Effects of Two Ecological Governance Measures for Photovoltaic Power Stations on Plant Growth and Soil Nutrients
Abstract
:1. Introduction
2. Results and Analysis
2.1. The Impact of Different Ecological Governance Measures for Photovoltaic Panels on the Growth of H. ammodendron
2.1.1. Plant Growth Between Rows of Photovoltaic Panels
Abbreviation | Description | |
---|---|---|
Treatments | CK: control group | Control Haloxylon ammodendron was planted at the same time as the treatment group, without photovoltaic panel obstruction. |
LS: Haloxylon ammodendron planted on bare sandy land | The first ecological governance measure (treatment group 1) is to carry out ecological governance within the photovoltaic park after establishing a photovoltaic power station in desert areas. This treatment involves directly planting Haloxylon ammodendron in the exposed sandy area between the photovoltaic panels and the photovoltaic panel mechanical working road. | |
CS: laying straw checkerboard barriers and planting Haloxylon ammodendron | The second ecological governance measure (treatment group 2) is to carry out ecological governance within the photovoltaic park after the establishment of the photovoltaic power station. This treatment involves laying straw checkerboard barriers on the exposed sandy land between the photovoltaic panels and the photovoltaic panel mechanical working road and then planting Haloxylon ammodendron. | |
Positions | PF: front eaves of photovoltaic panels | The area located 1 m away from the front eaves of the photovoltaic panels (as indicated in Figure 1), which receives sunlight from 8 am to 5 pm throughout the day, is referred to as the full-light zone. |
PM: between photovoltaic panels | The area located between the photovoltaic panels and the exposed sandy road (as shown in Figure 1), which receives sunlight from 11 am to 4 pm, is referred to as the semi-shaded and semi-sunny area. | |
PB: behind photovoltaic panels | The area located 1 m behind the eaves of the previous photovoltaic panel (as indicated in Figure 1) cannot receive sunlight from 8 am to 5 pm throughout the day and is referred to as a fully shaded area. |
2.1.2. Plant Biomass Between Rows of Photovoltaic Panels
2.1.3. Correlation Between Plant Growth and Biomass Within Photovoltaic Panel Areas
2.2. Characteristics of Changes in Soil Chemical Properties Under Different Ecological Governance Measures Within Photovoltaic Panel Areas
2.2.1. Changes in Soil Nutrients Within Photovoltaic Panel Areas
2.2.2. Correlation of Soil Nutrients Between Rows of Photovoltaic Panels
2.3. Response of Plant Growth Between Rows of Photovoltaic Panels to Environmental Factors
2.3.1. Analysis of Plant Growth and Soil Nutrient Redundancy Under Different Ecological Governance Measures for Photovoltaic Panels
2.3.2. Principal Component Analysis of Plant Growth and Soil Nutrients Under Different Ecological Governance Measures for Photovoltaic Panels
