Simultaneous Component Analysis of Akebia quinata Seeds (Lardizabalaceae) by Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry for Quality and Cytotoxicity Assessment
Abstract
:1. Introduction
2. Results
2.1. Analysis Conditions for Quality Assessment of AQS Samples by UPLC–MS/MS
2.2. Identification of Eight Target Compounds in UPLC–MS/MS MRM Mode for Simultaneous Component Analysis
2.3. Method Validation of Developed UPLC–MS/MS MRM Assay
2.4. Simultaneous Determination of Eight Target Compounds in AQS Sample by UPLC–MS/MS MRM
2.5. Cytotoxic Effects on Cancer Cell Lines of AQS Extract and Eight Compounds
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Chemicals and Reagents
4.3. Preparation of 70% Ethanol Extract of AQSs
4.4. Preparation of Standard and Sample Solutions for UPLC–MS/MS Analysis
4.5. Analytical Conditions for Simultaneous Determination of Eight Target Analytes in AQS Sample by UPLC–MS/MS
4.6. Validation of the UPLC–MS/MS MRM Assay
4.7. Cytotoxicity Tests
4.7.1. Cell Culture
4.7.2. Cell Proliferation Assay
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maciag, D.; Dobrowolska, W.; Shafafan, M.; Ekiert, H.; Tomczyk, M.; Szopa, A. Akebia quinata and Akebia trifoliata—A review of phytochemical composition, ethnopharmacological approaches and biological studies. J. Ethnopharmacol. 2021, 280, 114486. [Google Scholar] [CrossRef] [PubMed]
- Bungau, S.G.; Popa, V.C. Between religion and science: Some aspects: Concerning illness and healing in antiquity. Transylv. Rev. 2015, 24, 3–18. [Google Scholar]
- Nikolaichuk, H.; Choma, I.M.; Morlock, G.E. Effect-directed profiling of Akebia quinata and Clitoria ternatea via high-performance thin-layer chromatography, planar assays and high-resolution mass spectrometry. Molecules 2023, 28, 2893. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Cho, C.W.; Kim, J.H.; Bai, H.; Kim, H.M.; Li, X.; Kang, J.S. Phenolic profile and fingerprint analysis of Akebia quinata leaves extract with endothelial protective activity. Molecules 2022, 27, 4636. [Google Scholar] [CrossRef]
- Lee, S.G.; Lee, E.; Chae, J.; Kim, J.S.; Lee, H.S.; Lim, Y.M.; So, J.H.; Hahn, D.; Nam, J.O. Bioconverted fruit extract of Akebia quinata exhibits anti-obesity effects in high-fat diet-induced obese rats. Nutrients 2022, 14, 4683. [Google Scholar] [CrossRef]
- Food Safety Korea. List of Food Ingredients. Available online: https://www.foodsafetykorea.go.kr/portal/safefoodlife/foodMeterial/foodMeterialDB.do (accessed on 27 December 2024).
- Han, S.H.; Kim, Y.W.; Hyun, C. Evaluation of diuretic and hemodynamic effect of extract from Akebia quinata Decaisne in dogs. J. Vet. Clin. 2012, 29, 203–206. [Google Scholar]
- Park, S.H.; Jang, S.; Lee, S.W.; Park, S.D.; Sung, Y.Y.; Lim, H.K. Akebia quinata Decaisne aqueous extract acts as a novel anti-fatigue agent in mice exposed to chronic restraint stress. J. Ethnopharmacol. 2018, 222, 270–279. [Google Scholar] [CrossRef]
- Jeon, Y.; You, Y.; Jun, W. Anti-obesity effects of extracts from young Akebia quinata D. leaves. J. Korean Soc. Food Sci. Nutr. 2014, 43, 200–206. [Google Scholar] [CrossRef]
- Lee, S.H.; Song, Y.S.; Lee, S.Y.; Kim, S.Y.; Ko, K.S. Protective effects of Akebia quinata fruit extract on acute alcohol-induced hepatotoxicity in mice. Korean J. Food Sci. Technol. 2014, 46, 622–629. [Google Scholar] [CrossRef]
