Identifying Suitable Regions for Fritillaria unibracteata Cultivation Without Damage from the Pest Eospalax baileyi
Abstract
:1. Introduction
2. Results
2.1. Screening of Distribution Records and Environmental Factors, and Accuracy of MaxEnt Prediction
2.2. Critical Environmental Factors Affecting FU and EB Distribution
2.3. Current Distribution of FU and EB
2.4. Future Distribution of FU and EB
2.5. Overlapping Habitats for EB Without FU Damage Under Climate Change
3. Discussion
3.1. Critical Environmental Factors Affecting Distribution
3.1.1. Critical Environmental Factors Affecting EB Distribution
3.1.2. Critical Environmental Factors Affecting FU Distribution
3.2. Suitable Habitats for FU and EB Distribution
3.3. Limitations
4. Materials and Methods
4.1. Acquisition and Processing of Distribution Records and Environmental Data
4.2. Optimization, Construction, and Evaluation of MaxEnt
4.3. Classification and Area Calculation of Suitable Habitats
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, T.; Yu, H.; Wang, Y. Assessing the impacts of climate change and habitat suitability on the distribution and quality of medicinal plant using multiple information integration: Take Gentiana rigescens as an example. Ecol. Indic. 2021, 123, 107376. [Google Scholar] [CrossRef]
- Zahra, W.; Rai, S.N.; Birla, H.; Singh, S.S.; Rathore, A.S.; Dilnashin, H.; Keswani, C.; Singh, S.P. Economic Importance of Medicinal Plants in Asian Countries. In Bioeconomy for Sustainable Development; Keswani, C., Ed.; Springer: Singapore, 2019; pp. 363–366. ISBN 978-981-13-9430-0. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, P.P.; Singh, P.; Singh, K.; Singh, A.V.; Singh, S.K.; Kumar, A. Chapter 8—Medicinal plants under climate change: Impacts on pharmaceutical properties of plants. In Climate Change and Agricultural Ecosystems; Choudhary, K.K., Kumar, A., Singh, A.K., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 181–209. ISBN 978-0-12-816483-9. [Google Scholar] [CrossRef]
- Applequist, W.L.; Brinckmann, J.A.; Cunningham, A.B.; Hart, R.E.; Heinrich, M.; Katerere, D.R.; van Andel, T. Scientists’ Warning on Climate Change and Medicinal Plants. Planta Med. 2020, 86, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, R.; Zhou, X.; Zhang, X.; Zhao, G.; Zhang, F. Prediction of potential distribution areas and priority protected areas of Agastache rugosa based on Maxent model and Marxan model. Front. Plant Sci. 2023, 14, 1200796. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; He, J.; Liu, Y.; Zeng, J.; Zeng, L.; He, R.; Guiang, M.M.; Li, Y.; Wu, H. Assessment of Chinese suitable habitats of Zanthoxylum nitidum in different climatic conditions by Maxent model, HPLC, and chemometric methods. Ind. Crops Prod. 2023, 196, 116515. [Google Scholar] [CrossRef]
- Li, J.; Deng, C.; Duan, G.; Wang, Z.; Zhang, Y.; Fan, G. Potentially suitable habitats of Daodi goji berry in China under climate change. Front. Plant Sci. 2024, 14, 1279019. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- Andrew, N.R.; Hill, S.J. Effect of climate change on insect pest management. In Environmental Pest Management: Challenges for Agronomists, Ecologists, Economists and Policymakers; Coll, M., Wajnberg, E., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 195–223. ISBN 9781119255574. [Google Scholar]
