, M.E.; Orabi, M.A.A.; Abdelhamid, R.A.; Abdelkader, M.S.; Madkor, H.R.; Darwish, F.M.M.; Hatano, T.; Elsadek, B.E.M. Ethyl acetate extract of Ceiba pentandra (L.) Gaertn. reduces methotrexate-induced renal damage in rats via antioxidant, anti-inflammatory, and antiapoptotic actions. J. Tradit. Complement. 2019, 10, 478–486. [Google Scholar] [CrossRef] [PubMed]
  132. Imran, M.; Robert, S.M.J.; Sharma, M.; Aeri, V. Evaluation of Sida cordifolia and Sida rhombifolia extracts in a rat model of streptozotocin-induced diabetic nephropathy. Polim. Med. 2023, 53, 7–18. [Google Scholar] [CrossRef] [PubMed]
  133. Suzuki, K.; Nakagawa, K.; Yamamoto, T.; Miyazawa, T.; Kimura, F.; Kamei, M.; Miyazawa, T. Carbon tetrachloride-induced hepatic and renal damages in rat: Inhibitory effects of cacao polyphenol. Biosci. Biotechnol. Biochem. 2015, 79, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
  134. Sayana, S.; Khanwelkar, C.; Venkat, R.; Nimmagadda, C.; Chavan, V.; Sambu Naveen, N. Diuretic activity of aqueous extract of roots of Cissampelos pareira in albino rats. Int. J. Basic. Clin. Pharmacol. 2014, 3, 49–53. [Google Scholar] [CrossRef]
  135. Reddy, R.C.; Swamy, B.M.; Swamy, P. Protective effect of Cissampelos pareira Linn. on paracetamol induced nephrotoxicity in male albino rats. Res. J. Pharm. Biol. Chem. Sci. 2012, 3, 695–705. [Google Scholar]
  136. Meira, E.; Oliveira, N.; Mariani, N.; Porto, M.; Severi, J.; Siman, F.; Meyrelles, S.; Vasquez, E.; Gava, A. Eugenia uniflora (pitanga) leaf extract prevents the progression of experimental acute kidney injury. J. Func. Foods. 2020, 66, 103818. [Google Scholar] [CrossRef]
  137. Consolini, A.E.; Baldini, O.A.; Amat, A.G. Pharmacological basis for the empirical use of Eugenia uniflora L. (Myrtaceae) as antihypertensive. J. Ethnopharmacol. 1999, 66, 33–39. [Google Scholar] [CrossRef]
  138. Araújo Galdino, O.; Souza Gomes, I.; Ferreira de Almeida Júnior, R.; Conceição Ferreira de Carvalho, M.I.; Abreu, B.J.; Abbott Galvão Ururahy, M.; Cabral, B.; Zucolotto Langassner, S.M.; Costa de Souza, K.S.; Augusto de Rezende, A. The nephroprotective action of Passiflora edulis in streptozotocin-induced diabetes. Sci. Rep. 2022, 12, 17546. [Google Scholar] [CrossRef] [PubMed]
  139. Nerdy, N.; Ritarwan, K. Hepatoprotective activity and nephroprotective activity of peel extract from three varieties of the passion fruit (Passiflora sp.) in the albino rat. Open Access Maced. J. Med. Sci. 2019, 7, 536–542. [Google Scholar] [CrossRef] [PubMed]
  140. Olorunnisola, O.S.; Fadahunsi, O.S.; Adegbola, P.I.; Ajilore, B.S.; Ajayi, F.A.; Olaniyan, L.W.B. Phyllanthus amarus attenuated derangement in renal-cardiac function, redox status, lipid profile and reduced TNF-α, interleukins-2, 6 and 8 in high salt diet fed rats. Heliyon 2021, 7, e08106. [Google Scholar] [CrossRef]
  141. Ogunmoyole, T.; Awodooju, M.; Idowu, S.; Daramola, O. Phyllanthus amarus extract restored deranged biochemical parameters in rat model of hepatotoxicity and nephrotoxicity. Heliyon 2020, 6, e05670. [Google Scholar] [CrossRef] [PubMed]
  142. Woottisin, S.; Hossain, R.Z.; Yachantha, C.; Sriboonlue, P.; Ogawa, Y.; Saito, S. Effects of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on risk factors for urinary calcium oxalate stones in rats. J. Urol. 2011, 185, 323–328. [Google Scholar] [CrossRef]
  143. Adeneye, A.A.; Benebo, A.S. Protective effect of the aqueous leaf and seed extract of Phyllanthus amarus on gentamicin and acetaminophen-induced nephrotoxic rats. J. Ethnopharmacol. 2008, 118, 318–323. [Google Scholar] [CrossRef]
  144. Barros, M.E.; Lima, R.; Mercuri, L.P.; Matos, J.R.; Schor, N.; Boim, M.A. Effect of extract of Phyllanthus niruri on crystal deposition in experimental urolithiasis. Urol. Res. 2006, 34, 351–357. [Google Scholar] [CrossRef] [PubMed]
  145. Giribabu, N.; Rao, P.V.; Kumar, K.P.; Muniandy, S.; Swapna Rekha, S.; Salleh, N. Aqueous extract of Phyllanthus niruri leaves displays in vitro antioxidant activity and prevents the elevation of oxidative stress in the kidney of streptozotocin-induced diabetic male rats. Evid. Based Complement. Alternat. Med. 2014, 2014, 834815. [Google Scholar] [CrossRef] [PubMed]
  146. Giribabu, N.; Karim, K.; Kilari, E.K.; Salleh, N. Phyllanthus niruri leaves aqueous extract improves kidney functions, ameliorates kidney oxidative stress, inflammation, fibrosis and apoptosis and enhances kidney cell proliferation in adult male rats with diabetes mellitus. J. Ethnopharmacol. 2017, 205, 123–137. [Google Scholar] [CrossRef] [PubMed]
  147. Hnatyszyn, O.; Miño, J.; Gorzalczany, S.; Opezzo, J.; Ferraro, G.; Coussio, J.; Acevedo, C. Diuretic activity of an aqueous extract of Phyllanthus sellowianus. Phytomedicine 1999, 6, 177–179. [Google Scholar] [CrossRef]
  148. Lima Prando, T.B.; Barboza, L.N.; Gasparotto, F.M.; Araújo, V.O.; Slgnor Tirloni, C.A.; Souza, L.M.; Lourenço, E.L.; Gasparotto Junior, A. Ethnopharmacological investigation of the diuretic and hemodynamic properties of native species of the Brazilian biodiversity. J. Ethnopharmacol. 2015, 174, 369–378. [Google Scholar] [CrossRef] [PubMed]
  149. Acosta León, K.L.; Moyano Aguay, M.B.; Vinueza Tapia, D.R. Diuretic activity of Piper peltatum L. (Piperaceae) from Ecuador on Rattus norvegicus. Pharmacologyonline 2020, 1, 68–76. [Google Scholar]
  150. Agbor, G.A.; Akinfiresoye, L.; Sortino, J.; Johnson, R.; Vinson, J.A. Piper species protect cardiac, hepatic and renal antioxidant status of atherogenic diet fed hamsters. Food Chem. 2012, 134, 1354–1359. [Google Scholar] [CrossRef]
  151. Rocha, M.J.; Fulgencio, S.F.; Rabetti, A.C.; Nicolau, M.; Poli, A.; Simões, C.M.; Ribeiro-do-Valle, R.M. Effects of hydroalcoholic extracts of Portulaca pilosa and Achyrocline satureioides on urinary sodium and potassium excretion. J. Ethnopharmacol. 1994, 43, 179–183. [Google Scholar] [CrossRef]
  152. Ahmed, A.; Wadud, A.; Jahan, N.; Bilal, A.; Hajera, S. Efficacy of Adiantum capillus veneris Linn in chemically induced urolithiasis in rats. J. Ethnopharmacol. 2013, 146, 411–416. [Google Scholar] [CrossRef] [PubMed]
  153. Diniz, L.R.; Portella, V.G.; Cardoso, F.M.; Souza, A.M.; Caruso-Neves, C.; Cassali, G.D.; Reis, A.M.; Brandão, M.; Vieira, M.A. The effect of saponins from Ampelozizyphus amazonicus Ducke on the renal Na+ pumps’ activities and urinary excretion of natriuretic peptides. BMC Complement. Altern. Med. 2012, 12, 40. [Google Scholar] [CrossRef]
  154. Diniz, L.R.; Santana, P.C.; Ribeiro, A.P.; Portella, V.G.; Pacheco, L.F.; Meyer, N.B.; César, I.C.; Cosenza, G.P.; Brandão, M.; Vieira, M.A. Effect of triterpene saponins from roots of Ampelozizyphus amazonicus Ducke on diuresis in rats. J. Ethnopharmacol. 2009, 123, 275–279. [Google Scholar] [CrossRef] [PubMed]
  155. Santana Aquino, D.F.; Signor Tirloni, C.A.; Tolouei Menegati, S.E.; Lima Cardoso, C.A.; Heredia Vieira, S.C.; Carmo Vieira, M.D.; Simonet, A.M.; Macías, F.A.; Gasparotto Junior, A. Alibertia edulis (L.C. Rich.) A.C. Rich—A potent diuretic arising from Brazilian indigenous species. J. Ethnopharmacol. 2017, 196, 193–200. [Google Scholar] [CrossRef] [PubMed]
  156. Freitas, P.C.; Pucci, L.L.; Vieira, M.S.; Lino, R.S., Jr.; Oliveira, C.M.; Cunha, L.C.; Paula, J.R.; Valadares, M.C. Diuretic activity and acute oral toxicity of Palicourea coriacea (Cham.) K Schum. J. Ethnopharmacol. 2011, 134, 501–503. [Google Scholar] [CrossRef] [PubMed]
  157. Paulin, F.V.; Palozi, R.A.C.; Lorençone, B.R.; Macedo, A.L.; Guarnier, L.P.; Tirloni, C.A.S.; Romão, P.V.M.; Gasparotto Junior, A.; Silva, D.B. Prolonged administration of Rudgea viburnoides (Cham.) Benth. prevents impairment of redox status, renal dysfunction, and cardiovascular damage in 2K1C-hypertensive rats by inhibiting ACE activity and NO-GMPC pathway activation. Pharmaceutics 2021, 13, 1579. [Google Scholar] [CrossRef]
  158. Galdino, P.M.; Alexandre, L.N.; Pacheco, L.F.; Souza Lino Junior, R.; Paula, J.R.; Pedrino, G.R.; Xavier, C.H.; Ferreira, P.M. Nephroprotective effect of Rudgea viburnoides (Cham.) Benth leaves on gentamicin-induced nephrotoxicity in rats. J. Ethnopharmacol. 2017, 92, 100–107. [Google Scholar] [CrossRef] [PubMed]
  159. Parameshappa, B.; Ali Basha, M.S.; Sen, S.; Chakraborty, R.; Kumar, G.V.; Sagar, G.V.; Sowmya, L.; Raju, K.K.; Sesh Kumar, P.K.; Lakshmi, A.V. Acetaminophen-induced nephrotoxicity in rats: Protective role of Cardiospermum halicacabum. Pharm. Biol. 2012, 50, 247–253. [Google Scholar] [CrossRef]