- Shin, S.; Son, D.; Kim, M.; Lee, S.; Roh, K.B.; Ryu, D.; Lee, J.; Jung, E.; Park, D. Ameliorating effect of Akebia quinata fruit extracts on skin aging induced by advanced glycation end products. Nutrients 2015, 7, 9337–9352. [Google Scholar] [CrossRef]
- Sung, Y.Y.; Kim, D.S.; Kim, H.K. Akebia quinata extract exerts anti-obesity and hypolipidemic effects in high-fat diet-fed mice and 3T3-L1 adipocytes. J. Ethnopharmacol. 2015, 168, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Yang, S.; Zhang, W.; Ren, L.; Han, F.; Lv, Y.; Wan, Z.R.; Liu, L. Anti-nociceptive and anti-inflammatory potentials of akebia saponin D. Eur. J. Pharmacol. 2019, 845, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, J.S.; Sezirahiga, J.; Kwon, H.C.; Jang, D.S.; Kang, K.S. Bioactive phytochemicals isolated from Akebia quinata enhances glucose-stimulated insulin secretion by inducing PDX-1. Plants 2020, 9, 1087. [Google Scholar] [CrossRef] [PubMed]
- Shida, W.; Tahara, Y.; Morikawa, S.; Monde, K.; Koga, R.; Ohsugi, T.; Otsuka, M.; Ikemoto, A.; Tateishi, H.; Ikeda, T.; et al. The unique activity of saponin: Induction of cytotoxicity in HTLV-1 infected cells. Bioorg. Med. Chem. 2023, 91, 117408. [Google Scholar] [CrossRef]
- Kim, G.J.; Song, D.H.; Yoo, H.S.; Chung, K.H.; Lee, K.J.; An, J.H. Hederagenin supplementation alleviates the pro-inflammatory and apoptotic response to alcohol in rats. Nutrients 2017, 9, 41. [Google Scholar] [CrossRef]
- Jiang, D.; Gao, Q.P.; Shi, S.P.; Tu, P.F. Triterpenoid saponins from the fruits of Akebiae quinata. Chem. Pharm. Bull. 2006, 54, 595–597. [Google Scholar] [CrossRef]
- Jiang, D.; Shi, S.P.; Cao, J.J.; Gao, Q.P.; Tu, P.F. Triterpene saponins from the fruits of Akebia quinata. Biochem. Syst. Ecol. 2008, 36, 138–141. [Google Scholar] [CrossRef]
- Song, D.H.; Kim, G.J.; Chung, K.H.; Lee, K.J.; An, J.H. Ormosanine from Akebia quinata suppresses ethanol-induced inflammation and apoptosis and activates antioxidants via the miogen activated protein kinase signaling pathway. J. Funct. Foods 2018, 48, 357–366. [Google Scholar] [CrossRef]
- Kawata, J.; Kameda, M.; Miyazawa, M. Constituents of essential oil from the dried fruits and stems of Akebia quinata (THUNB.) DECNE. J. Oleo Sci. 2007, 56, 59–63. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Li, Y.; Zhang, S.; Li, Z.; Li, Y.; Cui, J.; Lan, X.; Zhang, E.; Yuan, L.; et al. Structural properties and in vitro and in vivo immunomodulatory activity of an arabinofuranan from the fruits of Akebia quinata. Carbohydr. Polym. 2021, 256, 117521. [Google Scholar] [CrossRef]
- Ling, Y.; Zhang, Q.; Zhu, D.; Chen, F.; Kong, X.; Liao, L. Identification and characterization of the major chemical constituents in Furctus Akebiae by high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight mass spectrometry. J. Chromatogr. Sci. 2016, 54, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, E. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC−MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Willems, J.L.; Khamis, M.M.; Mohammed Saeid, W.; Purves, R.W.; Katselis, G.; Low, N.H.; El-Aneed, A. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry. Anal. Chim. Acta 2016, 933, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; He, Q.; Shi, P.; Xiao, P.; Cheng, Y. Characterization and identification of triterpenoid saponins in crude extracts from Clematis spp. by high-performance liquid chromatography/electrospray ionization with multi-stage tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 3743–3750. [Google Scholar] [CrossRef]