- Li, H.; Hung, A.; Li, M.; Yang, A.W.H. Fritillariae Thunbergii Bulbus: Traditional uses, phytochemistry, pharmacodynamics, pharmacokinetics and toxicity. Int. J. Mol. Sci. 2019, 20, 1667. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2022; p. 38. ISBN 978-7-5214-1574-2. [Google Scholar]
- Zhang, Y.; Han, H.; Li, D.; Fan, Y.; Liu, M.; Ren, H.; Liu, L. Botanical characterization, phytochemistry, biosynthesis, pharmacology clinical application, and breeding techniques of the Chinese herbal medicine Fritillaria unibracteata. Front. Pharmacol. 2024, 15, 1428037. [Google Scholar] [CrossRef]
- Cui, X.; Xie, J.; Zhang, S.; Lin, G.; Zhang, T.; Su, J. Relationship between overwintering preference and nutritional content of the foods of plateau zokor (Eospalax baileyi). Acta Theriol. Sin. 2014, 34, 340–347. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, L.; Song, X.; Tagore, S.; Li, X.; Wang, H.; Chen, J.; Li, K.; Frenkel, Z.; Gao, D.; et al. Adaptive transcriptome profiling of subterranean zokor, Myospalax baileyi, to high-altitude stresses in Tibet. Sci. Rep. 2018, 8, 4671. [Google Scholar] [CrossRef]
- Wei, C.; Liu, L.; Zheng, M. Occurrence situations of disease, insect pest and rats during cultivation of medicinal Fritillaria and its control measures. Hunan Agric. Sci. 2011, 101–104. [Google Scholar] [CrossRef]
- Tao, S.; Peng, F.; Jin, Y.; Liao, H.; Mao, C.; Wu, Y.; Yuan, F.; Deng, Z.; Zhang, C. Study on the cultivation technology of Fritillaria unibracteata in the western Sichuan Plateau. Sci. Technol. Sichuan Agric. 2024, 16–18. [Google Scholar] [CrossRef]
- Qazi, A.W.; Saqib, Z.; Zaman-ul-Haq, M. Trends in species distribution modelling in context of rare and endemic plants: A systematic review. Ecol. Process. 2022, 11, 40. [Google Scholar] [CrossRef]
- Rousseau, J.S.; Betts, M.G. Factors influencing transferability in species distribution models. Ecography 2022, 2022, e06060. [Google Scholar] [CrossRef]
- Deng, C.; Zhong, Q.; Shao, D.; Ren, Y.; Li, Q.; Wen, J.; Li, J. Potential suitable habitats of chili pepper in China under climate change. Plants 2024, 13, 1027. [Google Scholar] [CrossRef]
- Song, Z.; Fan, G.; Deng, C.; Duan, G.; Li, J. Predicting the distribution of Neoceratitis asiatica (Diptera: Tephritidae), a primary pest of goji berry in China, under climate change. Insects 2024, 15, 558. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Silva, D.P.; Gonzalez, V.H.; Melo, G.A.R.; Lucia, M.; Alvarez, L.J.; De Marco, P. Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecol. Model. 2014, 273, 200–209. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, J.; Dai, W.; Ye, K.; Chen, J.; Lai, Q.; Li, H.; Zhong, B.; Yu, X. Effects of climate warming and human activities on the distribution patterns of Fritillaria unibracteata in eastern Qinghai-Tibetan Plateau. Sci. Rep. 2023, 13, 15770. [Google Scholar] [CrossRef]
- Su, J.; Aryal, A.; Nan, Z.; Ji, W. Climate change-induced range expansion of a subterranean rodent: Implications for rangeland management in Qinghai-Tibetan Plateau. PLoS ONE 2015, 10, e0138969. [Google Scholar] [CrossRef]
- Takolander, A.; Forsblom, L.; Hellsten, S.; Ilmonen, J.; Jokinen, A.; Kallio, N.; Koponen, S.; Väkevä, S.; Virtanen, E. Cross-realm transferability of species distribution models–Species characteristics and prevalence matter more than modelling methods applied. Ecol. Model. 2025, 499, 110950. [Google Scholar] [CrossRef]