  160. Parameshappa, B.; Venkata, R.N.; Mounika, M.A.; Srilatha, D. Protective effect of aqueous extract of Cardiospermum helicacabum Linn against gentamicin-induced nephrotoxicity. Der Pharm. Lett. 2011, 3, 351–357. [Google Scholar]
  161. Tolouei, S.E.L.; Palozi, R.A.C.; Tirloni, C.A.S.; Marques, A.A.M.; Schaedler, M.I.; Guarnier, L.P.; Silva, A.O.; Almeida, V.P.; Manfron Budel, J.; Souza, R.I.C.; et al. Ethnopharmacological approaches to Talinum paniculatum (Jacq.) Gaertn.—Exploring cardiorenal effects from the Brazilian Cerrado. J. Ethnopharmacol. 2019, 238, 111873. [Google Scholar] [PubMed]
  162. Souto, C.G.R.G.; Lorençone, B.R.; Marques, A.A.M.; Palozi, R.A.C.; Romão, P.V.M.; Guarnier, L.P.; Tirloni, C.A.S.; Dos Santos, A.C.; Souza, R.I.C.; Zago, P.M.J.J.; et al. Cardioprotective effects of Talinum paniculatum (Jacq.) Gaertn. in doxorubicin-induced cardiotoxicity in hypertensive rats. J. Ethnopharmacol. 2021, 281, 114568. [Google Scholar] [CrossRef] [PubMed]
  163. Maquiaveli, C.C.; Silva, E.R.; Rosa, L.C.; Francescato, H.D.; Lucon Júnior, J.F.; Silva, C.G.; Casarini, D.E.; Ronchi, F.A.; Coimbra, T.M. Cecropia pachystachya extract attenuated the renal lesion in 5/6 nephrectomized rats by reducing inflammation and renal arginase activity. J. Ethnopharmacol. 2014, 158, 49–57. [Google Scholar] [CrossRef]
  164. Maquiaveli, C.C.; Silva, E.R.; Francescato, H.D.; Costa, R.S.; Silva, C.G.; Casarini, D.E.; Ronchi, F.A.; Coimbra, T.M. Brazilian embauba (Cecropia pachystachya) extract reduces renal lesions in 5/6 nephrectomized rats. J. Renin. Angiotensin Aldosterone Syst. 2014, 15, 430–439. [Google Scholar] [CrossRef]
  165. Adetunji, O.A.; Olugbami, J.O.; Adegoke, A.M.; Gbadegesin, M.A.; Odunola, O.A. Reno-hepatoprotective and antidiabetic properties of methanol leaf extract of Laportea aestuans in Wistar rats. J. Evid. Based Integr. Med. 2021, 26, 1–11. [Google Scholar] [CrossRef] [PubMed]
  166. Gaitén, Y.I.G.; Lizama, R.S.; González, A.F.; Moreno, M.D.F.; Orta, R.M.C.; Galarza, L.M. Physicochemical characterization and preliminary diuretic activity of Urera baccifera (L.) watery extracts. Rev. Cub. Farm. 2020, 53, e431. [Google Scholar]
  167. Tolouei, S.E.L.; Palozi, R.A.C.; Tirloni, C.A.S.; Marques, A.A.M.; Schaedler, M.I.; Guarnier, L.P.; Silva, A.O.; Almeida, V.P.; Budel, J.M.; Souza, R.I.C.; et al. Anchietea pyrifolia A. St.-Hil. as a cardiovascular-endowed species: A whole-biological investigation. J. Med. Food 2019, 22, 393–407. [Google Scholar] [CrossRef]
  168. Braga, F.C.; Rates, S.M.K.; Simões, C.M.O. Avaliação da eficácia e segurança de produtos naturais candidatos a fármacos e medicamentos. In Farmacognosia: Do Produto Natural ao Medicamento; Simões, C.M.O., Schenckel, E.P., Mello, J.C.P., Mentz, L.A., Petrovick, P.R., Eds.; Artmed: Porto Alegre, Brazil, 2017; pp. 53–68. [Google Scholar]
  169. Figueiró, M.; Ilha, J.; Pochmann, D.; Porciúncula, L.O.; Xavier, L.L.; Achaval, M.; Nunes, D.S.; Elisabetsky, E. Acetylcholinesterase inhibition in cognition-relevant brain areas of mice treated with a nootropic Amazonian herbal (Marapuama). Phytomedicine 2010, 17, 956–962. [Google Scholar] [CrossRef] [PubMed]
  170. Michl, J.; Jennings, H.M.; Kite, G.C.; Ingrouille, M.J.; Simmonds, M.S.; Heinrich, M. Is aristolochic acid nephropathy a widespread problem in developing countries? A case study of Aristolochia indica L. in Bangladesh using an ethnobotanical-phytochemical approach. J. Ethnopharmacol. 2013, 149, 235–244. [Google Scholar] [CrossRef] [PubMed]
  171. Baudoux, T.; Jadot, I.; Declèves, A.E.; Antoine, M.H.; Colet, J.M.; Botton, O.; De Prez, E.; Pozdzik, A.; Husson, C.; Caron, N.; et al. Experimental aristolochic acid nephropathy: A relevant model to study AKI-to-CKD transition. Front. Med. 2022, 9, 822870. [Google Scholar] [CrossRef] [PubMed]
  172. Liang, Y.; Zeng, X.; Guo, J.; Liu, H.; He, B.; Lai, R.; Zhu, Q.; Zheng, Z. Scopoletin and umbelliferone from Cortex Mori as protective agents in high glucose-induced mesangial cell as in vitro model of diabetic glomerulosclerosis. Chin. J. Physiol. 2021, 64, 150–158. [Google Scholar] [CrossRef] [PubMed]
  173. Waly, M.I.; Ali, B.H.; Al-Lawati, I.; Nemmar, A. Protective effects of emodin against cisplatin-induced oxidative stress in cultured human kidney (HEK 293) cells. J. Appl. Toxicol. 2013, 33, 626–630. [Google Scholar] [CrossRef]
  174. Bankoglu, E.E.; Broscheit, J.; Arnaudov, T.; Roewer, N.; Stopper, H. Protective effects of tricetinidin against oxidative stress inducers in rat kidney cells: A comparison with delphinidin and standard antioxidants. Food Chem. Toxicol. 2018, 121, 549–557. [Google Scholar] [CrossRef] [PubMed]
  175. Bunel, V.; Antoine, M.H.; Nortier, J.; Duez, P.; Stévigny, C. Nephroprotective effects of ferulic acid, Z-ligustilide and E-ligustilide isolated from Angelica sinensis against cisplatin toxicity in vitro. Toxicol. Vitro 2015, 29, 458–467. [Google Scholar] [CrossRef]
  176. Tanabe, K.; Tamura, Y.; Lanaspa, M.A.; Miyazaki, M.; Suzuki, N.; Sato, W.; Maeshima, Y.; Schreiner, G.F.; Villarreal, F.J.; Johnson, R.J.; et al. Epicatechin limits renal injury by mitochondrial protection in cisplatin nephropathy. Am. J. Physiol. Renal Physiol. 2012, 303, F1264–F1274. [Google Scholar] [CrossRef]
  177. Wang, L.; Lin, S.Q.; He, Y.L.; Liu, G.; Wang, Z.Y. Protective effects of quercetin on cadmium-induced cytotoxicity in primary cultures of rat proximal tubular cells. Biomed. Environ. Sci. 2013, 26, 258–267. [Google Scholar] [PubMed]
  178. Zhang, N.; Zhao, S.; Hong, J.; Li, W.; Wang, X. Protective Effects of kaempferol on D-ribose-induced mesangial cell injury. Oxid. Med. Cell Longev. 2019, 2019, 7564207. [Google Scholar] [CrossRef]
  179. Wang, G.; Bi, Y.; Xiong, H.; Bo, T.; Han, L.; Zhou, L.; Zhang, C.; Zhang, Y. Wedelolactone protects against cisplatin-induced nephrotoxicity in mice via inhibition of organic cation transporter 2. Hum. Exp. Toxicol. 2021, 40, S447–S459. [Google Scholar] [CrossRef] [PubMed]
  180. Li, X.; Wang, X.; Liu, S.; Wang, J.; Liu, X.; Zhu, Y.; Zhang, L.; Li, R. Betulinic acid attenuates T-2 toxin-induced cytotoxicity in porcine kidney cells by blocking oxidative stress and endoplasmic reticulum stress. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 249, 109124. [Google Scholar] [CrossRef]
  181. Li, C.; Chen, W.; Zheng, L.; Zhang, B.; Yang, X.; Zhang, Q.; Wang, N.; Wang, Y.; Yang, J.; Sha, J.; et al. Ameliorative effect of ursolic acid on ochratoxin A-induced renal cytotoxicity mediated by Lonp1/Aco2/Hsp75. Toxicon 2019, 168, 141–146. [Google Scholar] [CrossRef] [PubMed]
  182. Nawfetrias, W.; Devy, L.; Esyanti, R.R.; Faizal, A. Phyllanthus lignans: A review of biological activity and elicitation. Horticulturae 2024, 10, 195. [Google Scholar] [CrossRef]
  183. Cechinel-Zanchett, C.C.; Bolda Mariano, L.N.; Boeing, T.; da Costa, J.C.; da Silva, L.M.; Bastos, J.K.; Cechinel-Filho, V.; de Souza, P. Diuretic and renal protective effect of kaempferol 3-O-alpha-L-rhamnoside (afzelin) in normotensive and hypertensive rats. J. Nat. Prod. 2020, 83, 1980–1989. [Google Scholar] [CrossRef]
  184. Khaled, M.; Salama, R.A.M.; Aboughalia, A.; Tarek, M.; Mohamed Fawzy, N. Apigenin ameliorates genitourinary dysfunction in a type 1 diabetic rat model via Drp1 modulation. Sci. Rep. 2024, 14, 5754. [Google Scholar] [CrossRef] [PubMed]
  185. Montes-Rivera, J.; Arellano-Mendoza, M.; Nájera, N.; Del Valle-Mondragón, L.; Villarreal, F.; Rubio-Gayosso, I.; Perez-Duran, J.; Meaney, E.; Ceballos, G. Effect of (−)-epicatechin on the modulation of progression markers of chronic renal damage in a 5/6 nephrectomy experimental model. Heliyon 2019, 16, e01512. [Google Scholar] [CrossRef] [PubMed]
  186. Huang, L.; Zhu, L.; Ou, Z.; Ma, C.; Kong, L.; Huang, Y.; Chen, Y.; Zhao, H.; Wen, L.; Wu, J.; et al. Betulinic acid protects against renal damage by attenuation of oxidative stress and inflammation via Nrf2 signaling pathway in T-2 toxin-induced mice. Int. Immunopharmacol. 2021, 101 Pt B, 108210. [Google Scholar] [CrossRef]
Figure 1. Infographic summarizing the main causes related to the etiology of acute and chronic kidney diseases, which may lead to end-stage kidney disease.