- Rehman, S.U.; Choi, M.S.; Kim, I.S.; Kim, S.H.; Yoo, H.H. An ultra-high-performance liquid chromatography-tandem mass spectrometric method for the determination of hederacoside C, a drug candidate for respiratory disorder, in rat plasma. J. Pharm. Biomed. Anal. 2016, 129, 90–95. [Google Scholar] [CrossRef]
- Gao, W.; Liu, K.; Wang, R.; Liu, X.G.; Li, X.S.; Li, P.; Yang, H. Integration of targeted metabolite profiling and sequential optimization method for discovery of chemical marker combination to identify the closely-related plant species. Phytomedicine 2019, 61, 152829. [Google Scholar] [CrossRef]
- Li, P.; Peng, J.; Li, Y.; Gong, L.; Lv, Y.; Liu, H.; Zhang, T.; Yang, S.; Liu, H.; Li, J.; et al. Pharmacokinetics, bioavailability, excretion and metabolism studies of akebia saponin D in rats: Causes of the ultra-low oral bioavailability and metabolic pathway. Front. Pharmacol. 2021, 12, 621033. [Google Scholar] [CrossRef]
- International Conference on Harmonisation (ICH). ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1); Somatek Inc.: San Diego, CA, USA, 2014. [Google Scholar]
- Quan, W.; Sun, T.; Hu, B.; Luo, Q.; Zhong, Y.; Chen, W.; Tuo, Q. Dipsacoside B attenuates atherosclerosis by promoting autophagy to inhibit macrophage lipid accumulation. Biomolecules 2024, 14, 1226. [Google Scholar] [CrossRef]
- Quan, W.; Huo, Y.; Chen, Y.; Yang, D.; Xie, J.; Shi, Z.; Liao, D.; Tuo, Q. Dipsacoside B inhibits the migration and proliferation of VSMCs and blunts neointimal formation by upregulating PTEN expression. Front. Biosci. 2022, 27, 299. [Google Scholar] [CrossRef]
- Peng, S.; Sun, T.; Yang, D.; Zhao, H.; Lin, L.; Xia, B.; Li, M.; Piao, M.; Shi, Z.; Tuo, Q. Dipsacoside B ameliorates cognitive impairment in sepsis-associated encephalopathy by reducing Th17 cell infiltration and neuroinflammation. Biochem. Pharmacol. 2024, 227, 116428. [Google Scholar] [CrossRef]
- Ren, K.D.; Peng, Z.M.; Tian, J.; Peng, Y.-W.; Zhang, Y.Y.; Zhang, X.-J.; Hu, Z.Y.; Luo, X.-J.; Peng, J. Dipsacoside B exerts a beneficial effect on brain injury in the ischemic stroke rat through inhibition of mitochondrial E3 ubiquitin ligase 1. CNS Neurol. Disord. Drug Targets 2022, 21, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.Y.; Li, Y.; Tang, Y.T.; Ma, X.D.; Tang, Z.Y. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed. Pharmacother. 2022, 145, 112397. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, L.L.; Xue, N.N.; Li, C.; Guo, H.H.; Ren, T.K.; Zhan, Y.; Li, W.B.; Zhang, J.; Chen, X.G.; et al. Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation. Theranostics 2019, 9, 6745–6763. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kamboj, M.; Narwal, A.; Bhardwaj, R.; Yadav, P. Cytotoxic role of chlorogenic acid on oral squamous cell carcinoma cell line. Indian J. Otolaryngol. Head Neck Surg. Off. Publ. Assoc. Otolaryngol. India 2022, 74, 5773–5781. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, H.; Li, Z.; Wu, Q.; Li, L.; Sun, D.; Tan, J.; Fan, M.; Yu, C.; Xu, C.; et al. α-Hederin induces human colorectal cancer cells apoptosis through disturbing protein homeostasis. Chem. Biol. Interact. 2023, 28, 110785. [Google Scholar] [CrossRef]