- Wang, H.; Wonkka, C.L.; Treglia, M.L.; Grant, W.E.; Smeins, F.E.; Rogers, W.E. Incorporating local-scale variables into distribution models enhances predictability for rare plant species with biological dependencies. Biodivers. Conserv. 2019, 28, 171–182. [Google Scholar] [CrossRef]
- Hageer, Y.; Esperón-Rodríguez, M.; Baumgartner, J.B.; Beaumont, L.J. Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species? PeerJ 2017, 5, e3446. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Peng, D.; Li, Y.; Chen, Z.; Zhai, Y.; Liu, C.; Hong, B. Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling. J. Integr. Agric. 2023, 22, 2138–2150. [Google Scholar] [CrossRef]
- Körner, C. The use of ’altitude’ in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Oke, O.A.; Thompson, K.A. Distribution models for mountain plant species: The value of elevation. Ecol. Model. 2015, 301, 72–77. [Google Scholar] [CrossRef]
- An, X.; Mao, L.; Wang, Y.; Xu, Q.; Liu, X.; Zhang, S.; Qiao, Z.; Li, B.; Li, F.; Kuang, Z.; et al. Genomic structural variation is associated with hypoxia adaptation in high-altitude zokors. Nat. Ecol. Evol. 2024, 8, 339–351. [Google Scholar] [CrossRef]
- Chu, B.; Tian, Y.; Zhou, J.; Tang, Z.; Dong, K.; Hua, L. Increased burrow oxygen levels trigger defensive burrow-sealing behavior by plateau zokors. Sci. Rep. 2021, 11, 19088. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, Y.; Kang, Y.; Wang, Y.; Bao, D.; Tan, Y.; An, K.; Su, J. Impacts of climate change and human activities on three Glires pests of the Qinghai–Tibet Plateau. Pest Manag. Sci. 2024, 80, 5233–5243. [Google Scholar] [CrossRef]
- Chu, B. Studies on the Population Dynamics of Plateau Zokor in the Eastern Qinghai-Tibet Plateau. Doctoral Thesis, Gansu Agricultural University, Lanzhou, China, 2020. [Google Scholar]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Hart, R.; Abd Allah, E.F.; Alqarawi, A.A.; Alsubeie, M.S.; Calixto, E.S.; Ijaz, F.; Ali, N.; et al. Response of plant physiological attributes to altitudinal gradient: Plant adaptation to temperature variation in the Himalayan region. Sci. Total Environ. 2020, 706, 135714. [Google Scholar] [CrossRef]
- Xu, B.; Wang, J.; Guo, H.; Shi, F.; Wu, N. Morphological adaptation of wild Fritillaria unibracteata to alpine conditions in the eastern Qinghai-Tibet Plateau. Chin. J. Appl. Environ. Biol. 2014, 20, 955–961. [Google Scholar]
- Xu, B.; Wang, J.; Shi, F. Impacts of ontogenetic and altitudinal changes on morphological traits and biomass allocation patterns of Fritillaria unibracteata. J. Mt. Sci. 2020, 17, 83–94. [Google Scholar] [CrossRef]
- Chen, W.; Xiao, X.; Chen, F.; Wang, H.; Zhang, Z.; Qi, Z.; Huang, Z. Reproductive organ variation in Fritillaria unibracteata along an altitudinal gradient. Acta Pratacult. Sin. 2015, 24, 155–163. [Google Scholar] [CrossRef]
- Fabbro, T.; Körner, C. Altitudinal differences in flower traits and reproductive allocation. Flora 2004, 199, 70–81. [Google Scholar] [CrossRef]
- Li, K.; Wu, W.; Zheng, Y.; Dai, Y.; Mou, L.; Liao, K. Effect of temperature on physiologic indexes, bulb yielding and total alkaloids contents of Fritillaria cirrhosa. Chin. J. Chin. Mater. Med. 2008, 33, 1948–1951. [Google Scholar]