Figure 1. Infographic summarizing the main causes related to the etiology of acute and chronic kidney diseases, which may lead to end-stage kidney disease.
Plants 14 00648 g001
Figure 2. Schematic illustration of the main non-clinical models (in vitro and in vivo assays) commonly used for screening nephroprotective plant extracts and/or isolated compounds.
Figure 2. Schematic illustration of the main non-clinical models (in vitro and in vivo assays) commonly used for screening nephroprotective plant extracts and/or isolated compounds.
Plants 14 00648 g002
Table 1. List of books consulted in the process of survey and of the main Brazilian biomes involved (Amazon Forest, Cerrado, Atlantic Forest, Caatinga, Pantanal, and Pampa).
Table 1. List of books consulted in the process of survey and of the main Brazilian biomes involved (Amazon Forest, Cerrado, Atlantic Forest, Caatinga, Pantanal, and Pampa).
Brazilian BiomaReferences
Amazon Forest[32,33,34,35,36,37,38,39,40,41,42]
Atlantic Forest[32,33,34,35,38,39,40,42,43,44,45,46]
Caatinga[33,34,35,38,39,40,42,43,44,47,48]
Cerrado[33,34,35,36,37,38,39,40,42,44,49,50]
Pampa [33,34,35,38,39,40,42,46]
Pantanal [33,34,35,36,37,38,39,40,42,51]
Table 2. Plant species used in Brazilian ethnomedicine as nephroprotective agents.
Table 2. Plant species used in Brazilian ethnomedicine as nephroprotective agents.
FamilyScientific NameVernacular NameOriginTraditional UseMorphological Structure UsedReference
AlismataceaeAquarius grandiflorus (Cham. & Schltr.) (synonym of Echinodorus grandiflorus (Cham. & Schltr.) Micheli)Chapéu-de-couroNKidney disorders, diuretic, blood depurativeLeaf[32]
Diuretic, kidney disordersLeaf[43]
Diuretic, blood depurative, kidney disordersLeaf[33]
Aquarius macrophyllus (Kunth) Christenh. and Bing. (synonym of Echinodorus macrophyllus (Kunth) Micheli)Chapéu-de-couroNKidney disordersWhole plant[34]
Blood impurities, nephritis, diureticLeaf[35]
Diuretic, blood depurative, kidney disordersLeaf[36]
Kidney disordersLeaf[37]
Diuretic, blood depurative, kidney diseasesLeaf[38]
DiureticLeaf[39]
Diuretic, blood depurativeLeaf[44]
AmaranthaceaeAlternanthera brasiliana (L.) KuntzeSempre-vivaNDiuretic, blood depurativeLeaf[33]
Alternanthera ficoidea (L.) P.Beauv (synonym of A. tenella Colla)Perpétua-brancaNDiuretic, blood depurativeWhole plant[44]
Chamissoa altissima (Jacq.) KunthFumo-bravoNDiureticRoot[47]
Iresine diffusa Humb. and Bonpl. ex Willd.BredinhoNDiureticLeaf[47]
Pfaffia jubata Mart.Lã-de-carneiroNBlood depurativeWhole plant[37]
AmaryllidaceaeHymenocallis tubiflora Salisb.Cebola-brava-do-ParáNDiureticn.d.[35]
AnacardiaceaeAnacardium occidentale L.CajueiroNBlood depurative, diureticResin, fruit stalk, fruit [32]
Blood depurativeBark, gum[33]
DiureticFruit[40]
Astronium fraxinifolium SchottGonçalo-alvesNKidney disordersBark[48]
Schinus molle L.AroeiraNDiureticn.d.[33]
Schinus terebinthifolia RaddiAroeira-vermelhaNBlood depurative, diureticBark[32]
DiureticLeaf, bark, fruit [41]
Blood depurative, diureticBark, fruit [45]
Spondias mombin L.CajazeiraNKidney diseasesBark, fruit peel [48]
AnnonaceaeAnnona coriacea Mart.AraticumNDiureticLeaf[48]
Annona spinescens Mart.Araticum-de-espinhoNBlood depurativeFruit [35]
Xylopia aromatica (Lam.) Mart.Árvore-de-espinhoNDiureticLeaf[49]
Xylopia frutescens Aubl.BreuNDiureticLeaf[32]
ApiaceaeCentella asiatica (L.) Urb.CentelaEDiureticWhole plant[44]
Blood depurative, diureticLeaf[32]
Blood depurativeStalk[34]
Blood depurative, diureticn.d.[39]
Eryngium foetidum L.Coentro-fedorentoNDiureticWhole plant[47]
DiureticRoot[44]
Diureticn.d.[35]
Eryngium pristis Cham. and Schltdl.Língua-de-tucanoNDiureticLeaf[50]
ApocynaceaeAllamanda cathartica L.AlamandaNKidney disordersLeaf[44]
Aspidosperma quebracho-blanco Schltdl.QuebrachoNDiureticBark[39]
Himatanthus obovatus (Müll. Arg.) WoodsonAngélicaNBlood depurativeLeaf[51]
Blood depurativeLeaf[37]
Mandevilla illustris (Vell.) WoodsonJalapaNRenal dropsyn.d.[49]
Mandevilla velame (A.St.-Hil.) PichonVelame-brancoNBlood depurativeRoot[49]
Blood depurativeRoot[35]
Diuretic, blood depurative, kidney disordersLeaf, root[36]
Blood depurative Root[37]
Blood depurative Root, whole plant[50]
Blood depurativeRoot[40]
Blood depurative n.d.[34]
Blood depurativeRoot[44]
Ruehssia amylacea (Barb.Rodr.) F.Esp.Santo and RapiniCondurangoNBlood depurativen.d.[34]
AquifoliaceaeIlex conocarpa ReissekCongonhaNDiureticn.d.[34]
Ilex diuretica Mart. ex ReissekCongonhaNDiureticLeaf, stem[44]
Ilex paraguariensis A.St.-Hil.Erva-mate NKidney disordersn.d.[34]
Kidney colicLeaf[39]
Diureticn.d.[45]
AraceaePhilodendron bipinnatifidum Schott ex Endl. (synonym of Thaumatophyllum bipinnatifidum (Schott ex Endl.) Sakur., Calazans & Mayo)Cipó-imbéNDiureticLeaf[45]
Pistia stratiotes L.AguapéNDiuretic, kidney disordersLeaf[35]
DiureticLeaf[33]
AraliaceaeHydrocotyle bonariensis Comm. ex Lam.AçariçobaNDiureticRoot[35]
DiureticRhizome[33]
DiureticRhizome[44]
Hydrocotyle leucocephala Cham. and Schltdl.AcariçobaNDiuretic, renal indispositionRhizome[45]
ArecaceaeAcrocomia aculeata (Jacq.) Lodd. ex Mart.BocaiúvaNDiureticRoot[51]
Copernicia alba MorongPalmeira-carandáNDiureticRoot[35]
DiureticRoot[51]
Copernicia prunifera (Mill.) H.E.MooreCarnaúba-brancaNBlood depurative Root[48]
DiureticRoot[35]
DiureticRoot[34]
DiureticRoot[39]
Euterpe precatoria Mart.AçaíNKidney disorders, blood depurativeRoot[41]
Syagrus comosa (Mart.) Mart.CatoléNKidney stonesRoot[48]
AristolochiaceaeAristolochia cymbifera Mart. and Zucc.AngelicóNDiureticn.d.[33]
Diuretic, blood depurativeRoot[35]
DiureticRoot[47]
DiureticRoot[40]
Aristolochia esperanzae KuntzeMilhomemNBlood depurativen.d.[36]
Kidney disordersn.d.[51]
Aristolochia labiata Willd.Papo-de-peruNDiureticRoot[39]
DiureticRoot[47]
DiureticRoot[40]
Aristolochia triangularis Cham. Cipó-mil-homensNBlood depurative, diureticn.d.[45]
Aristolochia trilobata L.Mil-homensNDiureticRoot[32]
AsparagaceaeHerreria salsaparilha Mart.Salsaparrilha-verdadeiraNBlood depurative Root[50]
Blood depurativeRoot[44]
AsteraceaeAcanthospermum australe (Loefl.) KuntzeCarrapicho-rasteiroNKidney disorders, diureticRoot[32]
DiureticWhole plant[39]
Acanthospermum hispidum DC.MarotoNKidney disordersWhole plant[43]
Kidney stonesLeaf, root[36]
Ageratum conyzoides L.Erva-de-São-JoãoNBlood depurative Root, leaf[48]
DiureticWhole plant[39]
DiureticWhole plant[44]
Baccharis crispa Spreng.CarquejaNKidney disorders, diureticLeaf[32]
DiureticAerial parts[46]
Kidney disorders, diuretic, blood depurativeWhole plant[35]
DiureticWhole plant[44]
Diuretic, kidney disorders, blood depurativeWhole plant[40]
Bidens gardneri BakerPicãoNDiureticn.d.[51]
Blainvillea acmella (L.) PhilipsonAgrião-bravoEBlood depurative Flower, leaf, branch, whole plant[48]
Chaptalia nutans (L.) Pol.Língua-de-vacaNBlood depurative Root[48]
Conyza bonariensis (L.) Cronquist)VoadeiraNKidney disordersLeaf, root[36]
Diuretic [51]
Eclipta prostrata (L.) L.SurucuínaNBlood depurativen.d.[35]
Egletes viscosa (L.) Less.MacelaNKidney disordersInflorescence, leaf, seed[48]
Elephantopus hirtiflorus DC.Língua-de-vacaNDiuretic, urinary stonesRoot, leaf[40]