- Elekofehinti, O.O.; Iwaloye, O.; Olawale, F.; Ariyo, E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology 2021, 28, 250–272. [Google Scholar] [CrossRef]
- Nigam, M.; Mishra, A.P.; Deb, V.K.; Dimri, D.B.; Tiwari, V.; Bungau, S.G.; Bungau, A.F.; Radu, A.-F. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed. Pharmacother. 2023, 164, 115015. [Google Scholar] [CrossRef]
Analyte 1 | Ion Mode | Molecular Weight | MRM Conditions (m/z) | Cone Voltage (V) | Collision Energy (eV) | |
---|---|---|---|---|---|---|
Precursor Ion (Q1) | Product Ion (Q3) | |||||
CA | − | 354.10 | 352.99 | 190.94 | 22 | 14 |
ICAA | + | 516.13 | 517.08 | 116.96 | 10 | 58 |
ICAC | − | 516.13 | 515.02 | 172.98 | 12 | 30 |
HF | − | 1382.67 | 1381.51 | 911.29 | 96 | 44 |
HC | − | 1220.62 | 1219.66 | 749.31 | 76 | 68 |
DB | − | 1074.56 | 1073.52 | 749.31 | 76 | 62 |
ASD | − | 928.50 | 973.41 | 603.23 | 2 | 54 |
DER | − | 750.46 | 749.29 | 471.22 | 98 | 46 |
Analyte | Retention Time (min) | Linear Range (μg/L) | Regression Equation 1 | r2 | LOQ (mg/g) |
---|---|---|---|---|---|
CA | 3.44 | 150.00–2400.00 | y = (1.45 ± 0.12)x + (4.68 + 2.81) | 0.999 | 0.15 |
ICAA | 5.73 | 120.00–1920.00 | y = (8.08 ± 0.59)x + (114.96 ± 23.02) | 0.999 | 0.12 |
ICAC | 5.97 | 250.00–4000.00 | y = (0.37 ± 0.01)x − (24.95 ± 3.92) | 0.994 | 0.03 |
HF | 7.00 | 100.00–1600.00 | y = (12.05 ± 0.58)x − (165.78 ± 30.54) | 0.999 | 1.00 |
HC | 7.65 | 100.00–1600.00 | y = (4.05 ± 0.10)x − (58.60 ± 8.21) | 1.000 | 1.00 |
DB | 7.95 | 120.00–1920.00 | y = (5.63 ± 0.15)x − (28.44 ± 7.91) | 0.999 | 1.20 |
ASD | 8.09 | 100.00–1600.00 | y = (0.47 ± 0.02)x + (19.37 ± 0.84) | 0.996 | 1.00 |
DER | 11.54 | 40.00–640.00 | y = (23.44 ± 0.45)x + (153.22 ± 25.66) | 0.999 | 0.40 |
Analyte | Spiked Amount (μg/L) | Found Amount (μg/L) | Recovery (%) | SD 1 | RSD (%) 2 |
---|---|---|---|---|---|
CA | 400.00 | 409.02 | 102.26 | 1.57 | 0.38 |
500.00 | 497.70 | 99.54 | 12.47 | 2.50 | |
600.00 | 571.37 | 95.23 | 5.66 | 0.99 | |
ICAA | 720.00 | 705.81 | 98.03 | 26.30 | 3.73 |
900.00 | 973.59 | 108.18 | 66.73 | 6.85 | |
1200.00 | 1264.99 | 105.42 | 91.94 | 7.27 | |
ICAC | 600.00 | 575.21 | 95.87 | 42.79 | 7.44 |
1200.00 | 1263.51 | 105.29 | 78.37 | 6.20 | |
1800.00 | 1864.78 | 103.60 | 28.42 | 1.52 | |
HF | 620.00 | 588.85 | 94.98 | 11.37 | 1.93 |
820.00 | 828.88 | 101.08 | 4.36 | 0.53 | |
1020.00 | 1023.89 | 100.38 | 17.51 | 1.71 | |
HC | 600.00 | 575.21 | 95.87 | 42.79 | 7.44 |
1200.00 | 1263.51 | 105.29 | 78.37 | 6.20 | |
1800.00 | 1864.78 | 103.60 | 28.42 | 1.52 | |
DB | 1000.00 | 903.17 | 90.32 | 35.87 | 3.97 |
1300.00 | 1225.91 | 94.30 | 41.61 | 3.39 | |
1600.00 | 1496.78 | 93.55 | 11.90 | 0.80 | |
ASD | 850.00 | 776.04 | 91.30 | 32.82 | 4.23 |
1000.00 | 921.98 | 92.20 | 30.18 | 3.27 | |
1150.00 | 1068.74 | 92.93 | 39.77 | 3.72 | |
HDR | 400.00 | 409.47 | 102.37 | 5.75 | 1.40 |
550.00 | 581.04 | 105.64 | 6.29 | 1.08 | |
700.00 | 721.01 | 103.00 | 10.04 | 1.39 |
Analyte | Conc. (μg/L) | Intraday (n = 3) | Interday (n = 15) | ||||
---|---|---|---|---|---|---|---|