- Wan, J.; Wang, C.; Yu, F. Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants. Biologia 2019, 74, 757–766. [Google Scholar] [CrossRef]
- Soley Guardia, M.; Alvarado Serrano, D.F.; Anderson, R.P. Top ten hazards to avoid when modeling species distributions: A didactic guide of assumptions, problems, and recommendations. Ecography 2024, 2024, e06852. [Google Scholar] [CrossRef]
- Kelly, A.E.; Goulden, M.L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 11823–11826. [Google Scholar] [CrossRef]
- Körner, C.; Hiltbrunner, E. Why is the alpine flora comparatively robust against climatic warming? Diversity 2021, 13, 383. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Zhang, L.; Chen, S.; Zhao, A.; Ning, X.; Fan, G.; Wu, N.; Zhang, L.; Wang, Z. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecol. Indic. 2023, 148, 110093. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Elsawah, S.; Wang, H.; Hamilton, S.H.; Melsen, L.; Grimm, V. Towards normalizing good practice across the whole modeling cycle: Its instrumentation and future research topics. Socio-Environ. Syst. Model. 2024, 6, 18755. [Google Scholar] [CrossRef]
- GBIF Occurrence. Available online: https://doi.org/10.15468/dl.stumbf (accessed on 22 June 2024).
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
Environmental Factors | Description | Percent Contribution (%) | |
---|---|---|---|
FU | EB | ||
aspect | Aspect | 0.2 | <0.1 |
bio01 | Annual mean temperature | 17.7 | 1.4 |
bio04 | Temperature seasonality (standard deviation × 100) | 7.7 | 4.6 |
bio14 | Precipitation of driest month | 3.3 | 4.4 |
bio15 | Precipitation seasonality (coefficient of variation) | 0.7 | – |
bio18 | Precipitation of warmest quarter | 5.9 | 10.9 |
bio19 | Precipitation of coldest quarter | 4.5 | 7.4 |
elev | Elevation | 49.7 | 67.2 |
gm_lc_v3 | Land cover | 0.3 | 0.1 |
gm_ve_v2 | Vegetation (percent tree cover) | 2.5 | – |
hf_v2geo1 | Human footprint index | 0.2 | 3.7 |
slope | Slope | 7.2 | <0.1 |
t_caco3 | Topsoil calcium carbonate | – | <0.1 |
t_caso4 | Topsoil gypsum | – | 0.3 |
t_cec_soil | Topsoil CEC (soil) | – | <0.1 |
t_ece | Topsoil salinity (Elco) | – | <0.1 |
t_esp | Topsoil sodicity (ESP) | <0.1 | – |
t_oc | Topsoil organic carbon | – | <0.1 |
t_teb | Topsoil TEB | 0.2 | – |
t_texture | Topsoil texture | <0.1 | <0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Li, J.; Tao, S.; Jin, Y.; Peng, F. Identifying Suitable Regions for Fritillaria unibracteata Cultivation Without Damage from the Pest Eospalax baileyi. Plants 2025, 14, 674. https://doi.org/10.3390/plants14050674
Deng C, Li J, Tao S, Jin Y, Peng F. Identifying Suitable Regions for Fritillaria unibracteata Cultivation Without Damage from the Pest Eospalax baileyi. Plants. 2025; 14(5):674. https://doi.org/10.3390/plants14050674
Chicago/Turabian StyleDeng, Changrong, Jianling Li, Shan Tao, Yuan Jin, and Fang Peng. 2025. "Identifying Suitable Regions for Fritillaria unibracteata Cultivation Without Damage from the Pest Eospalax baileyi" Plants 14, no. 5: 674. https://doi.org/10.3390/plants14050674
APA StyleDeng, C., Li, J., Tao, S., Jin, Y., & Peng, F. (2025). Identifying Suitable Regions for Fritillaria unibracteata Cultivation Without Damage from the Pest Eospalax baileyi. Plants, 14(5), 674. https://doi.org/10.3390/plants14050674