Elephantopus mollis KunthErva-grossaNDiureticRoot[47]
Diuretic, kidney stonesRoot, leaf[33]
Diuretic, urinary stonesRoot, leaf[40]
Lychnophora pinaster Mart.Arnica-da-montanha-mineiraNKidney disordersStem, leaf, flower[44]
Melampodium divaricatum (Rich.) DC.Picão-da-praiaNDiureticLeaf[35]
Mikania cordifolia (L.f.) Willd.Erva-de-cobraNDiureticWhole plant[39]
DiureticLeaf[47]
Mikania glomerata Spreng.GuacoNBlood depurativeLeaf[33]
Blood depurativeLeaf[44]
Mikania guaco KunthGuacoNDiureticWhole plant[35]
Mikania hirsutissima DC.Cipó-cabeludoNDiuretic, nephritisn.d.[33]
Nephritis, diureticWhole plant[50]
Nephritisn.d.[34]
Diuretic, nephritisFlower[38]
Diuretic, kidney disordersWhole plant[44]
Mikania setigera Sch. Bip. ex BakerOrelha-de-cachorroNDiuretic, nephritisStem, leaf[39]
Blood depurative Leaf, root[44]
Orthopappus angustifolius (Sw.) GleasonLíngua-de-vacaNBlood depurativen.d.[36]
Pluchea sagittalis (Lam.) CabreraLuceraNKidney inflammationAerial parts[33]
Solidago chilensis MeyenArnicaNBlood depurativen.d.[51]
Sonchus oleraceus L.SerralhaNBlood depurativen.d.[35]
Blood depurative n.d.[34]
DiureticWhole plant[33]
Blood depurativen.d.[36]
Vernonanthura ferruginea (Less.) H.Rob.Assa-peixeNDiuretic, blood depurativeLeaf[49]
Diuretic, blood depurativeRoot[51]
Diuretic, blood depurativeRoot[50]
Diuretic, blood depurativeLeaf[37]
Vernonanthura polyanthes (Sprengel) Vega and Dematt.Assa-peixeNDiuretic, kidney stonesLeaf, root[33]
DiureticWhole plant[44]
BegoniaceaeBegonia bidentata RaddiErva-de-sapoNDiureticn.d.[35]
Begonia riedelii A.DC.SaracuraNDiureticn.d.[35]
Begonia sanguinea RaddiErva-de-sapo-da-vermelhaNDiureticn.d.[35]
BignoniaceaeAnemopaegma arvense (Vell.) Stellfeld ex de SouzaAlecrim-do-campoNBlood depurativen.d.[36]
Bignonia binata Thunb.Cipó-camarãoNBlood depurativen.d.[34]
Cybistax antisyphilitica (Mart.) Mart.Caroba-de-flor-verdeNBlood depurativeBark[41]
Diuretic, nephroprotectiveLeaf, bark, root[34]
Dolichandra unguis-cati (L.) L.G.LohmannUnha-de-gatoNDiureticLeaf, bark[35]
DiureticLeaf, bark[51]
Handroanthus heptaphyllus (Vell.) MattosPiúvaNBlood depurativeBark[51]
Handroanthus impetiginosus (Mart. ex DC.) MattosCinco-folhasNKidney disordersStem bark, flower[48]
Kidney stonesLeaf, stem[43]
DiureticBark[33]
Handroanthus ochraceus (Cham.) MattosPiúva-cascudaNNephroprotectiveLeaf[51]
Handroanthus serratifolius (Vahl) S.O.GroseIpêNDiuretic, blood depurativeBark[39]
Jacaranda brasiliana (Lam.) J. St.-Hil.CarobaNBlood depurative Stem bark, flower[48]
Jacaranda caroba (Vell.) DC. (synonym of J. oxyphylla Cham.)CarobaNBlood depurativeLeaf[32]
DiureticStem bark[50]
DiureticLeaf, stem[44]
Blood depurativeLeaf[47]
Jacaranda cuspidifolia Mart.CarobãoNBlood depurative Stem bark[36]
Blood depurativen.d.[51]
Jacaranda decurrens Cham.Carobinha-brancaNBlood depurative Leaf, root, stem bark[36]
Blood depurativeStem bark, leaf[50]
Jacaranda micrantha Cham.CarobaNDiuretic, blood depurativen.d.[40]
Jacaranda puberula Cham.Carobinha-do-campoNBlood depurative Leaf, root, stem bark[36]
Pyrostegia venusta (Ker Gawl.) MiersCipó-de-São-JoãoNKidney disordersFlower, branch[44]
Sparattosperma leucanthum (Vell.) K.Schum.Ipê-batataNDiuretic, blood depurativeLeaf[35]
Tabebuia aurea (Silva Manso) Benth. and Hook.f. ex S.MooreParatudoNDiuretic, blood depurativeBark, sprouts[49]
Diureticn.d.[51]
Zeyheria montana Mart.Bolsa-de-pastorNBlood depurative Root bark[34]
BixaceaeBixa arborea HuberUrucumNDiureticn.d.[32]
Bixa orellana L.UrucumNDiureticRoot[47]
Diuretic, kidney disordersLeaf, seed, root[38]
Kidney disordersLeaf, seed[44]
DiureticRoot[40]
Cochlospermum regium (Mart. ex Schrank) Pilg.Algodão-do-campoNBlood depurativeRoot[36]
Blood depurativeBark[37]
BoraginaceaeCordia ecalyculata Vell.Café-de-bugreNRenal edemaLeaf[35]
Diureticn.d.[33]
Diureticn.d.[34]
Cordia rufescens A.DC.Baba-de-boiNKidney disordersLeaf, stem[43]
Heliotropium elongatum (Lehm.) GürkeCrista-de-galoNDiureticRoot, flower, leaf[47]
DiureticRoot, flower, leaf[40]
Heliotropium indicum L.AguaraciunhaNDiureticLeaf, root, flower[33]
Diuretic [51]
Myriopus paniculatus (Cham.) FeuilletMarmelinho-do-campoNDiuretic, kidney disorders, kidney stonesLeaf, stem[44]
BrassicaceaeLepidium bonariense L.Mastruço-de-Buenos-AiresNDiureticn.d.[35]
DiureticLeaf[34]
BromeliaceaeAnanas ananassoides (Baker) L.B.Sm.AnanásNDiureticFruit[50]
Ananas comosus (L.) Merr.AbacaxiNKidney disordersFruit, leaf[43]
DiureticFruit [47]
DiureticFruit [33]
Kidney stonesFruit[34]
DiureticFruit [44]
Bromelia antiacantha Bertol.CaraguatáNDiuretic, kidney stonesFruit [33]
Tillandsia aeranthos (Loisel.) L.B.Sm.Cravo-do-matoNDiureticWhole plant[46]
BurseraceaeCommiphora leptophloeos (Mart.) J.B.GillettImburana-de-espinhoNNephroprotectiveStem bark[48]
Crescentia cujete L.CoitéEDiureticLeaf[48]
CactaceaeCereus jamacaru DC.MandacaruNKidney disordersRoot[33]
Opuntia monacanthos (Willd.) Haw.PalmatóriaNDiureticFruit [35]
CalophyllaceaeCaraipa grandifolia Mart.TamaquaréNBlood depurativeBark[35]
CannaceaeCanna glauca L.EmbiraNDiureticWhole plant[47]
Diureticn.d.[34]
DiureticWhole plant[35]
Canna indica L.BananeirinhaNDiureticWhole plant[47]
DiureticFresh leaf[35]
Canna paniculata Ruiz and Pav.Bananeira-do-matoNDiureticRoot[35]
CapparaceaeMorisonia hastata (Jacq.) Christenh. and Byng (synonym of Cynophalla hastata (Jacq.) J.Presl)SapotaiaNDiureticRoot bark [35]
CardiopteridaceaeCitronella gongonha (Mart.) R.A.HowardCongonha-de-bugreNNephroprotectiven.d.[34]
CaryocaraceaeCaryocar villosum (Aubl.) Pers.PirquiáNDiureticBark[35]
CelastraceaeMonteverdia ilicifolia (Mart. ex Reissek) Biral (synonym of Maytenus ilicifolia Mart. ex Reissek)Espinheira-santaNKidney disorders, blood depurativeLeaf, root[36]
DiureticLeaf[46]
Kidney disorders, diureticLeaf[35]
DiureticLeaf[38]
Kidney disordersLeaf[39]
Kidney disorders, diureticLeaf[40]
Monteverdia rigida (Mart.) Biral (synonym of Maytenus rigida Mart.)Bom-nomeNNephroprotectiven.d.[40]
ChloranthaceaeHedyosmum brasiliense Mart. ex Miq.Chá-de-soldadoNDiureticLeaf[44]
CommelinaceaeCommelina erecta L.Erva-mijonaNDiureticLeaf[47]
Tripogandra serrulata (Vahl) HandlosTrapoeirabaNDiureticWhole plant[44]
ConvolvulaceaeCuscuta racemosa Mart.Cipó-chumboNDiureticWhole plant[44]
Cuscuta umbellata KunthCipó-chumboNDiureticWhole plant[35]
Distimake tomentosus (Choisy) Petrongari and Sim.-Bianch.Velame-do-campoNBlood depurative Branch, leaf, flower[50]
Ipomoea imperati (Vahl) Griseb.Salsa-brancaNDiureticRoot, seed[47]
Ipomoea pes-caprae (L.) R.Br.Salsa-da-praiaNDiuretic, blood depurativeRoot[47]
DiureticRoot[33]
Operculina hamiltonii (G.Don) D.F.Austin and StaplesBatata-de-tiúNBlood depurativeTuber[35]
Blood depurativen.d.[36]
Operculina macrocarpa (L.) Urb.Batata-de-purgaNBlood depurative Tuber, root[48]
Blood depurative Root[43]
Blood depurativeRoot[33]
Blood depurativen.d.[36]
Blood depurativeTuber[44]
CostaceaeCostus arabicus L.Cana-do-brejoNDiuretic, kidney disordersLeaf, stem[36]
Costus scaber Ruiz and Pav.Cana-de-macacoNKidney disordersStem[43]
Costus spiralis (Jacq.) RoscoeCana-do-brejoNDiureticLeaf[32]
Diuretic, kidney disordersStem[35]
Diuretic, kidney disordersWhole plant[40]