Observed Conc. (μg/L) | Precision (RSD, %) | Accuracy (%) | Observed Conc. (μg/L) | Precision (RSD, %) | Accuracy (%) | ||
CA | 300.00 | 295.04 | 0.18 | 98.35 | 300.03 | 4.93 | 100.01 |
600.00 | 626.49 | 6.90 | 104.42 | 603.11 | 2.32 | 100.52 | |
1200.00 | 1230.15 | 3.33 | 102.51 | 1177.18 | 2.43 | 98.10 | |
ICAA | 120.00 | 112.96 | 6.04 | 94.13 | 111.92 | 3.52 | 93.27 |
240.00 | 241.57 | 2.69 | 100.65 | 246.68 | 0.64 | 102.78 | |
480.00 | 483.75 | 2.00 | 100.78 | 503.94 | 4.04 | 104.99 | |
ICAC | 250.00 | 253.33 | 4.97 | 101.33 | 269.23 | 7.19 | 107.69 |
500.00 | 504.64 | 0.80 | 100.93 | 481.62 | 0.97 | 96.32 | |
100.00 | 1004.15 | 1.92 | 100.41 | 997.15 | 8.56 | 99.71 | |
HF | 400.00 | 437.71 | 4.31 | 109.43 | 387.11 | 1.95 | 96.78 |
800.00 | 806.07 | 4.75 | 100.76 | 792.91 | 0.80 | 99.11 | |
1600.00 | 1492.89 | 2.02 | 93.31 | 1618.89 | 0.07 | 101.18 | |
HC | 100.00 | 109.18 | 5.47 | 109.18 | 102.89 | 2.63 | 102.89 |
200.00 | 198.16 | 4.43 | 99.08 | 199.40 | 1.07 | 99.70 | |
400.00 | 378.70 | 2.87 | 94.68 | 387.20 | 3.25 | 96.80 | |
DB | 240.00 | 234.39 | 6.20 | 97.66 | 243.50 | 4.18 | 101.46 |
480.00 | 468.92 | 2.22 | 97.69 | 481.13 | 4.74 | 100.23 | |
960.00 | 1003.14 | 5.04 | 104.49 | 943.88 | 2.18 | 98.32 | |
ASD | 400.00 | 379.59 | 4.33 | 94.90 | 421.64 | 3.05 | 105.41 |
800.00 | 824.79 | 4.72 | 103.10 | 846.66 | 6.96 | 105.83 | |
1600.00 | 1589.68 | 1.85 | 99.36 | 1540.12 | 4.04 | 96.26 | |
HDR | 80.00 | 75.62 | 5.14 | 94.53 | 81.27 | 1.71 | 101.58 |
160.00 | 157.46 | 3.36 | 98.41 | 167.06 | 1.32 | 104.41 | |
320.00 | 330.42 | 1.70 | 103.26 | 329.38 | 0.30 | 102.93 |
Analyte | Mean (mg/g) | SD | RSD (%) |
---|---|---|---|
CA | 1.35 | 0.12 | 9.17 |
ICAA | 0.69 | 0.07 | 9.48 |
ICAC | 0.42 | 0.04 | 9.01 |
HF | 4.28 | 0.10 | 2.29 |
HC | 2.78 | 0.16 | 5.67 |
DB | 7.04 | 0.24 | 3.43 |
ASD | 9.07 | 0.33 | 3.69 |
DER | 2.54 | 0.03 | 1.02 |
Compound | IC50 Value (μM) 2 | ||||
---|---|---|---|---|---|
MDA-MB-231 | A549 | HCT 116 | AsPC-1 | A2780 | |
DB | 15.15 ± 0.20 | 11.89 ± 0.23 | 14.27 ± 1.00 | 13.12 ± 0.26 | 17.21 ± 0.35 |
Cisplatin 1 | 39.65 ± 12.44 | 21.12 ± 8.93 | 19.72 ± 1.28 | 19.38 ± 4.03 | 24.32 ± 2.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, C.-S.; Chun, J.; Song, K.H. Simultaneous Component Analysis of Akebia quinata Seeds (Lardizabalaceae) by Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry for Quality and Cytotoxicity Assessment. Plants 2025, 14, 669. https://doi.org/10.3390/plants14050669
Seo C-S, Chun J, Song KH. Simultaneous Component Analysis of Akebia quinata Seeds (Lardizabalaceae) by Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry for Quality and Cytotoxicity Assessment. Plants. 2025; 14(5):669. https://doi.org/10.3390/plants14050669
Chicago/Turabian StyleSeo, Chang-Seob, Jaemoo Chun, and Kwang Hoon Song. 2025. "Simultaneous Component Analysis of Akebia quinata Seeds (Lardizabalaceae) by Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry for Quality and Cytotoxicity Assessment" Plants 14, no. 5: 669. https://doi.org/10.3390/plants14050669
APA StyleSeo, C.-S., Chun, J., & Song, K. H. (2025). Simultaneous Component Analysis of Akebia quinata Seeds (Lardizabalaceae) by Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry for Quality and Cytotoxicity Assessment. Plants, 14(5), 669. https://doi.org/10.3390/plants14050669