2.3.3. Gray Correlation Analysis of Plant Growth and Soil Nutrients Under Different Ecological Governance Measures for Photovoltaic Panels
3. Discussion
3.1. Effects of Different Ecological Governance Measures and Sampling Locations on the Growth of H. ammodendron
3.2. Effects of Different Ecological Governance Measures and Sampling Locations on Soil Nutrients Under H. ammodendron
3.3. Comprehensive Analysis
4. Materials and Methods
4.1. Overview of the Research Area
4.2. Research Methods
4.2.1. Field Investigation and Sampling
4.2.2. Sample Processing and Measurement
4.3. Data Processing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.H.; Yang, K.; Cui, Y.; Ai, L.Y.; Wang, C.H.; Wang, Z.T.; Zhang, C.X. Desertification Mitigation in Northern China Was Promoted by Climate Drivers after 2000. Remote Sens. 2024, 16, 3704. [Google Scholar] [CrossRef]
- Han, X.Y.; Jia, G.P.; Yang, G.; Wang, N.; Liu, F.; Chen, H.Y.; Guo, X.Y.; Yang, W.B.; Liu, J. Spatiotemporal dynamic evolution and driving factors of desertification in the Mu Us Sandy Land in 30 years. Sci. Rep. 2020, 10, 21734. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.J.; Dang, X.H.; Gao, Y.; Ren, X.M.; Ding, Y.L.; Wang, M. Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China. J. Arid Land 2018, 10, 534–547. [Google Scholar] [CrossRef]
- Xi, J. Speech by Xi Jinping at the 75th Anniversary Series of High Level Meetings of the United Nations; People’s Publishing House: Beijing, China, 2020. [Google Scholar]
- Luceño-Sánchez, J.A.; Díez-Pascual, A.M.; Capilla, R.P. Materials for Photovoltaics State of Art and Recent Developments. Int. J. Mol. Sci. 2019, 4, 976. [Google Scholar] [CrossRef]
- Mamtimin, A.; Wang, Y.; Sayit, H.; Yang, X.H.; Yang, F.; Huo, W.; Zhou, C.L.; Jin, L.L. Characteristics of turbulence over the semi-fixed desert area north of Xinjiang, China. Earth Surf. Process. Landf. 2021, 46, 2365–2378. [Google Scholar] [CrossRef]
- Chen, Q.; Chi, H.M.; Ding, W.; Yang, H.T.; Wu, J.J.; Yang, Y.Y.; Wu, X.D.; Zhang, Y.F.; Ji, B.; Li, Y.F.; et al. Theory and countermeasures for vegetation protection and ecological restoration of large-scale photovoltaic base in the southern edge of Tengger Desert. Desert China 2024, 5, 123–132. [Google Scholar]
- Wu, W.; Chen, H.; Li, C.; Lu, G.; Ye, D.L.; Ma, C.; Ren, L.; Li, G.D. Assessment of the ecological and environmental effects of large-scale photovoltaic development in desert areas. Sci. Rep. 2024, 14, 22456. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.Q.; Huang, Z.; Cheng, Z.; López-Vicente, M.; Ma, X.R.; Wu, G.L. Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in arid sandy ecosystem. Land Degrad. Dev. 2019, 30, 2177–2186. [Google Scholar] [CrossRef]
- Chang, Z.F.; Liu, S.Z.; Fu, J.; Wang, Q.; Wang, F.; Sun, T.; Liu, S.J.; Wang, F.L. Effect of desert photovoltaic on sand prevention and control—Taking Gansu Gulang Zhenfa photovoltaic DC field as an example. In Proceedings of the International Workshop on Green Energy, Environment and Sustainable Development, Weihai, China, 28–30 August 2020; Volume 601, pp. 1–12. [Google Scholar]
- Yang, S.C.; Qu, Z. Cost analysis of sand barriers in desertified regions based on the land grid division model. J. Arid Land 2022, 14, 978–992. [Google Scholar] [CrossRef]
- Cai, J.L.; Meng, Z.J.; Meng, R.B.; Li, H.N.; Chen, X.Y.; Ren, X.M.; Guo, L.J.; Hao, M.J. Exploring a path of vegetation restoration best suited for a photovoltaic plant in the Hobq desert. Environ. Sci. 2024, 12, 1380421. [Google Scholar] [CrossRef]
- Lyu, Q.; Liu, J.L.; Liu, J.J.; Luo, Y.; Chen, L.M.; Chen, G.; Zhao, K.J.; Chen, Y.Q.; Fan, C.; Li, X.W. Response of plant diversity and soil physicochemical properties to different gap sizes in a Pinus massoniana plantation. PeerJ 2021, 9, e12222. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Mu, Y.; Zhang, Q.F.; Jia, Z.K. Effects of Vegetation Restoration on Soil Physical Properties in the Wind-Water Erosion Region of the Northern Loess Plateau of China. Clean Soil Air Water 2012, 1, 7–15. [Google Scholar]
- Tong, X.F.; Wang, J.; Cheng, B.; Zhang, H.M. The impact of photovoltaic panel interference in the Kubuqi Desert on the physiological characteristics of 2-year-old Sandalwood. J. Inn. Mong. Agric. Univ. (Nat. Sci. Ed.) 2021, 4, 48–52. [Google Scholar] [CrossRef]
- Wang, T. Research on the Impact of Photovoltaic Power Station Construction on Soil and Vegetation in Jingbian County. Master’s Thesis, Northwest A&F University, Yangling, China, 2015. [Google Scholar]
- Wang, H.Y.; Yang, J.; Xie, T.T.; Ma, L.; Niu, F.R.; He, C.; Shan, L.S. Variation and association of leaf traits for desert plants in the arid area, northwest China. Ecol. Evol. 2023, 13, e9946. [Google Scholar] [CrossRef]
- Fu, X.L.; Shao, M.A.; Wei, X.R.; Robert, H. Effects of two perennials, fallow and millet on distribution of phosphorous in soil and biomass on sloping loess land, China. Catena 2009, 77, 200–206. [Google Scholar] [CrossRef]
- An, S.S.; Darboux, F.; Cheng, M. Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China). Geoderma 2013, 209, 75–85. [Google Scholar] [CrossRef]
- Tanner, K.E.; O’Leary, K.A.M.; Parker, I.M.; Pavlik, B.M.; Hernandez, R.R. Simulated solar panels create altered microhabitats in desert landforms. Ecosphere 2020, 11, e03089. [Google Scholar] [CrossRef]
- He, H.Y.; Liu, W.; Chang, Z.Q.; Hou, C.M.; Sun, L.W.; Chi, X.L. Effects of vegetation restoration on soil organic carbon composition and stability in the southern edge of Tengger Desert. Desert China 2024, 44, 307–317. [Google Scholar]
- Jia, R.T.; Yuan, L.M.; Meng, Z.J. Improvement effect of vegetation measures on soil of desert photovoltaic power plants. China Agric. Sci. Technol. Rev. 2023, 25, 182–188. [Google Scholar] [CrossRef]
- Pang, T.; Zhang, H.T.; Wen, L.L.; Tang, J.; Zhou, B.; Yang, Q.X.; Li, Y.; Wang, J.J.; Chen, A.M.; Zeng, Z.D. Quantitative Analysis of aWeak Correlation between Complicated Data on the Basis of Principal Component Analysis. J. Anal. Methods Chem. 2021, 2, 12. [Google Scholar]
- Batic, I.; Batic, M.; Djurisic, Z. Impact of air temperature and wind speed on the efficiency of a photovoltaic power plant: An experimental analysis. Therm. Sci. 2023, 27, 299–310. [Google Scholar] [CrossRef]
- Du, H.; Sun, F. Preliminary Study on the Impact of Photovoltaic Power Station Operation on Vegetation. Environ. Dev. 2017, 29, 30–31. [Google Scholar] [CrossRef]
- Pouran, H.M.; Lopes, M.P.C.P.; Nogueira, T.; David, A.C.B.; Sheng, Y. Environmental and technical impacts of floating photovoltaic plants as an emerging clean energy technology. iScience 2022, 25, 105253. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.L. A Study on the Shade and Heat Tolerance of Three Ground Cover Plants, including Honeycomb Vegetable. Master’s Thesis, Zhejiang Agriculture and Forestry University, Hangzhou, China, 2016. [Google Scholar]
- Xu, X.; Wang, H.L.; Wang, G.Y.; Li, X.N.; Liu, X.Y.; Fu, J.M. Different photosynthetic adaptation of Zoysia spp. under shading: Shade avoidance and shade tolerance response. PeerJ 2022, 10, 14274. [Google Scholar] [CrossRef]
- Charrier, G. Perceiving neighbors to anticipate the struggle for light. Plant Physiol. 2021, 186, 1760–1761. [Google Scholar] [CrossRef]
- Reisman-Berman, O.; Kadmon, R. Repertoire of traits in the sapling of a dwarf Mediterranean shrub confers withstanding the combined stress of drought and shade. Isr. J. Plant Sci. 2017, 64, 1275366. [Google Scholar] [CrossRef]
- Pineda, M.; Barón, M.; Pérez-Bueno, M.L. Diverse projected climate change scenarios affect the physiology of broccoli plants to different extents. Physiol. Plant. 2024, 176, 14269. [Google Scholar] [CrossRef]
- He, W.M.; Dong, M. Growth and physiological features of Salix matsudana on the Mu Us Sandland in response to shading. Chin. J. Appl. Ecol. 2003, 14, 175. [Google Scholar] [CrossRef]
- Jaime, F.M.G.; Manuel, R.C. Molecular mechanisms of shade tolerance in plants. New Phytol. 2023, 4, 1190. [Google Scholar]
- Liu, Z.Y.; Peng, T.; Ma, S.L.; Qi, C.; Song, Y.F.; Zhang, C.J.; Li, K.L.; Gao, N.; Pu, M.Y.; Wang, X.M.; et al. Potential benefits and risks of solar photovoltaic power plants on arid and semi-arid ecosystems: An assessment of soil microbial and plant communities. Front. Microbiol. 2023, 14, 1190650. [Google Scholar] [CrossRef]
- Wang, S.F. Study on the Relationship Between Root Water Uptake and Soil Carbon Sequestration in Deep Soils of Typical Plantations on the Loess Plateau. Ph.D. Thesis, Northwest A&F University, Yangling, China, 2023. [Google Scholar] [CrossRef]
- Wang, Y.Y. Responses of Water Transportation and Carbon Metabolism Characteristics in Haloxylon ammodendron and Alhagi sparsifolia to Drought Stress. Master’s Thesis, Xinjiang University, Urumqi, China, 2021. [Google Scholar] [CrossRef]
- Gerrits, G.M.; Waenink, R.; Aradottir, A.L.; Buisson, E.; Dutoit, T.; Maxmiller, C.F.; Joseph, B.F.; Renaud, J.; Paul, K.; Roos, L.; et al. Synthesis on the effectiveness of soil translocation for plant community restoration. J. Appl. Ecol. 2023, 60, 714–724. [Google Scholar] [CrossRef]
- Gerlinde, B.D.D.; Lammert, K. The role of soils in habitat creation, maintenance and restoration. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 170. [Google Scholar]
- Wang, Z.H.; Li, W.C.; Wang, Y.J.; Wang, X.F.; Ma, T.T.; Liu, Y.L.; Wei, Y.Q. Microbiological impact of long-term wine grape cultivation on soil organic carbon in desert ecosystems: A study on rhizosphere and bulk sandy soils. Front. Plant Sci. 2024, 15, 1362149. [Google Scholar] [CrossRef]
- Li, Y.Z.; Wang, Y.N.; Hu, Y.G.; Li, Y.K.; Zhang, Z.H. Vegetation and soil change characteristics of alpine desertified grassland under different vegetation restoration measures. J. Soil Water Conserv. 2022, 36, 211–218. [Google Scholar]
- Dijkstra, A.F.; Cheng, W.X. Moisture modulates rhizosphere effects on C decomposition in two different soil types. Soil Biol. Biochem. 2007, 39, 2264–2274. [Google Scholar] [CrossRef]
- Yanni, S.F.; Diochon, A.; Helgason, B.L.; Ellert, B.H.; Gregorich, E.G. Temperature response of plant residue and soil organic matter decomposition in soil from different depths. Eur. J. Soil Sci. 2017, 69, 12508. [Google Scholar] [CrossRef]
- Li, W.L.; Liu, M.Y.; Zhang, Y.X.; Zhao, J. Effects of Vegetation Restoration Patterns on Soil Nutrients among PV Arrays. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 2020, 40, 16–23. [Google Scholar]
- Wu, Z.Q.; Luo, Z.X.; Luo, J.F.; Sui, X.; Wu, S.N.; Luo, X.L. Spatial differentiation of soil fertility in a photovoltaic power station in rocky desertification zone. Chin. J. Ecol. 2023, 42, 2597. [Google Scholar] [CrossRef]
- Ding, C.X.; Liu, Y. Effects of Solar Photovoltaic Park Construction on Soil Microbial Community in Alpine Desert of Qinghai Tibet Plateau. Acta Agrestia Sin. 2021, 29, 1061. [Google Scholar]
- Wang, Y.M.; Liu, B.L.; Xing, Y.; Peng, H.W.; Zhong, J.P. Ecological construction status of photovoltaic power plants in China’s deserts. Front. Environ. Sci. 2024, 12, 1406546. [Google Scholar] [CrossRef]
- Meng, R.B.; Meng, Z.J.; Cai, J.L.; Li, H.N.; Ren, Y.; Guo, L.J. The role of typical low vertical lattice sand barriers in regulating the airflow field on wind-eroded surfaces of photovoltaic power plants. Front. Environ. Sci. 2024, 12, 1521144. [Google Scholar] [CrossRef]
- Chen, Z.C.; Li, N.; Liu, C.H. Effects of straw checkerboard barriers on soil nutrients inwater diversion project in the Gurbantunggut Desert. Pratacultural Sci. 2013, 30, 699–702. [Google Scholar]
- Han, Y.Q.; Xiong, W.; Wu, B.; Lu, Q.; Yang, W.B.; Liu, Y.L.; Zhang, J.B.; Xin, Z.M.; Ma, Y.B.; Lian, H.L.; et al. Response of stem sap flow of Haloxylon ammodendron in Ulan Buhe Desert to rainfall pulses. Chin. J. Plant Ecol. 2024, 48, 1172–1179. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
Treatment | Position | Height (cm) | Crown Width (cm) |
---|---|---|---|
CK | PF | 34.00 ± 2.31 Dc | 30.90 ± 2.19 Da |
PM | 34.00 ± 2.31 Dc | 30.90 ± 2.19 Da | |
PB | 34.00 ± 2.31 Dc | 30.90 ± 2.19 Db | |
LS | PF | 50.36 ± 2.69 Ab | 29.82 ± 0.99 Cb |
PM | 42.32 ± 1.57 Cb | 31.80 ± 1.46 Ba | |
PB | 45.08 ± 2.90 Bb | 34.30 ± 1.60 Aa | |
CS | PF | 48.44 ± 1.89 Ba | 29.40 ± 1.45 Ab |
PM | 51.08 ± 3.44 Aa | 24.32 ± 1.61 Bb | |
PB | 47.40 ± 2.83 Ba | 29.70 ± 1.54 Ac | |
Position | ** | ** | |
Treatment | ** | ** | |
Position * Treatment | ** | ** |
Position | Treatment | Soil Depth (cm) | Organic Matter (g/kg) | Total Nitrogen (g/kg) | Total Phosphorus (g/kg) | Total Potassium (g/kg) | Available Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Available Potassium (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
PF | CK | 0–2 | 3.26 ± 0.25 Ba | 0.17 ± 0.01 Ab | 0.18 ± 0.01 Ba | 22.44 ± 0.39 Aa | 20.49 ± 0.49 ABa | 2.74 ± 0.16 Ba | 181.01 ± 0.49 Cb |
2–10 | 2.50 ± 0.13 Bb | 0.19 ± 0.01 Bab | 0.17 ± 0.01 Aa | 21.92 ± 0.82 Ba | 18.63 ± 0.82 Bb | 2.55 ± 0.10 Aab | 181.13 ± 1.23 Bb | ||
10–20 | 3.18 ± 0.16 Ba | 0.20 ± 0.01 Ba | 0.18 ± 0.02 Aa | 21.83 ± 0.71 Aa | 16.07 ± 0.50 Bc | 2.21 ± 0.16 ABc | 182.80 ± 1.51 Bb | ||
20–40 | 2.66 ± 0.09 Bb | 0.18 ± 0.02 Bab | 0.17 ± 0.01 Aa | 20.56 ± 0.62 Ab | 14.50 ± 0.82 Cd | 2.29 ± 0.18 Bbc | 185.18 ± 1.27 Ba | ||
LS | 0–2 | 3.85 ± 0.11 Aa | 0.13 ± 0.02 Bc | 0.21 ± 0.01 Aa | 17.90 ± 0.67 Bc | 21.71 ± 0.93 Aa | 2.34 ± 0.05 Ca | 192.07 ± 2.00 Ba | |
2–10 | 3.48 ± 0.30 Ab | 0.25 ± 0.01 Aa | 0.16 ± 0.03 Ab | 20.46 ± 1.19 Bb | 20.78 ± 1.04 Aa | 2.38 ± 0.66 Aa | 181.23 ± 1.58 Bbc | ||
10–20 | 2.80 ± 0.09 Cc | 0.21 ± 0.01 Bb | 0.17 ± 0.01 Ab | 26.22 ± 1.01 Ba | 18.39 ± 1.87 ABb | 2.03 ± 0.14 Ba | 178.77 ± 2.12 Cc | ||
20–40 | 3.09 ± 0.11 Ac | 0.23 ± 0.02 Aab | 0.19 ± 0.02 Aab | 20.80 ± 1.43 Ab | 17.54 ± 0.14 Bb | 2.18 ± 0.10 Ba | 183.60 ± 0.66 Bb | ||
CS | 0–2 | 3.04 ± 0.13 Bb | 0.19 ± 0.01 Ab | 0.16 ± 0.01 Ba | 22.72 ± 0.49 Ab | 20.22 ± 0.59 Bb | 3.94 ± 0.14 Aa | 209.60 ± 0.9 A0 a | |
2–10 | 2.63 ± 0.04 Bc | 0.16 ± 0.02 Bc | 0.16 ± 0.12 Aa | 26.63 ± 0.77 Aa | 12.49 ± 0.13 Cc | 2.53 ± 0.13 Abc | 202.63 ± 0.81 Ab | ||
10–20 | 3.97 ± 0.11 Aa | 0.26 ± 0.01 Aa | 0.19 ± 0.01 Aa | 22.26 ± 0.42 Ab | 19.32 ± 0.81 Ab | 2.46 ± 0.12 Ac | 203.00 ± 0.20 Ab | ||
20–40 | 2.57 ± 0.12 Bc | 0.19 ± 0.01 Bb | 0.13 ± 0.01 Ba | 16.53 ± 0.89 Bc | 23.35 ± 0.54 Aa | 2.75 ± 0.08 Ab | 208.47 ± 0.84 Aa | ||
PM | CK | 0–2 | 3.26 ± 0.25 Ba | 0.17 ± 0.01 Bb | 0.18 ± 0.01 Aa | 22.44 ± 0.39 Aa | 20.49 ± 0.49 Ba | 2.74 ± 0.16 Ba | 181.01 ± 0.49 Cb |
2–10 | 2.50 ± 0.13 Ab | 0.19 ± 0.01 Aab | 0.17 ± 0.01 Aa | 21.92 ± 0.82 Aa | 18.63 ± 0.82 Bb | 2.55 ± 0.10 Aab | 181.13 ± 1.23 Bb | ||
10–20 | 3.18 ± 0.16 Aa | 0.20 ± 0.01 Aa | 0.18 ± 0.02 Ba | 21.83 ± 0.71 Ba | 16.07 ± 0.50 Ac | 2.21 ± 0.16 Ac | 182.80 ± 1.51 Cb | ||
20–40 | 2.66 ± 0.09 Ab | 0.18 ± 0.02 Aab | 0.17 ± 0.01 Ba | 20.56 ± 0.62 Bb | 14.50 ± 0.82 Bd | 2.29 ± 0.18 Bbc | 185.18 ± 1.27 Aa | ||
LS | 0–2 | 3.77 ± 0.10 Aa | 0.26 ± 0.01 Aa | 0.17 ± 0.03 Aa | 17.61 ± 0.78 Ba | 32.09 ± 1.22 Ab | 2.59 ± 0.23 Bb | 223.73 ± 1.86 Ba | |
2–10 | 1.62 ± 0.07 Cc | 0.12 ± 0.03 Ab | 0.13 ± 0.01 Cb | 17.98 ± 0.89 Ba | 11.90 ± 0.80 Cc | 2.49 ± 0.14 Ab | 164.13 ± 2.87 Cd | ||
10–20 | 2.11 ± 0.07 Cb | 0.14 ± 0.02 Bb | 0.17 ± 0.01 Ba | 26.77 ± 0.99 Ac | 8.12 ± 0.55 Cd | 1.74 ± 0.06 Bc | 188.53 ± 4.22 Bb | ||
20–40 | 1.99 ± 0.06 Bb | 0.15 ± 0.01 Bb | 0.19 ± 0.01 Ba | 23.94 ± 0.70 Ab | 37.85 ± 1.09 Aa | 3.14 ± 0.14 Aa | 179.63 ± 1.85 Bc | ||
CS | 0–2 | 2.83 ± 0.15 Ca | 0.18 ± 0.01 Ba | 0.19 ± 0.01 Ab | 16.60 ± 0.46 Ba | 30.65 ± 0.95 Aa | 3.46 ± 0.09 Aa | 314.23 ± 5.75 Aa | |
2–10 | 2.17 ± 0.08 Bc | 0.14 ± 0.05 Aa | 0.15 ± 0.01 Bb | 21.65 ± 0.64 Ab | 21.65 ± 1.13 Ab | 2.47 ± 0.08 Ac | 203.17 ± 1.53 Ac | ||
10–20 | 2.47 ± 0.10 Bb | 0.18 ± 0.01 Aa | 0.21 ± 0.01 Ab | 17.20 ± 1.09 Ca | 10.77 ± 0.45 Bc | 1.78 ± 0.12 Bd | 224.20 ± 1.54 Ab | ||
20–40 | 1.97 ± 0.11 Bc | 0.15 ± 0.01 Ba | 0.68 ± 0.07 Aa | 16.21 ± 0.23 Ca | 12.22 ± 1.81 Bc | 3.08 ± 0.13 Ab | 180.67 ± 1.22 Bd | ||
PB | CK | 0–2 | 3.26 ± 0.25 Aa | 0.17 ± 0.01 Bb | 0.18 ± 0.01 Aa | 22.44 ± 0.39 Ba | 20.49 ± 0.49 Ba | 2.74 ± 0.16 Aa | 181.01 ± 0.49 Cb |
2–10 | 2.50 ± 0.13 Ab | 0.19 ± 0.01 Aab | 0.17 ± 0.01 Ba | 21.92 ± 0.82 Aa | 18.63 ± 0.82 ABb | 2.55 ± 0.10 Aab | 181.13 ± 1.23 Bb | ||
10–20 | 3.18 ± 0.16 Aa | 0.20 ± 0.01 Aa | 0.18 ± 0.02 Ba | 21.83 ± 0.71 Aa | 16.07 ± 0.50 Cc | 2.21 ± 0.16 Bc | 182.80 ± 1.51 Bb | ||
20–40 | 2.66 ± 0.09 Bb | 0.18 ± 0.02 Aab | 0.17 ± 0.01 Aa | 20.56 ± 0.62 Ab | 14.50 ± 0.82 Cd | 2.29 ± 0.18 Abc | 185.18 ± 1.27 Ba | ||
LS | 0–2 | 2.52 ± 0.41 Bab | 0.22 ± 0.01 Aa | 0.16 ± 0.01 Bb | 26.79 ± 1.10 Aa | 27.28 ± 0.96 Aa | 2.44 ± 0.06 Bb | 218.47 ± 1.00 Ba | |
2–10 | 2.25 ± 0.06 Bb | 0.14 ± 0.01 Bc | 0.16 ± 0.01 Bb | 16.53 ± 2.35 Bc | 20.96 ± 2.69 Ab | 2.47 ± 0.10 Ab | 200.23 ± 1.80 Ab | ||
10–20 | 2.47 ± 0.01 Cab | 0.15 ± 0.01 Bc | 0.18 ± 0.01 Ba | 16.92 ± 0.59 Bc | 18.64 ± 1.16 Bb | 3.02 ± 0.20 Aa | 196.37 ± 3.52 Ab | ||
20–40 | 2.71 ± 0.01 Ba | 0.18 ± 0.02 Ab | 0.13 ± 0.01 Bc | 20.94 ± 1.69 Ab | 20.26 ± 0.94 Ab | 2.15 ± 0.06 Ac | 197.77 ± 1.50 Ab | ||
CS | 0–2 | 3.82 ± 0.07 Aa | 0.18 ± 0.01 Ba | 0.17 ± 0.01 ABc | 17.88 ± 1.01 Cb | 20.30 ± 0.89 Bb | 2.86 ± 0.13 Aa | 271.37 ± 1.60 Aa | |
2–10 | 2.32 ± 0.11 Bd | 0.17 ± 0.02 ABab | 0.24 ± 0.01 Aa | 21.65 ± 1.44 Aa | 16.54 ± 1.06 Bc | 2.16 ± 0.10 Bb | 161.63 ± 1.21 Cd | ||
10–20 | 2.68 ± 0.03 Bc | 0.15 ± 0.01 Bc | 0.22 ± 0.01 Ab | 17.92 ± 1.07 Bb | 22.92 ± 1.01 Aa | 1.94 ± 0.11 Bc | 174.73 ± 0.80 Cc | ||
20–40 | 3.02 ± 0.07 Ab | 0.15 ± 0.01 Bbc | 0.19 ± 0.02 Ac | 17.71 ± 1.00 Bb | 16.65 ± 0.79 Bc | 2.36 ± 0.09 Ab | 195.67 ± 0.91 Ab | ||
Treatment | ** | * | * | ns | ns | ns | ns | ||
Position | ns | ns | * | * | * | * | ** | ||
Treatment * Position | * | ns | * | ns | ns | * | * |
Factor | Ingredient | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Height | 0.420 | 0.556 | −0.397 | 0.159 | 0.367 |
Crown width | 0.021 | −0.673 | 0.449 | −0.243 | 0.260 |
Aboveground dry weight | 0.908 | −0.328 | −0.209 | −0.049 | 0.066 |
Underground dry weight | 0.757 | −0.497 | −0.031 | 0.331 | −0.078 |
Total biomass | 0.900 | −0.376 | −0.175 | 0.036 | 0.035 |
Root–crown ratio | −0.404 | −0.367 | 0.433 | 0.446 | −0.392 |
Organic matter | 0.127 | 0.416 | 0.637 | 0.473 | −0.001 |
Total nitrogen | 0.372 | 0.014 | 0.754 | −0.18 | 0.253 |
Total phosphorus | −0.351 | 0.349 | 0.014 | 0.471 | 0.622 |
Total potassium | −0.460 | −0.360 | 0.117 | −0.456 | 0.486 |
Available nitrogen | 0.718 | 0.228 | 0.474 | −0.041 | 0.067 |
Available phosphorus | 0.089 | 0.578 | 0.188 | −0.501 | −0.351 |
Available potassium | 0.429 | 0.763 | 0.101 | −0.196 | −0.045 |
Characteristic value | 3.74 | 2.79 | 1.88 | 1.37 | 1.19 |
Contribution rate (%) | 28.79 | 21.42 | 14.45 | 10.56 | 9.11 |
Accumulated contribution rate (%) | 28.79 | 50.22 | 64.67 | 75.23 | 84.34 |
Treatment | Associated Value | Ranking |
---|---|---|
CK | 0.659 | 6 |
LS-PF | 0.764 | 2 |
LS-PM | 0.779 | 1 |
LS-PB | 0.740 | 3 |
CS-PF | 0.692 | 5 |
CS-PM | 0.714 | 4 |
CS-PB | 0.610 | 7 |
Measurement Indicators | Measurement Method | Reference |
---|---|---|
Soil organic matter, OM | Determined by the K2Cr2O7 external titration method | Soil Agrochemical Analysis [50] |
Total nitrogen, TN | Measured by the semi-micro Kjeldahl method | |
Total phosphorus, TP | Determined by using the NaOH fusion molybdenum antimony colorimetric method | |
Total potassium, TK | Measured by the NaOH fusion flame photometry method | |
Available nitrogen, AN | Determined by the alkali diffusion method | |
Available phosphorus, AP | Measured by the NaHCO3 extraction colorimetric method | |
Available potassium, AK | Determined by the NH4OAc extraction flame photometry method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, J.; Mu, R.; Wang, D.; Wang, Z.; An, J.; Li, X. Effects of Two Ecological Governance Measures for Photovoltaic Power Stations on Plant Growth and Soil Nutrients. Plants 2025, 14, 797. https://doi.org/10.3390/plants14050797
Liu Y, Zhang J, Mu R, Wang D, Wang Z, An J, Li X. Effects of Two Ecological Governance Measures for Photovoltaic Power Stations on Plant Growth and Soil Nutrients. Plants. 2025; 14(5):797. https://doi.org/10.3390/plants14050797
Chicago/Turabian StyleLiu, Yajing, Jingbo Zhang, Ren Mu, Danyang Wang, Zhaoming Wang, Jingyuan An, and Xinle Li. 2025. "Effects of Two Ecological Governance Measures for Photovoltaic Power Stations on Plant Growth and Soil Nutrients" Plants 14, no. 5: 797. https://doi.org/10.3390/plants14050797
APA StyleLiu, Y., Zhang, J., Mu, R., Wang, D., Wang, Z., An, J., & Li, X. (2025). Effects of Two Ecological Governance Measures for Photovoltaic Power Stations on Plant Growth and Soil Nutrients. Plants, 14(5), 797. https://doi.org/10.3390/plants14050797