CucurbitaceaeApodanthera smilacifolia Cogn. (synonym of Melothrianthus smilacifolius (Cogn.) Mart.Crov.)Cipó-azougueNBlood depurativeRoot[35]
Blood depurative n.d.[34]
Blood depurativeWhole plant[39]
Blood depurativeRoot, fruit [44]
Cayaponia bonariensis (Mill.) Mart.Crov.TaiuiáNBlood depurativeFruit [35]
Cayaponia espelina (Silva Manso) Cogn.EspelinaNBlood depurativeRoot[44]
Cayaponia podantha Cogn.Abóbora-d’antaNBlood depurativeRoot[44]
Cayaponia tayuya (Vell.) Cogn.TaiuiáNBlood depurative Tuber, bark, root, aerial parts[48]
Blood depurativeRoot[47]
Blood depurativeTuber[33]
Blood depurativeRoot[39]
Blood depurativeRoot[50]
Blood depurativeRoot[44]
Cayaponia trilobata Cogn.Abóbora-d’antaNBlood depurativeBark, root[34]
Siolmatra brasiliensis (Cogn.) Baill.TaiuiáNBlood depurativeRoot[51]
CyperaceaeCyperus aggregatus (Willd.) Endl.Tiririca NDiureticRoot[47]
Cyperus brevifolius (Rottb.) Endl. ex Hassk.Capim-cheirosoNDiureticRoot[47]
Cyperus compressus L.ParaturáNDiureticRoot[40]
Cyperus hermaphroditus (Jacq.) Standl. NDiureticRoot[47]
Cyperus ligularis L.Capim-açuNDiureticRoot[47]
Cyperus pedunculatus (R.Br.) J.KernParaturáEDiureticn.d.[47]
DiureticRoot[40]
Cyperus sesquiflorus (Torr.) Mattf. and Kük.Capim-cidreiraNDiureticWhole plant[35]
DiureticRoot[47]
DilleniaceaeCuratella americana L.LixeiraNBlood depurativeFlower[35]
Davilla aspera (Aubl.) Benoist (synonym of Tetracera tigarea DC.)Cipó-vermelho-de-caienaNBlood depurative, diureticLeaf[35]
Davilla rugosa Poir.Cipó-cabocloNDiureticLeaf, root[44]
Blood depurativen.d.[47]
DiureticBranch [50]
Doliocarpus dentatus (Aubl.) Standl.Cipó-caboclo-vermelhoNDiureticBranch, root[50]
Doliocarpus major J.F.Gmel.Cipó-d’águaNDiureticRoot, sap[35]
EquisetaceaeEquisetum giganteum L.CavalinhaNKidney disorders, diuretic, generalized edema,Sprout[35]
Diuretic, kidney infection, kidney disordersStem[33]
EuphorbiaceaeCnidoscolus urens (L.) JantiCansanção-de-leiteNDiureticRoot[40]
Croton antisyphiliticus Mart.Pé-de-perdizNBlood depurativeLeaf, root[35]
Blood depurativeWhole plant[50]
DiureticWhole plant[39]
Diuretic, blood depurativeLeaf, root, whole plant[44]
Croton cajucara Benth.SacacaNKidney inflammationLeaf[33]
Croton campestris A.St.-Hil.Velame-do-campoNBlood depurativeRoot[47]
Blood depurativeRoot, leaf[44]
Blood depurativeLeaf, root[39]
Blood depurativen.d.[34]
DiureticLeaf[40]
Croton echioideus Baill.Quebra-facaNKidney disordersWhole plant, stem bark[48]
Croton fulvus Mart.Velame-do-matoNBlood depurativeLeaf, root[35]
Croton goyazensis Müll.Arg.AlcanforeiraNDiureticWhole plant[45]
Croton heliotropiifolius KunthVelameNBlood depurative Root[48]
Croton salutaris Casar.Sangue-de-pauNBlood depurativeBark[35]
Euphorbia hirta L.Erva-andorinhaNDiureticLeaf[35]
DiureticLeaf[40]
Euphorbia hyssopifolia L.Sete-sangriasNBlood depurativeWhole plant[36]
Euphorbia prostrata AitonQuebra-pedraNDiuretic, kidney disordersn.d.[46]
Euphorbia serpens KunthCaá-cambuíNDiureticLeaf[35]
Euphorbia thymifolia L.Leite-de-Nossa-SenhoraNDiureticn.d.[51]
Jatropha elliptica (Pohl) OkenPurga-de-lagartoNBlood depurativeRoot[37]
DiureticLeaf[40]
Blood depurativeRoot[51]
Jatropha gossypiifolia L.Pinhão-roxoNDiureticRoot[33]
Joannesia princeps Vell.Anda-assúNDiureticSeed[39]
FabaceaeAbrus precatorius L.JequiritiEDiureticRoot[33]
Anadenanthera colubrina (Vell.) BrenanAngicoNBlood depurativeBark[33]
Blood depurativeBark[51]
Blood depurativeBark[39]
Anadenanthera macrocarpa (Benth.) BrenanAngicoNBlood depurative Stem bark[48]
Blood depurativeBark[47]
Bauhinia dubia G.DonPata-de-vacaNKidney disordersLeaf[36]
Bauhinia forficata LinkPata-de-vacaNDiureticLeaf[38]
Diuretic, kidney stonesn.d.[45]
DiureticLeaf[32]
Diuretic, kidney stonesLeaf[33]
Diuretic, kidney disordersLeaf[46]
Kidney disorders, depurativeWhole plant[41]
DiureticLeaf, root, flower[47]
Diuretic, blood depurativeLeaf[40]
Bauhinia holophylla (Bong.) Steud.Unha-de-vacaNDiureticWhole plant[50]
Bauhinia pentandra (Bong.) Vogel ex Steud.Mororó-de-espinhoNKidney disordersStem bark, leaf[48]
Bauhinia rufa (Bong.) Steud.Unha-de-vacaNDiureticWhole plant[50]
Bowdichia nitida Spruce ex Benth.Sapupira-da-mataNBlood depurativeRoot, seed[35]
Bowdichia virgilioides KunthSucupiraNBlood depurativeRoot, seed[35]
Blood depurativeStem bark, seed [36]
Blood depurativeTuber, root bark, seed[39]
Blood depurativeRoot, seed[51]
Blood depurative Tuber, seed[34]
Blood depurativeSeed[50]
Blood depurativeBark[40]
Centrosema angustifolium (Kunth) Benth.Espia-caminhoNDiureticn.d.[40]
Centrosema brasilianum (L.) Benth.Espia-caminhoNDiureticn.d.[40]
Centrosema pascuorum Mart. ex Benth.Espia-caminhoNDiureticn.d.[40]
Centrosema plumieri (Turpin ex Pers.) Benth.Espia-caminhoNDiureticn.d.[40]
Chamaecrista rotundifolia (Pers.) GreeneQuebra-pedraNDiuretic, kidney disordersWhole plant[50]
Clitoria guianensis (Aubl.) Benth.Catuaba-falsaNDiureticRoot, seed[44]
DiureticRoot[50]
Copaifera langsdorffii Desf.Pau-d‘óleoNKidney disordersStem bark[48]
Kidney inflammationResin[49]
Diureticn.d.[33]
Copaifera multijuga HayneCopaíbaNKidney inflammationBark[41]
Enterolobium contortisiliquum (Vell.) MorongXimbuvaNNephroprotectiveBark[51]
Grona barbata (L.) H.Ohasi and K.Ohasi (synonym of Desmodium barbatum (L.) Benth.)TrevinhoNDiureticn.d.[51]
Guilandina bonduc L.CarnicaNDiureticSeed[47]
Hymenaea courbaril L.JatobáNBlood depurative Stem bark, fruit, barks[48]
Kidney disordersStem, seed[40]
Kidney disordersn.d.[41]
Indigofera lespedezioides KunthPurgueiroNDiureticn.d.[51]
Indigofera suffruticosa Mill.AnileiraNDiureticRoot, leaf[47]
DiureticRoot, leaf[40]
DiureticWhole plant[50]
Libidibia ferrea (Mart. ex Tul.) L.P.QueirozPau-ferroNKidney disordersPod[32]
Blood depurative Stem bark, fruit, root, flower[48]
DiureticStem bark[36]
Machaerium acutifolium VogelBico-de-patoNDiureticFruit [49]
Mimosa candollei R.GretherMalícia-roxaNDiureticRoot[47]
Mucuna pruriens (L.) DC.Pó-de-micoEDiureticRoot[35]
Myroxylon balsamum (L.) HarmsPau-bálsamoNDiureticn.d.[35]
Diureticn.d.[39]
Myroxylon peruiferum L.f.Bálsamo-do-PeruNDiureticn.d.[39]
Periandra mediterranea (Vell.) Taub.AlcaçuzNDiureticRoot[35]
DiureticRoot[34]
Diureticn.d.[36]
Pterodon emarginatus VogelSucupira-brancaNBlood depurativeBark[40]
Pterodon pubescens (Benth.) Benth.Sucupira-brancaNBlood depurativeBark[37]
Blood depurativeStem bark, seed[36]
Schnella splendens (Kunth) Benth.Pata-de-vacaNKidney disordersn.d.[36]
Senna alata (L.) Roxb.Mata-pastoNBlood depurativen.d.[51]
Blood depurativeLeaf[35]
Diureticn.d.[40]
Senna occidentalis (L.) LinkFedegosoNDiureticRoot bark[33]
DiureticRoot[51]
DiureticRoot[50]
Diuretic, kidney diseasesRoot[32]
Blood depurative Seed, fruit, root[48]
DiureticRoot bark[35]
DiureticRoot, seed[47]
DiureticLeaf, root bark, root, seed[38]
DiureticRoot bark, seed, leaf[39]
Senna reticulata (Willd.) H.S.Irwin and BarnebyPé-de-São-JoãoNDiuretic, kidney diseasesRoot[32]
Senna splendida (Vogel) H.S.Irwin and BarnebyFedegoso-grandeNDiureticRoot[50]
Senna uniflora (Mill.) H.S.Irwin and BarnebyMata-pastoNDiureticn.d.[40]
Stryphnodendron adstringens (Mart.) CovilleBarbatimãoNBlood depurativeBark[40]
Zornia latifolia Sm.Orelha-de-caxinguelêNDiureticn.d.[51]
FrancoaceaeViviania albiflora (Cambess.) ReicheAnavingaNDiureticFruit[35]
GentianaceaeSchultesia guianensis (Aubl.) MalmeMata-zombandoNBlood depurative n.d.[47]
Blood depurativeLeaf, root[51]
HumiriaceaeHumiria balsamifera (Aubl.) A.St.-Hil.UmiriNDiureticBark[35]
IridaceaeEleutherine bulbosa (Mill.) Urb.MarupáNDiureticn.d.[41]
Sisyrinchium vaginatum Spreng.CanchaláguaNDiureticWhole plant[46]
Trimezia martinicensis (Jacq.) Herb.MaririçóNBlood depurative Rhizome, root[35]
LamiaceaeHyptis radicans (Pohl) Harley and J.F.B.PastoreParacariNDiureticStall, leaf[35]
Kidney stonesn.d.[34]
Diuretic, kidney inflammationBranch, leaf[50]
Diuretic, kidney inflammationFlower, whole plant[44]
Ocimum campechianum Mill.AlfavacaNDiureticn.d.[32]
Vitex cymosa Bertero ex Spreng.TarumãNKidney infectionLeaf, stem bark[36]
Blood depurativeLeaf[51]
Vitex megapotamica (Spreng.) MoldenkeTarumãNDiuretic, blood depurativen.d.[35]
Diuretic, blood depurativeBark, fruit, leaf[46]
Vitex polygama Cham.Azeitona-do-matoNKidney disorders, diureticLeaf[50]
Blood depurativeLeaf[44]
Vitex triflora VahlTarumã-da-mataNBlood depurative, diureticLeaf, root, fruit [35]
LauraceaeCassytha filiformis L.Cipó-chumboNKidney disordersn.d.[51]
Mespilodaphne cymbarum (Kunth) Trofimov (synonym of Ocotea cymbarum Kunth)SassafrásNBlood depurativen.d.[40]
Nectandra mollis (Kunth) Nees (synonym of N. reticulata Mez)Louro-preto NDiureticBark[35]
Ocotea aurantiodora (Ruiz and Pav.) Mez (synonym of O. longifolia Kunth)Caneleira-de-cheiroNDiureticRoot[35]
Ocotea odorifera (Vell.) RohwerSassafrásNBlood depurative, diureticBark, flower, oil[33]
Blood depurative Bark[37]
Blood depurativeStem bark, root[44]
Blood depurativen.d.[40]
Persea americana Mill.AbacateiroEKidney stonesFruit[44]
Diuretic, kidney disordersLeaf[39]
DiureticLeaf[38]
Kidney disordersLeaf[37]
DiureticLeaf[34]
Diuretic, kidney disordersLeaf[36]
Diuretic, anti-infective for the kidneysStem bark, seed, leaf[33]
DiureticLeaf, sprout[47]
DiureticStem bark, leaf, seed[41]
DiureticLeaf[42]
Kidney stones, diuretic, kidney disordersLeaf, seed, fruit[48]
Kidney stones, diuretic, kidney disordersLeaf[32]
DiureticLeaf, sprout[40]
LecythidaceaeLecythis pisonis Cambess.SapucaiaNDiureticn.d.[35]
LinderniaceaeTorenia crustacea (L.) Cham. and Schltdl. (synonym of Lindernia crustacea (L.) F.Muell.)Douradinha-do-ParáNDiureticLeaf[35]
DiureticLeaf[40]
Vandellia diffusa L. (synonym of Lindernia diffusa (L.) Wettst.)Douradinha-do-campoEDiureticLeaf[35]
Diuretic, blood depurativen.d.[40]
Diureticn.d.[34]
LoganiaceaeStrychnos pseudoquina A.St.-Hil.QuinaNBlood depurativeBark, wood[51]
LycopodiaceaeLycopodium clavatum L.LicopódioNDiureticSpore, whole plant[44]
LythraceaeCuphea carthagenensis (Jacq.) J.F.Macbr.Sete-sangriasNDiuretic, blood depurativeWhole plant[33]
Blood depurativeLeaf, flower, stem, branch, root[38]
Blood depurativeWhole plant[50]
Blood depurative, diureticWhole plant, root[48]
Cuphea ingrata Cham. and Schltdl.Sete-sangriasNBlood depurativen.d.[35]
MalpighiaceaeBanisteriopsis argyrophylla (A.Juss.) B.GatesCipó-prataNDiuretic, kidney disorders, kidney stones, nephritisRoot, branch, leaf, flower[50]
Kidney diseasesRoot, leaf, stem[44]
Banisteriopsis campestris (A.Juss.) LittleCipó-prataNDiuretic, kidney disorders, kidney stones, nephritisRoot, branch, leaf, flower[50]
Banisteriopsis laevifolia (A.Juss.) B.GatesCipó-prataNDiuretic, kidney disorders, kidney stones, nephritisRoot, branch, leaf, flower[50]
Banisteriopsis megaphylla (A.Juss.) B.GatesCipó-prataNDiuretic, kidney disorders, kidney stones, nephritisRoot, branch, leaf, flower[50]
Byrsonima intermedia A.Juss.SaratudoNDiureticn.d.[41]
Byrsonima pachyphylla A.Juss.MuruciNDiureticBranch, leaf[50]
Byrsonima verbascifolia (L.) DC.Douradinha-falsaNDiuretic at higher dosesn.d.[49]
DiureticWhole plant[35]
DiureticLeaf, stem[50]
Heteropterys argyrophaea A.Juss.Cipó-prataNDiuretic, kidney diseasesn.d.[34]
Heteropterys banksiifolia Griseb.Guiné-do-campoNDiureticLeaf[50]
Heteropterys tomentosa A.Juss.Nó-de-cachorroNBlood depurativeRoot[37]
Blood depurativeRoot[36]
Blood depurativen.d.[51]
MalvaceaeAyenia melastomifolia (A.St.-Hil) Christenh and Byng (synonym of Byttneria melastomifolia A.St.-Hil.)Raiz-de-bugreNBlood depurativeLeaf, root[36]
Blood depurativeRoot[37]
Ceiba pentandra (L.) Gaertn.Sumaúma-da-várzeaNDiureticBark[35]
Guazuma ulmifolia Lam.MutambaNBlood depurativeBark[39]
Blood depurativeBark[35]
Helicteres baruensis Jacq.Umbigo-de-bezerroNRenal insufficiencyFruit [48]
Herissantia crispa (L.) BrizickyMalvaNDiureticLeaf[47]
Luehea paniculata Mart.Açoita-cavaloNBlood depurativeRoot[49]
Blood depurativen.d.[36]
Sida rhombifolia L.GuanxumaEKidney stonesWhole plant[32]
DiureticSeed[46]
DiureticLeaf[44]
Theobroma cacao L.CacaueiroNDiureticSeed [39]
DiureticSeed [44]
Theobroma grandiflorum (Willd. ex Spreng.) K.Schum. CupuaçuNKidney infectionsLeaf[32]
Triumfetta rhomboidea Jacq. (synonym of T. bartramia L.)CarrapichãoEDiureticWhole plant[50]
Triumfetta semitriloba Jacq.Carrapicho-de-calçadaNBlood depurative Root[48]
DiureticWhole plant[39]
DiureticWhole plant[44]
Urena lobata L.UrenaNDiureticRoot[50]
DiureticRoot[32]
DiureticLeaf[35]
Diuretic, kidney colicRoot, flower[44]
Waltheria communis A.St.-Hil.DouradinhaNDiureticn.d.[51]
DiureticBark, leaf[33]
Blood depurative n.d.[34]
MelastomataceaeMouriri elliptica Mart.Coroa-de-fradeNNephroprotectiveFruit [51]
Pleroma asperius (Cham.) TrianaDouradinhaNDiureticn.d.[46]
MeliaceaeTrichilia elegans A.Juss.CachuáNDiureticBark[51]
MenispermaceaeChondrodendron platyphyllum (A.St.-Hil.) MiersAbatuaNDiureticRoot[39]
Chondrodendron tomentosum Ruiz and Pav.Parreira-bravaNNephrolithiasisn.d.[35]
Cissampelos glaberrima A.St.-Hil.AbútuaNDiureticRoot[35]
DiureticRoot[50]
DiureticLeaf, bark, root[44]
Cissampelos ovalifolia DC.Orelha-de-onçaNDiureticRoot [50]
Cissampelos pareira L.ButaNDiuretic, kidney stonesRoot, stem bark[35]
DiureticRoot[51]
Cissampelos sympodialis EichlerAngelicóNBlood depurative Aerial parts[48]
DiureticRoot[47]
Cissampelos tropaeolifolia DC.Parreira-brava-do-rioNNephrolithiasisn.d.[35]
MoraceaeBrosimum acutifolium HuberMururéNBlood depurativeLatex[35]
Brosimum gaudichaudii TréculMamacadelaNBlood depurative Leaf, root[33]
Diureticn.d.[51]
Blood depurative Branch, leaf[50]
Blood depurativeLeaf, stem, root[44]
Diuretic, blood depurativeRoot, bark, root[49]
Blood depurativen.d.[36]
Dorstenia brasiliensis Lam.FigueirilhaNDiureticWhole plant[46]
DiureticRoot[47]
Diureticn.d.[51]
DiureticRoot[40]
Dorstenia cayapia Vell.CaapiáNDiureticRhizome[35]
DiureticLeaf, root, rhizome, fruit[33]
Dorstenia cayapia subsp. asaroides (synonym of D. asaroides Gardner)CarapiáNBlood depurativen.d.[36]
Ficus crocata (Miq.) Mart. ex Miq.OitiNBlood depurative Bark[34]
Ficus gomelleira KunthFigueiraNBlood depurativen.d.[51]
Pseudolmedia macrophylla TréculMururéNBlood depurative Bark[34]
Blood depurativeBark[39]
MyrtaceaeEugenia biflora (L.) DC.Rosário-de-jambuNDiureticRoot[35]
Eugenia involucrata DC.Pitanga-do-matoNDiureticLeaf[50]
Eugenia punicifolia (Kunth) DC.Pitanga-de-folha-finaNDiureticStem bark, leaf[50]
Eugenia uniflora L.PitangueiraNDiureticLeaf[46]
Kidney infectionLeaf[36]
DiureticLeaf, fruit [47]
Myrcia vellozoi MazineUoapuramaNDiureticRoot, seed, bark[35]
Plinia peruviana (Poir.) Govaerts (synonym of P. cauliflora (Mart.) Kausel) JaboticabaNKidney stonesStem, fruit [43]
DiureticFruit, bark[44]
Psidium guineense Sw.Araçá-do-campoNDiureticRoot[51]
DiureticRoot, stem bark[50]
NyctaginaceaeNeea theifera Oerst.Caparrosa-do-campoNKidney disordersn.d.[34]
OchnaceaeSauvagesia erecta L.Erva-de-São-MartinhoNDiureticn.d.[35]
Diureticn.d.[51]
OlacaceaeXimenia americana L.Limão-bravoNBlood depurativeBark[51]
OxalidaceaeOxalis hirsutissima Mart. and Zucc.AzedinhaNKidney infectionLeaf[36]
PassifloraceaePassiflora alata CurtisMaracujáNDiureticLeaf[38]
Passiflora edulis SimsMaracujáNDiureticLeaf[35]
NDiureticLeaf[34]
NKidney disordersBark[37]
NDiureticLeaf[40]
Passiflora quadrangularis L.Maracujá-açuNDiuretic, blood depurative Fruit[35]
Piriqueta duarteana (Cambess.) Urb.ChananaNRenal lithiasis, pyelonephritis Leaf, root[48]
Turnera diffusa Willd. ex. SchultDamianaNDiureticn.d.[35]
Diuretic, nephroprotectiveLeaf[39]
PhyllanthaceaePhyllanthus acutifolius Poir. ex Spreng.Erva-pombinhaNDiuretic, kidney colicn.d.[34]
Phyllanthus amarus Schumach. and Thonn.Quebra-pedraNKidney disordersWhole plant[43]
Diuretic, kidney stonesn.d.[51]
Phyllanthus brasiliensis (Aubl.) Poir.ConamiNDiureticRoot[35]
Phyllanthus niruri L.Quebra-pedraNKidney stones, diuretic, kidney colicWhole plant[35]
Diureticn.d.[41]
Diuretic, kidney stonesWhole plant[44]
Diuretic, kidney stones, kidney colicWhole plant[40]
Kidney stones, nephroprotectiveWhole plant, root, leaf[48]
Kidney stones, kidney pain n.d.[42]
Kidney stones, diureticWhole plant[33]
Diuretic, kidney disorders, kidney stonesWhole plant[36]
Kidney disordersLeaf[37]
Diuretic, kidney stones, nephritisAerial parts, flower, root, seed[38]
Phyllanthus niruri subsp. lathyroides (Kunth) G.L.Webster (synonym of P. lathyroides Kunth)Quebra-pedraNKidney stonesRoot[47]
Phyllanthus orbiculatus Rich.Quebra-pedraNDiuretic, kidney stonesn.d.[51]
Phyllanthus sellowianus (Klotzsch) Müll.Arg.Quebra-pedraNDiuretic, kidney stones, kidney colicWhole plant[40]
Phyllanthus tenellus Roxb.Quebra-pedra-falsoEDiuretic, lithiasisWhole plant[44]
Phyllanthus tenellus Roxb. var. tenellus (synonym of P. corcovadensis Müll.Arg.)Quebra-pedraEDiuretic, kidney stonesLeaf, root[32]
PetiveriaceaeSeguieria americana L.TapiáNDiureticn.d.[34]
Gallesia integrifolia (Spreng.) HarmsPau-alhoNNephroprotectiven.d.[51]
PiperaceaePeperomia pellucida (L.) KunthErva-jabotiNDiureticn.d.[41]
DiureticWhole plant[33]
Piper aduncum L.Pimenta-do-matoNDiureticFruit [51]
Piper bartlingianum (Miq.) C.DC.NhambiNDiureticn.d.[34]
Piper cernuum Vell.PariparobaNKidney disordersLeaf[32]
Piper marginatum Jacq.PariparobaNDiureticRoot[32]
DiureticRoot[35]
Diuretic, kidney diseasesWhole plant[47]
Blood depurative, diureticn.d.[45]
Piper peltatum L.CaapebaNDiureticRoot, leaf[32]
Diuretic, kidney stonesWhole plant[47]
DiureticRoot, leaf[40]
Piper regnellii (Miq.) C.DC.Capeba-do-BrasilNKidney disordersLeaf[44]
Piper tuberculatum Jacq.Pimenta-de-macacoNRenal insufficiencyFlower, fruit[48]
Piper umbellatum L.CapébaNKidney disorders, diuretic, blood depurativeLeaf, root, bark[44]
DiureticLeaf, root[39]
Diuretic Root[48]
Diuretic, blood depurative, kidney disordersLeaf, root[43]
DiureticLeaf, root[35]
Diuretic, kidney disordersWhole plant[47]
DiureticRoot[33]
DiureticLeaf, root[36]
DiureticRoot, leaf[40]
PlantaginaceaeScoparia dulcis L.VassourinhaNBlood depurativeWhole plant[32]
Blood depurative, hematuria, diureticRoot, leaf, whole plant[48]
PoaceaeGuadua paniculata MunroTaquaraNDiureticn.d.[50]
Imperata brasiliensis Trin.Capim-sapêNDiureticWhole plant[47]
Schizachyrium condensatum (Kunth) NeesRabo-de-burroNDiureticRoot[50]
DiureticRoot[35]
PolygalaceaeAsemeia acuminata (Willd.) J.F.B.Pastore and J.R.Abbott NDiureticRoot[35]
Diureticn.d.[34]
Bredemeyera floribunda Willd.Botica-inteiraNKidney diseasesWhole plant[44]
Bredemeyera laurifolia (A.St.-Hil. and Moq.) Klotzsch ex A.W.Benn.João-da-CostaNKidney disordersRoot bark[50]
Senega lancifolia (A.St.-Hil. and Moq.) J.F.B.Pastore (synonym of Polygala lancifolia A.St.-Hil. & Moq.)PolígalaNDiuretic, kidney disordersRoot[44]
Senega paniculata (L.) J.F.B.Pastore and J.R. Abbott (synonym of Polygala paniculata L.)Barba-de-São-PedroNDiureticRoot[35]
DiureticLeaf[33]
Diuretic, kidney disordersRoot[44]
Senega timoutou (Aubl.) J.F.B.Pastore (synonym of Polygala timoutou Aubl.)TimutuNDiureticRoot[35]
PolygonaceaePersicaria hydropiperoides (Michx.) Small (synonym of Polygonum hydropiperoides Michx.)AcataiaNDiureticLeaf[33]
Persicaria punctata (Elliott) Small (synonym of Polygonum punctatum Elliott)Erva-de-bichoNDiureticn.d.[47]
Diuretic, blood depurativeWhole plant, leaf,[38]
DiureticWhole plant[39]
DiureticWhole plant[44]
PontederiaceaePontederia crassipes Mart. (synonym of Eichhornia crassipes (Mart.) Solms)AguapéNDiuretic, blood depurativeLeaf[44]
PortulacaceaePortulaca pilosa L.Amor-crescidoNKidney colic, diureticLeaf[32]
PrimulaceaeMyrsine coriacea (Sw.) R.Br. ex Roem. and Schult.Azeitona-do-matoNDiuretic, blood depurativeFruit[34]
PteridaceaeAdiantum capillus-veneris L.AvencaNDiureticLeaf[38]
RhamnaceaeAmpelozizyphus amazonicus DuckeSaracura-miráNBlood depurativeRoot[40]
Blood depurativeRoot[35]
RosaceaeRubus brasiliensis Mart.AmoreiraNDiureticLeaf, root[50]
DiureticLeaf, root[46]
Diureticn.d.[45]
Rubus rosifolius Sm.Morango-silvestreEDiuretic, kidney disorders, blood depurativeFruit, sprout, root[44]
Rubus sellowii Cham. and Schltdl.Amora-bravaNDiureticRoot[33]
RubiaceaeAlibertia edulis (Rich.) A.Rich.Marmelada-bolaNKidney disordersLeaf[36]
Spermacoce verticillata L. (synonym of Borreria verticillata (L.) G.Mey.)Vassourinha-de-botãoNDiureticRoot[33]
Chiococca alba (L.) Hitchc.CaincaNDiureticRoot bark[33]
Blood depurativeRoot[36]
Diuretic, blood depurativeRoot[51]
DiureticRoot bark[35]
DiureticRoot[39]
Diuretic, blood depurativeRoot[40]
Galianthe centranthoides (Cham. and Schltdl.) E.L.CabralSabugueirinho-do-campoNDiureticWhole plant[39]
Genipa americana L.JenipapeiroNDiureticStem bark[36]
DiureticFruit [51]
Kidney disorders, diureticLeaf, fruit, stem bark, root, seed[44]
DiureticFruit [40]
Diureticn.d.[35]
Diureticn.d.[34]
DiureticFruit, bark[39]
Guettarda viburnoides Cham. and Schltdl.Veludo-brancoNKidney disordersLeaf, root, bark[36]
Palicourea coriacea (Cham.) K.Schum.DouradinhaNKidney disordersLeaf[37]
Palicourea crocea (Sw.) Schult.RoxinhaNKidney painWhole plant[50]
Palicourea longiflora DC.DouradinhaNDiuretic, blood depurative, kidney infectionLeaf[36]
Palicourea rigida KunthDouradãoNKidney infectionLeaf[36]
Blood depurative, kidney diseasesLeaf, stem bark[44]
DiureticLeaf[37]
Blood depurative, kidney diseasesRoot, stem bark, leaf[50]
Diureticn.d.[47]
Palicourea tetraphylla Cham. and Schltdl.Dom-BernardoNDiuretic, kidney disordersLeaf[34]
Randia armata (Sw.) DC. subsp. armataEspinho-de-carneiroNBlood depurativeRoot[47]
Rudgea viburnoides (Cham.) Benth.Congonha-de-bugreNDiuretic, blood depurative, kidney infectionLeaf[36]
Diuretic, kidney diseasesLeaf[50]
Blood depurativeRoot, bark[35]
Diuretic, kidney diseasesLeaf, root[44]
Blood depurativeBark[39]
Uncaria guianensis (Aubl.) J.F.Gmel.Unha-de-gatoNBlood depurativen.d.[33]
RutaceaeErtela trifolia (L.) KuntzeAlfavaca-bravaNDiuretic, kidney disordersWhole plant[35]
DiureticWhole plant[33]
Pilocarpus giganteus Engl.Jaborandi-de-fruto-grandeNDiureticn.d.[35]
Pilocarpus jaborandi HolmesJaborandiNDiuretic, nephritisn.d.[40]
Pilocarpus microphyllus Stapf ex Wardlew.JaborandiNDiuretic, nephritisn.d.[40]
Pilocarpus pennatifolius Lem.JaborandiNDiuretic, nephritisn.d.[40]
Kidney diseasesn.d.[33]
Spiranthera odoratissima A.St.-Hil.ManacáNDiuretic, blood depurative, kidney infectionLeaf, root[36]
SalicaceaeCasearia sylvestris Sw.Erva-de-bugreNBlood depurativeLeaf, bark[33]
Diuretic, blood depurativeLeaf[38]
Blood depurative, kidney diseasesLeaf, stem bark[50]
Blood depurativeLeaf, root[40]
Blood depurativeLeaf[39]
DiureticBark, leaf[46]
Blood depurativeLeaf, bark, root[49]
Blood depurativeLeaf, root[35]
Blood depurativen.d.[51]
Blood depurativeLeaf[44]
Salix humboldtiana Willd.SarãNKidney stonesBark[51]
SapindaceaeAllophylus edulis (A.St.-Hil. A.Juss and Cambess.) Radlk.VacumNBlood depurative n.d.[45]
Cardiospermum halicacabum L.PocaNDiureticRoot[51]
Cupania oblongifolia Mart.Pau-magroNDiureticLeaf[44]
Sapindus saponaria L.SaboneteiraNNephroprotectiveFruit [51]
Serjania erecta Radlk.Cinco-folhasNNephroprotectiveLeaf, root[36]
Talisia esculenta (A.St.-Hil. A.Juss and Cambess.) Radlk. PitombeiraNKidney disordersLeaf[37]
SelaginellaceaeSelaginella erythropus (Mart.) SpringPalminha-das-pedrasNDiureticn.d.[47]
SimaroubaceaeQuassia amara L.QuássiaNKidney stonesBark, root, wood[35]
Simarouba versicolor A.St.-Hil.Pé-de-perdizNBlood depurativeRoot[36]
SiparunaceaeSiparuna guianensis Aubl.NegraminaNKidney painLeaf[43]
DiureticLeaf, flower[33]
SmilacaceaeSmilax brasiliensis Spreng.JapecangaNBlood depurativeRoot[50]
Smilax campestris Griseb.JapecangaNBlood depurativeRoot[50]
Smilax cissoides M.Martens and GaleottiJapecangaNBlood depurativeRoot[50]
Smilax fluminensis Steud.JapecangaNKidney diseases, blood depurative, diureticRoot[51]
Diuretic, blood depurativen.d.[34]
Smilax goyazana A.DC.JapecangaNBlood depurative, diureticLeaf, root, rhizome[49]
Smilax japicanga Griseb.JapecangaNDiuretic, blood depurativen.d.[33]
Diuretic, blood depurativen.d.[34]
Blood depurative Root[48]
Blood depurativeRoot[35]
Diuretic, blood depurativeRoot[47]
Blood depurativeRoot[36]
Diuretic, blood depurativeRoot[39]
Smilax longifolia Rich.SalsaparrilhaNBlood depurative Root[48]
Blood depurativeRoot[35]
Smilax quinquenervia Vell.SalsaparrilhaNDiureticRoot[39]
Diuretic, blood depurativeRoot[44]
SolanaceaeBrunfelsia uniflora (Pohl) D.DonManacáNBlood depurativeRoot, branch, leaf[44]
Blood depurative Root[48]
DiureticRoot[35]
Blood depurativeRoot[47]
Diureticn.d.[33]
Diureticn.d.[34]
DiureticRoot[39]
Physalis pubescens L.CamapuNDiureticLeaf, fruit[35]
DiureticWhole plant[47]
DiureticLeaf, fruit [51]
Solanum alternatopinnatum Steud.JequiriNBlood depurativeLeaf[44]
Solanum americanum Mill.Maria-pretaNBlood depurative Whole plant[50]
Diuretic, blood depurativen.d.[33]
Blood depurativeLeaf, root[36]
Diureticn.d.[34]
DiureticWhole plant[39]
Solanum cernuum Vell.PanaceiaNDiureticLeaf, flower[50]
Diuretic, blood depurativeLeaf, root[44]
Diuretic, blood depurativeLeaf[33]
DiureticRoot, leaf[39]
Solanum lycocarpum A.St.-Hil.LobeiraNKidney disordersFlower, fruit, root[44]
Diuretic, kidney colicLeaf[33]
Solanum paludosum Moric.Jurubeba-roxaNBlood depurative Root, leaf[48]
Solanum paniculatum L.JurubebaNDiureticFruit, root[48]
DiureticLeaf, fruit, root[35]
Diureticn.d.[47]
Diuretic, nephroprotectiveRoot, flower[51]
DiureticLeaf, root[38]
Solanum viarum DunalJoáNKidney painFruit [51]
TalinaceaeTalinum paniculatum (Jacq.) Gaertn.Maria-gondóNDiureticRoot[33]
DiureticLeaf, root[44]
UrticaceaeCecropia concolor Willd.EmbaúbaNDiureticn.d.[41]
Cecropia pachystachya TréculEmbaúbaNDiureticLeaf[45]
DiureticLeaf[50]
Diuretic, nephroprotectiveLeaf, stem, root[48]
DiureticLeaf[47]
DiureticLeaf[33]
Diuretic, blood depurative, kidney infectionLeaf[36]
Cecropia palmata Willd.TorémNDiureticSpout[39]
DiureticLeaf[47]
Cecropia peltata L.EmbaúbaNNephroprotectiveLeaf[32]
Diuretic, nephroprotectiven.d.[34]
Laportea aestuans (L.) ChewCansançãoNDiureticRoot[47]
Urera aurantiaca Wedd.UrtigaNDiuretic, kidney disordersWhole plant[36]
Diureticn.d.[51]
Urera baccifera (L.) Gaudich. ex Wedd.UrtigaNBlood depurative, diureticRoot[41]
Urera caracasana (Jacq.) Griseb.UrtigãoNDiureticRoot[35]
VerbenaceaeStachytarpheta cayennensis (Rich.) VahlGervão-azulNDiureticLeaf, aerial parts[33]
DiureticBranch, leaf[46]
DiureticLeaf[35]
Diureticn.d.[40]
Stachytarpheta indica (L.) VahlGervãoNBlood depurativeWhole plant[36]
Kidney disordersRoot[37]
Viburnaceae Sambucus australis Cham. and Schltdl.SabugueiroNDiuretic Flower[47]
Diuretic, nephritis, kidney stonesBark[33]
DiureticFlower, leaf[44]
DiureticFlower[40]
ViolaceaeAnchietea pyrifolia (Mart.) G.DonCipó-sumaNBlood depurativeStem, root bark[39]
Blood depurative n.d.[34]
Blood depurativeStem, root[44]
Pombalia calceolaria (L.) Paula-SouzaIpepacuanhaNBlood depurative Root[48]
VitaceaeCissus erosa Rich.Cipó-de-arraia-lisoNDiureticRoot[51]
VochysiaceaeVochysia rufa Mart.Pau-doceNDiureticLeaf, bark, root[36]
WinteraceaeDrimys brasiliensis MiersCasca-d’antaNDiureticStem bark[44]
E, exotic to Brazilian flora, N, native to Brazilian flora, n.d., not described.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Moraes Carlesso, R.; Cappellari, Y.L.R.; Boeff, D.D.; da Costa Pereira, A.; Schmitt Rusch, E.; de Souza Claudino, T.; Ritter, M.R.; Konrath, E.L. Nephroprotective Plant Species Used in Brazilian Traditional Medicine for Renal Diseases: Ethnomedical, Pharmacological, and Chemical Insights. Plants 2025, 14, 648. https://doi.org/10.3390/plants14050648

AMA Style

Moraes Carlesso R, Cappellari YLR, Boeff DD, da Costa Pereira A, Schmitt Rusch E, de Souza Claudino T, Ritter MR, Konrath EL. Nephroprotective Plant Species Used in Brazilian Traditional Medicine for Renal Diseases: Ethnomedical, Pharmacological, and Chemical Insights. Plants. 2025; 14(5):648. https://doi.org/10.3390/plants14050648

Chicago/Turabian Style

Moraes Carlesso, Rodrigo, Yasmin Louise Ramos Cappellari, Daiana Daniele Boeff, Alícia da Costa Pereira, Elisa Schmitt Rusch, Thiago de Souza Claudino, Mara Rejane Ritter, and Eduardo Luis Konrath. 2025. "Nephroprotective Plant Species Used in Brazilian Traditional Medicine for Renal Diseases: Ethnomedical, Pharmacological, and Chemical Insights" Plants 14, no. 5: 648. https://doi.org/10.3390/plants14050648

APA Style

Moraes Carlesso, R., Cappellari, Y. L. R., Boeff, D. D., da Costa Pereira, A., Schmitt Rusch, E., de Souza Claudino, T., Ritter, M. R., & Konrath, E. L. (2025). Nephroprotective Plant Species Used in Brazilian Traditional Medicine for Renal Diseases: Ethnomedical, Pharmacological, and Chemical Insights. Plants, 14(5), 648. https://doi.org/10.3390/plants14050648

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop