Genetic and Genomic Tools in Breeding for Resistance to Fusarium Stalk Rot in Maize (Zea mays L.)
Abstract
:1. Introduction
2. Fusarium Pathogens Causing Stalk Rot
3. Phenotypic and Molecular Approaches for Resistance Improvement
3.1. Resistance Testing and Evaluation
3.2. Phenotype-Based Genetic Studies for Resistance to FSR
3.3. Heritabilities and Correlations with Agronomic Traits
3.4. QTL Studies and Candidate Genes for FSR Resistance
4. Genomic-Assisted Selection Strategies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 30 June 2024).
- Ribeiro, A.E.C.; Oliveira, A.R.; Da Silva, A.C.M.; Caliari, M.; Júnior, M.S.S. Physicochemical quality and sensory acceptance of toasts with partial replacement of wheat flour by maize biomass flour. J. Food Sci. Technol. 2020, 57, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, B.M.; Cairns, J.E.; Zaidi, P.H.; Beyene, Y.; Makumbi, D.; Gowda, M.; Magorokosho, C.; Zaman-Allah, M.; Olsen, M.; Das, A.; et al. Beat the stress: Breeding for climate resilience in maize for the tropical rainfed environments. Theor. Appl. Genet. 2021, 134, 1729–1752. [Google Scholar] [CrossRef] [PubMed]
- Poole, N.; Donovan, J.; Erenstein, O. Viewpoint: Agri-Nutrition Research: Revisiting the contribution of maize and wheat to human nutrition and health. Food Policy 2021, 100, 101976. [Google Scholar] [CrossRef] [PubMed]
- Eurostat Statistics. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00101/default/table?lang=en (accessed on 30 June 2024).
- Varela, C.P.; Casal, O.A.; Padin, M.C.; Martinez, V.F.; Oses, M.J.S.; Scauflaire, J.; Munaut, F.; Castro, M.J.B.; Vázquez, J.P.M. First report of Fusarium temperatum causing seedling blight and stalk rot on maize in Spain. Plant Dis. 2013, 97, 1252. [Google Scholar] [CrossRef]
- Dorn, B.; Forrer, H.R.; Jenny, E.; Wettstein, F.E.; Bucheli, T.D.; Vogelgsang, S. Fusarium species complex and mycotoxins in grain maize from maize hybrid trials and from grower’s fields: Fusarium species complex in maize. J. Appl. Microbiol. 2011, 111, 693–706. [Google Scholar] [CrossRef]
- Pfordt, A.; Ramos Romero, L.; Schiwek, S.; Karlovsky, P.; Von Tiedemann, A. Impact of environmental conditions and agronomic practices on the prevalence of Fusarium species associated with ear and stalk rot in maize. Pathogens 2020, 9, 236. [Google Scholar] [CrossRef]
- Missmer, S.A.; Suarez, L.; Felkner, M.; Wang, E.; Merrill, A.H.; Rothman, K.J.; Hendricks, K.A. Exposure to fumonisins and the occurrence of neural tube defects along the Texas–Mexico border. Environ. Health Perspect. 2006, 114, 237–241. [Google Scholar] [CrossRef]
- Pinton, P.; Oswald, I. Effect of deoxynivalenol and other type B trichothecenes on the intestine: A Review. Toxins 2014, 6, 1615–1643. [Google Scholar] [CrossRef]
- Li, L.; Qu, Q.; Cao, Z.; Guo, Z.; Jia, H.; Liu, N.; Wang, Y.; Dong, J. The relationship analysis on corn stalk rot and ear rot according to Fusarium species and fumonisin contamination in kernels. Toxins 2019, 11, 320. [Google Scholar] [CrossRef]
- Chen, J.; Wen, J.; Tang, Y.; Shi, J.; Mu, G.; Yan, R.; Cai, J.; Long, M. Research progress on fumonisin B1 contamination and toxicity: A Review. Molecules 2021, 26, 5238. [Google Scholar] [CrossRef]
- Achar, P.N.; Sreenivasa, M.Y. Current perspectives of biocontrol agents for management of Fusarium verticillioides and its fumonisin in cereals—A Review. J. Fungi 2021, 7, 776. [Google Scholar] [CrossRef] [PubMed]
- Boudra, H.; Morgavi, D.P. Reduction in Fusarium toxin levels in corn silage with low dry matter and storage time. J. Agric. Food Chem. 2008, 56, 4523–4528. [Google Scholar] [CrossRef] [PubMed]
- Garon, D.; Richard, E.; Sage, L.; Bouchart, V.; Pottier, D.; Lebailly, P. Mycoflora and multi-mycotoxin detection in corn silage: Experimental study. J. Agric. Food Chem. 2006, 54, 3479–3484. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, M.A.; Kuldau, G.A. Microbiological and molecular determination of mycobiota in fresh and ensiled maize silage. Mycologia 2007, 99, 269–278. [Google Scholar] [CrossRef]
- Wilkinson, J. Silage and Animal Health. Nat. Toxins 1999, 7, 221–232. [Google Scholar] [CrossRef]
- Eckard, S.; Wettstein, F.E.; Forrer, H.-R.; Vogelgsang, S. Incidence of Fusarium species and mycotoxins in silage maize. Toxins 2011, 3, 949–967. [Google Scholar] [CrossRef]
- Lew, H.; Adler, A.; Edinger, W. Dynamics of the Fusarium toxin distribution in maize plants affected by stalk rot. Cereal Res. Commun. 1997, 25, 467–470. [Google Scholar] [CrossRef]
- Hoenisch, R.W.; Davis, R. Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot in field corn. Plant Dis. 1994, 78, 517–519. [Google Scholar] [CrossRef]
- Bily, A.C.; Reid, L.M.; Taylor, J.H.; Johnston, D.; Malouin, C.; Burt, A.J.; Bakan, B.; Regnault-Roger, C.; Pauls, K.P.; Arnason, J.T.; et al. Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: Resistance factors to Fusarium graminearum. Phytopathology 2003, 93, 712–719. [Google Scholar] [CrossRef]
- Sampietro, D.A.; Vattuone, M.A.; Presello, D.A.; Fauguel, C.M.; Catalán, C.A.N. The pericarp and its surface wax layer in maize kernels as resistance factors to Fumonisin accumulation by Fusarium verticillioides. Crop Prot. 2009, 28, 196–200. [Google Scholar] [CrossRef]
- Venturini, G.; Babazadeh, L.; Casati, P.; Pilu, R.; Salomoni, D.; Toffolatti, S.L. Assessing pigmented pericarp of maize kernels as possible source of resistance to Fusarium ear rot, Fusarium spp. infection and fumonisin accumulation. Int. J. Food Microbiol. 2016, 227, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Oldenburg, E.; Höppner, F.; Ellner, F.; Weinert, J. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Res. 2017, 33, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Barten, T.J.; Kosola, K.R.; Dohleman, F.G.; Eller, M.; Brzostowski, L.; Mueller, S.; Mioduszewski, J.; Gu, C.; Kashyap, S.; Ralston, L. Short-stature maize reduced wind damage during the 2020 mid-western derecho, improving yields and greenhouse gas outcomes. Crop Sci. 2022, 62, 2439–2450. [Google Scholar] [CrossRef]
- Khokhar, M.K.; Hooda, K.S.; Sharma, S.S.; Vimla Singh, V.S. Post flowering stalk rot complex of maize-present status and future prospects. Maydica 2014, 59, 226–242. [Google Scholar]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Mueller, D.; Wise, K.; Sisson, A. Corn disease loss estimates from the United States and Ontario, Canada. Plant Health Prog. 2022, 31274, 328. [Google Scholar] [CrossRef]
- Gai, X.T.; Xuan, Y.H.; Gao, Z.G. Diversity and pathogenicity of Fusarium Graminearum species complex from maize stalk and ear rot strains in North-East China. Plant Pathol. 2017, 66, 1267–1275. [Google Scholar] [CrossRef]
- Payak, M.M.; Sharma, R.C. Maize diseases and approaches to their management in India. Trop. Pest Manag. 1985, 31, 302–310. [Google Scholar] [CrossRef]
- Shin, J.-H.; Han, J.-H.; Lee, J.K.; Kim, K.S. Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. Plant Pathol. J. 2014, 30, 397–406. [Google Scholar] [CrossRef]
- Wegulo, S.N.; Baenziger, P.S.; Hernandez Nopsa, J.; Bockus, W.W.; Hallen-Adams, H. Management of Fusarium head blight of wheat and barley. Crop Prot. 2015, 73, 100–107. [Google Scholar] [CrossRef]
- Abney, T.S.; Foley, D. Influence of Nutrition on Stalk Rot Development of Zea Mays. Phytopathology 1971, 61, 1125–1129. [Google Scholar] [CrossRef]
- Chandra Nayaka, S.; Niranjana, S.R.; Uday Shankar, A.C.; Niranjan Raj, S.; Reddy, M.S.; Prakash, H.S.; Mortensen, C.N. Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in Maize. Arch. Phytopathol. Plant Prot. 2010, 43, 264–282. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Poonguzhali, S.; Kwon, S.-W.; Sa, T.-M. Bacillus methylotrophicus sp. nov., a Methanol-Utilizing, Plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 2010, 60, 2490–2495. [Google Scholar] [CrossRef] [PubMed]
- Lizárraga-Sánchez, G.J.; Leyva-Madrigal, K.Y.; Sánchez-Peña, P.; Quiroz-Figueroa, F.R.; Maldonado-Mendoza, I.E. Bacillus Cereus Sensu Lato Strain B25 controls maize stalk and ear rot in Sinaloa, Mexico. Field Crops Res. 2015, 176, 11–21. [Google Scholar] [CrossRef]
- Ramesha, V. Effect of different bio-control agents against stalk rot of maize caused by Fusarium solani and their identification. Pharma. Innov. J. 2018, 7, 559–564. [Google Scholar]
- Veenstra, A.; Rafudeen, M.S.; Murray, S.L. Trichoderma asperellum isolated from African maize seed directly inhibits Fusarium verticillioides growth in vitro. Eur. J. Plant Pathol. 2019, 153, 279–283. [Google Scholar] [CrossRef]
- Lu, Z.; Tu, G.; Zhang, T.; Li, Y.; Wang, X.; Zhang, Q.; Song, W.; Chen, J. Screening of antagonistic Trichoderma strains and their application for controlling stalk rot in maize. J. Integr. Agric. 2020, 19, 145–152. [Google Scholar] [CrossRef]
- Borah, S.N.; Goswami, D.; Sarma, H.K.; Cameotra, S.S.; Deka, S. Rhamnolipid biosurfactant against Fusarium verticillioides to control stalk and ear rot disease of maize. Front. Microbiol. 2016, 7, 1505. [Google Scholar] [CrossRef]
- Thori, H.; Bunker, R.; Mathur, K.; Sharma, S. Integrated management of post flowering stalk rot of maize caused by Fusarium moniliforme. Indian Phytopathol. 2012, 65, 151. [Google Scholar]
- Quesada-Ocampo, L.M.; Al-Haddad, J.; Scruggs, A.C.; Buell, C.R.; Trail, F. Susceptibility of maize to stalk rot caused by Fusarium graminearum deoxynivalenol and zearalenone mutants. Phytopathology 2016, 106, 920–927. [Google Scholar] [CrossRef]
- Sarver, B.A.J.; Ward, T.J.; Gale, L.R.; Broz, K.; Corby Kistler, H.; Aoki, T.; Nicholson, P.; Carter, J.; O’Donnell, K. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet. Biol. 2011, 48, 1096–1107. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Ward, T.J.; Aberra, D.; Kistler, H.C.; Aoki, T.; Orwig, N.; Kimura, M.; Bjørnstad, Å.; Klemsdal, S.S. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum Species complex from Ethiopia. Fungal Genet. Biol. 2008, 45, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Pfordt, A.; Schiwek, S.; Rathgeb, A.; Rodemann, C.; Bollmann, N.; Buchholz, M.; Karlovsky, P.; Von Tiedemann, A. Occurrence, Pathogenicity, and Mycotoxin Production of Fusarium Temperatum in Relation to Other Fusarium Species on Maize in Germany. Pathogens 2020, 9, 864. [Google Scholar] [CrossRef] [PubMed]
- Starkey, D.E.; Ward, T.J.; Aoki, T.; Gale, L.R.; Kistler, H.C.; Geiser, D.M.; Suga, H.; Tóth, B.; Varga, J.; O’Donnell, K. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 2007, 44, 1191–1204. [Google Scholar] [CrossRef]
- Castañares, E.; Dinolfo, M.I.; Del Ponte, E.M.; Pan, D.; Stenglein, S.A. Species Composition and genetic structure of Fusarium graminearum species complex populations affecting the main barley growing regions of South America. Plant Pathol. 2016, 65, 930–939. [Google Scholar] [CrossRef]
- Beukes, I.; Rose, L.J.; Van Coller, G.J.; Viljoen, A. Disease Development and mycotoxin production by the Fusarium graminearum species complex associated with South African maize and wheat. Eur. J. Plant Pathol. 2018, 150, 893–910. [Google Scholar] [CrossRef]
- Del Ponte, E.M.; Moreira, G.M.; Ward, T.J.; O’Donnell, K.; Nicolli, C.P.; Machado, F.J.; Duffeck, M.R.; Alves, K.S.; Tessmann, D.J.; Waalwijk, C.; et al. Fusarium graminearum species complex: A bibliographic analysis and web-accessible database for global mapping of species and Trichothecene toxin chemotypes. Phytopathology 2022, 112, 741–751. [Google Scholar] [CrossRef]
- Yilmaz, N.; Sandoval-Denis, M.; Lombard, L.; Visagie, C.M.; Wingfield, B.D.; Crous, P.W. Redefining species limits in the Fusarium fujikuroi species complex. Persoonia 2021, 46, 129–162. [Google Scholar] [CrossRef]
- Czembor, E.; Stępień, Ł.; Waśkiewicz, A. Effect of environmental factors on Fusarium species and associated mycotoxins in maize grain grown in Poland. PLoS ONE 2015, 10, e0133644. [Google Scholar] [CrossRef]
- Boutigny, A.-L.; Scauflaire, J.; Ballois, N.; Ioos, R. Fusarium temperatum isolated from maize in France. Eur. J. Plant Pathol. 2017, 148, 997–1001. [Google Scholar] [CrossRef]
- Coninck, E.; Gollier, M.; Scauflaire, J.; Lienard, C.; Foucart, G.; Manssens, G.; Munaut, F.; Legrève, A. Promising native Trichoderma atroviride (BC0584) as a biocontrol agent in seed coating for reducing Fusarium damping-off on maize crop in Belgium. In Proceedings of the Plant BioProTech, Marrakesh, Morocco, 19–22 November 2019. [Google Scholar]
- Leplat, J.; Friberg, H.; Abid, M.; Steinberg, C. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A Review. Agron. Sustain. Dev. 2013, 33, 97–111. [Google Scholar] [CrossRef]
- Trail, F.; Gaffoor, I.; Vogel, S. Ejection mechanics and trajectory of the ascospores of Gibberella zeae (Anamorph Fuarium graminearum). Fungal Genet. Biol. 2005, 42, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Chen, Y.; Liu, J.; Su, Q.; Zhao, B.; Sun, M.; Jia, H.; Cao, Z.; Dong, J. Transcriptional differences between major Fusarium pathogens of maize, Fusarium verticillioides and Fusarium graminearum with different optimum growth temperatures. Front. Microbiol. 2022, 13, 1030523. [Google Scholar] [CrossRef] [PubMed]
- Stephens, A.E.; Gardiner, D.M.; White, R.G.; Munn, A.L.; Manners, J.M. Phases of infection and gene expression of Fusarium graminearum during crown rot disease of wheat. Mol. Plant-Microbe Interact. 2008, 21, 1571–1581. [Google Scholar] [CrossRef]
- Doko, M.B.; Canet, C.; Brown, N.; Sydenham, E.W.; Mpuchane, S.; Siame, B.A. Natural co-occurrence of fumonisins and zearalenone in cereals and cereal-based foods from Eastern and Southern Africa. J. Agric. Food Chem. 1996, 44, 3240–3243. [Google Scholar] [CrossRef]
- Orsi, R.B.; Corrêa, B.; Possi, C.R.; Schammass, E.A.; Nogueira, J.R.; Dias, S.M.C.; Malozzi, M.A.B. Mycoflora and occurrence of fumonisins in freshly harvested and stored hybrid Maize. J. Stored Prod. Res. 2000, 36, 75–87. [Google Scholar] [CrossRef]
- Li, W.; He, P.; Jin, J. Effect of Potassium on Ultrastructure of Maize Stalk Pith and Young Root and Their Relation to Stalk Rot Resistance. Agric. Sci. China 2010, 9, 1467–1474. [Google Scholar] [CrossRef]
- Rossi, E.A.; Ruiz, M.; Rueda Calderón, M.A.; Bruno, C.I.; Bonamico, N.C.; Balzarini, M.G. Meta-analysis of QTL studies for resistance to fungi and viruses in maize. Crop Sci. 2019, 59, 125–139. [Google Scholar] [CrossRef]
- Cotten, T.K.; Munkvold, G.P. Survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in maize stalk residue. Phytopathology 1998, 88, 550–555. [Google Scholar] [CrossRef]
- Scauflaire, J.; Mahieu, O.; Louvieaux, J.; Foucart, G.; Renard, F.; Munaut, F. Biodiversity of Fusarium species in ears and stalks of maize plants in Belgium. Eur. J. Plant Pathol. 2011, 131, 59–66. [Google Scholar] [CrossRef]
- Tagele, S.B.; Kim, S.W.; Lee, H.G.; Lee, Y.S. Aggressiveness and fumonisins production of Fusarium subglutinans and Fusarium temperatum on Korean maize cultivars. Agronomy 2019, 9, 88. [Google Scholar] [CrossRef]
- Moretti, A.; Mulé, G.; Ritieni, A.; Láday, M.; Stubnya, V.; Hornok, L.; Logrieco, A. Cryptic subspecies and beauvericin production by Fusarium subglutinans from Europe. Int. J. Food Microbiol. 2008, 127, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Robles-Barrios, F.; Ramírez-Granillo, A.; Medina-Canales, M.G.; Gómez-Lim, M.; Loske, A.M.; Rodríguez-Tovar, A.V.; Pérez, N.O. Fusarium temperatum shows a hemibiotrophic infection process and differential pathogenicity over different maize breeds from Mexico. J. Phytopathol. 2022, 170, 21–33. [Google Scholar] [CrossRef]
- Qiu, J.; Xu, J.; Shi, J. Molecular characterization of the Fusarium graminearum species complex in Eastern China. Eur. J. Plant Pathol. 2014, 139, 811–823. [Google Scholar] [CrossRef]
- Kuhnem, P.R.; Ward, T.J.; Silva, C.N.; Spolti, P.; Ciliato, M.L.; Tessmann, D.J.; Del Ponte, E.M. Composition and toxigenic potential of the Fusarium graminearum species complex from maize ears, stalks and stubble in Brazil. Plant Pathol. 2016, 65, 1185–1191. [Google Scholar] [CrossRef]
- Asiedu, D.D.; Akohoue, F.; Frank, S.; Koch, S.; Lieberherr, B.; Oyiga, B.; Kessel, B.; Presterl, T.; Miedaner, T. Comparison of four inoculation methods and three Fusarium species for phenotyping stalk rot resistance among 22 maize hybrids (Zea mays). Plant Pathol. 2024, 73, 1060–1071. [Google Scholar] [CrossRef]
- Nürnberger, T.; Kemmerling, B. Pathogen-associated molecular patterns (PAMP) and PAMP-triggered immunity. Annu. Plant Rev. 2008, 34, 16–47. [Google Scholar] [CrossRef]
- Harris, L.J.; Desjardins, A.E.; Plattner, R.D.; Nicholson, P.; Butler, G.; Young, J.C.; Weston, G.; Proctor, R.H.; Hohn, T.M. Possible role of trichothecene mycotoxins in virulence of Fusarium graminearum on maize. Plant Dis. 1999, 83, 954–960. [Google Scholar] [CrossRef]
- Onyeka, T.J.; Dixon, A.G.O.; Ekpo, E.J.A. Identification of levels of resistance to cassava root rot disease (Botryodiplodia theobromae) in African landraces and improved germplasm using in vitro inoculation method. Euphytica 2005, 145, 281–288. [Google Scholar] [CrossRef]
- Mesterházy, Á.; Lemmens, M.; Reid, L.M. Breeding for resistance to ear rots caused by Fusarium spp. in maize—A Review. Plant Breed. 2012, 131, 1–19. [Google Scholar] [CrossRef]
- Koehler, B. Cornstalk Rots in Illinois; Bulletin 658; University of Illinois (Urbana-Champaign Campus), Agricultural Experiment Station: Champaign, IL, USA, 1960. [Google Scholar]
- Palaveršić, B. Testing of Maize Resistance to Stem Rot Under Conditions of Natural and Artificial Infection with Gibberella zeae/Schw.) Petch. Master’s Thesis, University of Zagreb, Zagreb, Croatia, 1983; pp. 1–94. [Google Scholar]
- Ledečan, T.; Šumić, D.; Brkić, I.; Jambrović, A.; Zdunić, Z. Resistance of maize inbreds and their hybrids to Fusarium stalk rot. Czech J. Genet. Plant Breed. 2003, 39, 15–20. [Google Scholar] [CrossRef]
- Li, C.; Su, J.; Gong, S.; Song, X.; Li, G.; Hu, G.; Wang, M. Study on inoculated methods of corn stalk rot. J. Maize Sci. (Chin.) 2001, 9, 72–74. [Google Scholar]
- Jiang, W.; Han, W.; Wang, R.; Li, Y.; Hu, G.; Yang, J.; Jiang, D.; Han, W.; Wang, M.; Li, G. Development of an inoculation technique for rapidly evaluating maize inbred lines for resistance to stalk rot caused by Fusarium spp. in the field. Plant Dis. 2021, 105, 2306–2313. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Z.; Lu, P.; Li, R.; Ma, P.; Wu, J.; Li, T.; Zhang, H. Increasing Fusarium verticillioides resistance in maize by genomics-assisted breeding: Methods, Progress, and Prospects. Crop J. 2023, 11, 1626–1641. [Google Scholar] [CrossRef]
- Afolabi, C.G.; Ojiambo, P.S.; Ekpo, E.J.A.; Menkir, A.; Bandyopadhyay, R. Novel sources of resistance to Fusarium stalk rot of maize in Tropical Africa. Plant Dis. 2008, 92, 772–780. [Google Scholar] [CrossRef]
- Ma, C.; Ma, X.; Yao, L.; Liu, Y.; Du, F.; Yang, X.; Xu, M. qRfg3, A novel quantitative resistance locus against Gibberella stalk rot in maize. Theor. Appl. Genet. 2017, 130, 1723–1734. [Google Scholar] [CrossRef]
- Liu, J.; Han, Y.; Li, W.; Qi, T.; Zhang, J.; Li, Y. Identification of pathogens and evaluation of resistance and genetic diversity of maize inbred lines to stalk rot in Heilongjiang Province, China. Plant Dis. 2023, 107, 288–297. [Google Scholar] [CrossRef]
- Young, H.J. The toothpick method of inoculating corn for ear and stalk rots. Phytopathology 1943, 33, 16. [Google Scholar]
- Drepper, W.J.; Renfro, B.L. Comparison of methods for inoculation of ears and stalks of maize with Fusarium moniliforme. Plant Dis. 1990, 74, 952–956. [Google Scholar] [CrossRef]
- Lal, S.; Singh, I.S. Breeding for resistance to downy mildews and stalk rots in maize. Theor. Appl. Genet. 1984, 69, 111–119. [Google Scholar] [CrossRef]
- Liu, S.; Fu, J.; Shang, Z.; Song, X.; Zhao, M. Combination of genome-wide association study and QTL mapping reveals the genetic architecture of Fusarium stalk rot in maize. Front. Agron. 2021, 2, 590374. [Google Scholar] [CrossRef]
- Jin, L.; Li, M.; Wang, Z.; Shi, J.; Guo, N.; Liu, S.; Zhang, H. Resistance identification and genetic diversity analysis of American maize inbred lines to four pathogenic stalk rot diseases. J. Plant Genet. Resour. 2019, 20, 1428–1437. [Google Scholar]
- Babu, B.M.S.; Lohithaswa, H.C.; Rao, A.M.; Mallikarjuna, N. Genetics of resistance to Fusarium stalk rot caused by Fusarium verticilloides in Maize (Zea mays L.). Indian J. Genet. Plant Breed. 2020, 80, 402–411. [Google Scholar] [CrossRef]
- Song, J.; Liu, Y.; Guo, R.; Pacheco, A.; Muñoz-Zavala, C.; Song, W.; Wang, H.; Cao, S.; Hu, G.; Zheng, H.; et al. Exploiting genomic tools for genetic dissection and improving the resistance to Fusarium stalk rot in tropical maize. Theor. Appl. Genet. 2024, 137, 109. [Google Scholar] [CrossRef]
- Rashid, Z.; Babu, V.; Sharma, S.S.; Singh, P.K.; Nair, S.K. Identification and validation of a key genomic region on chromosome 6 for resistance to Fusarium stalk rot in tropical maize. Theor. Appl. Genet. 2022, 135, 4549–4563. [Google Scholar] [CrossRef]
- Chen, Q.; Song, J.; Du, W.-P.; Xu, L.-Y.; Jiang, Y.; Zhang, J.; Xiang, X.-L.; Yu, G.-R. Identification, mapping, and molecular marker development for Rgsr8.1: A new quantitative trait locus conferring resistance to Gibberella stalk rot in maize (Zea mays L.). Front. Plant Sci. 2017, 8, 1355. [Google Scholar] [CrossRef]
- Szőke, C. Analysis of Correlations Between the Tissue Structure of Maize Stalks and the Fusarium Stalk Rot Infection of the Genotypes, and the Effect of These Factors on Lodging Resistance. Ph.D. Thesis, Szent István University, Gödöllő, Hungary, 2011; pp. 1–26. [Google Scholar]
- Arata, A.F.; Martínez, M.; Castañares, E.; Galizio, R.I.; Fernández, M.D.; Dinolfo, M.I. The richness of Fusarium species in maize tassels and their relationship with Fusarium stalk rot. Eur. J. Plant Pathol. 2024, 168, 351–362. [Google Scholar] [CrossRef]
- Clements, M.J.; Kleinschmidt, C.E.; Maragos, C.M.; Pataky, J.K.; White, D.G. Evaluation of inoculation techniques for Fusarium ear rot and fumonisin contamination of corn. Plant Dis. 2003, 87, 147–153. [Google Scholar] [CrossRef]
- Yang, Q.; Yin, G.; Guo, Y.; Zhang, D.; Chen, S.; Xu, M. A major QTL for resistance to Gibberella stalk rot in maize. Theor. Appl. Genet. 2010, 121, 673–687. [Google Scholar] [CrossRef]
- Yang, D.E.; Zhang, C.L.; Zhang, D.S.; Jin, D.M.; Weng, M.L.; Chen, S.J.; Nguyen, H.; Wang, B. Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfg1. Theor. Appl. Genet. 2004, 108, 706–711. [Google Scholar] [CrossRef]
- Cacique, I.S.; Pinto, L.F.C.C.; Aucique-Pérez, C.E.; Wordell Filho, J.A.; Rodrigues, F.A. Physiological and biochemical insights into the basal level of resistance of two maize hybrids in response to Fusarium verticillioides infection. Plant Physiol. Biochem. 2020, 152, 194–210. [Google Scholar] [CrossRef] [PubMed]
- Hartung, K.; Piepho, H.-P. Are ordinal rating scales better than percent ratings? A Statistical and “Psychological” View. Euphytica 2007, 155, 15–26. [Google Scholar] [CrossRef]
- Simko, I.; Piepho, H.-P. Combining phenotypic data from ordinal rating scales in multiple plant experiments. Trends Plant Sci. 2011, 16, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Hooker, A. Association of resistance to several seedling root, stalk, and ear diseases in corn. Phytopathology 1956, 46, 379–384. [Google Scholar]
- Payak, M.; Sharma, R. Disease rating scales in maize in India. In Techniques of Scoring for Resistance to Important Diseases of Maize; ICAR—Indian Agricultural Research Institute: New Delhi, India, 1983; pp. 1–4. [Google Scholar]
- Chiang, K.S.; Liu, H.I.; Bock, C.H. A Discussion on disease severity index values. Part I: Warning on inherent errors and suggestions to maximize accuracy. Ann. Appl. Biol. 2017, 171, 139–154. [Google Scholar] [CrossRef]
- Todd, L.R.; Kommedahl, T. Image analysis and visual estimates for evaluating disease reactions of corn to Fusarium stalk rot. Plant Dis. 1994, 78, 876. [Google Scholar] [CrossRef]
- Gaikpa, D.S.; Kessel, B.; Presterl, T.; Ouzunova, M.; Galiano-Carneiro, A.L.; Mayer, M.; Melchinger, A.E.; Schön, C.-C.; Miedaner, T. Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools. Theor. Appl. Genet. 2021, 134, 793–805. [Google Scholar] [CrossRef]
- Akohoue, F.; Gaikpa, D.S.; Kessel, B.; Presterl, T.; Miedaner, T. Variance components and correlations between doubled haploid lines from two European flint landraces and their corresponding testcrosses for Gibberella ear rot resistance, silking time, and plant height in maize. Agronomy 2021, 11, 1039. [Google Scholar] [CrossRef]
- Blackwell, B.A.; Schneiderman, D.; Thapa, I.; Bosnich, W.; Pimentel, K.; Kebede, A.Z.; Reid, L.M.; Harris, L.J. Assessment of deoxynivalenol and deoxynivalenol derivatives in Fusarium graminearum-inoculated Canadian maize inbreds. Can. J. Plant Pathol. 2022, 44, 504–517. [Google Scholar] [CrossRef]
- Poland, J.A.; Nelson, R.J. In the Eye of the Beholder: The effect of rater variability and different rating scales on QTL mapping. Phytopathology 2011, 101, 290–298. [Google Scholar] [CrossRef]
- Jackson, E.W.; Obert, D.E.; Menz, M.; Hu, G.; Avant, J.B.; Chong, J.; Bonman, J.M. Characterization and mapping of oat crown rust resistance genes using three assessment methods. Phytopathology 2007, 97, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Bock, C.H.; Chiang, K.-S.; Del Ponte, E.M. Plant Disease Severity Estimated Visually: A century of research, best practices, and opportunities for improving methods and practices to maximize accuracy. Trop. Plant Pathol. 2021, 47, 25–42. [Google Scholar] [CrossRef]
- Song, J.; Pacheco, A.; Alakonya, A.; Cruz-Morales, A.S.; Muñoz-Zavala, C.; Qu, J.; Wang, C.; Zhang, X.; San Vicente, F.; Dhliwayo, T. Genome-wide association mapping and genomic prediction of stalk rot in two mid-altitude tropical maize populations. Crop J. 2024, 12, 558–568. [Google Scholar] [CrossRef]
- Donahue, P.J. A Diallel Study of Stalk Rot Resistance in Elite Maize and Its Interaction with Yield. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1986; pp. 1–74. Available online: https://hdl.handle.net/10919/106095 (accessed on 30 June 2024).
- Mir, Z.R.; Singh, P.K.; Zaidi, P.H.; Vinayan, M.T.; Sharma, S.S.; Krishna, M.K.; Vemula, A.K.; Rathore, A.; Nair, S.K. Genetic analysis of resistance to post flowering stalk rot in tropical germplasm of maize (Zea mays L.). Crop Prot. 2018, 106, 42–49. [Google Scholar] [CrossRef]
- Pè, M.; Gianfranceschi, L.; Taramino, G.; Tarchini, R.; Angelini, P.; Dani, M.; Binelli, G. Mapping quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Mol. Gen. Genet. 1993, 241, 11–16. [Google Scholar] [CrossRef]
- Xue, J.; Gao, S.; Hou, L.; Li, L.; Ming, B.; Xie, R.; Wang, K.; Hou, P.; Li, S. Physiological influence of stalk rot on maize lodging after physiological maturity. Agronomy 2021, 11, 2271. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Whitney, N.J.; Mortimore, C.G. Root and stalk rot of field corn in South-Western Ontario: I. Sequence of infection and incidence of the disease in relation to maturation of inbred lines. Can. J. Plant Sci. 1957, 37, 342–346. [Google Scholar] [CrossRef]
- Dodd, J. Grain sink size and predisposition of Zea mays to stalk rot. Phytopathology 1980, 70, 534–535. [Google Scholar] [CrossRef]
- Sobek, E.A.; Munkvold, G.P. European corn borer (Lepidoptera: Pyralidae) larvae as vectors of Fusarium moniliforme, causing kernel rot and symptomless infection of maize kernels. J. Econ. Entomol. 1999, 92, 503–509. [Google Scholar] [CrossRef]
- Smith, D.R.; White, D.G. Diseases of Corn. In Agronomy Monographs; Sprague, G.F., Dudley, J.W., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2015; pp. 687–766. [Google Scholar]
- Zhang, Y.; He, J.; Jia, L.-J.; Yuan, T.-L.; Zhang, D.; Guo, Y.; Wang, Y.; Tang, W.-H. Cellular tracking and gene profiling of Fusarium graminearum during maize stalk rot disease development elucidates its strategies in confronting phosphorus limitation in the host apoplast. PLoS Pathog. 2016, 12, e1005485. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Shi, Y.; Song, Y.; Zhang, D.; Buckler, E.S.; Zhang, Z.; Wang, T.; Li, Y. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS ONE 2015, 10, e0121624. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ma, B.-L. Erect–leaf posture promotes lodging resistance in oat plants under high plant population. Eur. J. Agron. 2019, 103, 175–187. [Google Scholar] [CrossRef]
- Datta, S.K.; Muthukrishnan, S. (Eds.) Pathogenesis-Related Proteins in Plants, 1st ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 184–304. [Google Scholar] [CrossRef]
- Kolattukudy, P.E.; Mohan, R.; Bajar, M.A.; Sherf, B.A. Plant peroxidase gene expression and function. Biochem. Soc. Trans. 1992, 20, 333–337. [Google Scholar] [CrossRef]
- Reimers, P.J.; Guo, A.; Leach, J.E. Increased activity of a cationic peroxidase associated with an incompatible interaction between Xanthomonas oryzae pv oryzae and rice (Oryza sativa). Plant Physiol. 1992, 99, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Young, S.A.; Guo, A.; Guikema, J.A.; White, F.F.; Leach, J.E. Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv oryzae. Plant Physiol. 1995, 107, 1333–1341. [Google Scholar] [CrossRef]
- Flott, B.E.; Moerschbacher, B.M.; Reisener, H.J. Peroxidase isoenzyme patterns of resistant and susceptible wheat leaves following stem rust infection. New Phytol. 1989, 111, 413–421. [Google Scholar] [CrossRef]
- Kerby, K.; Somerville, S. Enhancement of Specific Intercellular Peroxidases Following inoculation of barley with Erysiphe graminis f. sp. Hordei. Physiol. Mol. Plant Pathol. 1989, 35, 323–337. [Google Scholar] [CrossRef]
- McGhie, T.K.; Masel, N.P.; Maclean, D.; Croft, B.J.; Smith, G.R. Biochemical responses of suspension-cultured sugarcane cells to an elicitor derived from the root pathogen pachymetra chaunorhiza. Funct. Plant Biol. 1997, 24, 143–149. [Google Scholar] [CrossRef]
- Mayer, A.M. Polyphenol oxidases in plants-recent progress. Phytochemistry 1986, 26, 11–20. [Google Scholar] [CrossRef]
- Sommer, A.; Ne’eman, E.; Steffens, J.C.; Mayer, A.M.; Harel, E. Import, targeting, and processing of a plant polyphenol oxidase. Plant Physiol. 1994, 105, 1301–1311. [Google Scholar] [CrossRef]
- Wu, M.; Luo, X.; Liu, S.; Fan, Z.; Huang, T.; Yang, Y. Relationship between the activities of five defense enzymes in cassava leaves and bacterial blight resistance. J. Chin. Agric. Univ. 2022, 27, 109–115. [Google Scholar]
- Zhang, X.; Zheng, S.; Yu, M.; Xu, C.; Li, Y.; Sun, L.; Hu, G.; Yang, J.; Qiu, X. Evaluation of resistance resources and analysis of resistance mechanisms of maize to stalk rot caused by Fusarium graminearum. Plant Dis. 2024, 108, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Long, S.; Guo, J.; Zhang, Y.; Li, Q.; Wang, W. Changes of activities of PAL and POD and bands of POD isozyme of susceptible and resistant corn infected with Fusarium graminearum. Acta Bot. Boreali-Occident. Sin. 2003, 23, 1927–1931. [Google Scholar]
- Liebhardt, W.C.; Murdock, J.T. Effect of potassium on morphology and lodging of corn 1. Agron. J. 1965, 57, 325–328. [Google Scholar] [CrossRef]
- Xu, Z.; Lai, T.; Li, S.; Si, D.; Zhang, C.; Cui, Z.; Chen, X. Promoting potassium allocation to stalk enhances stalk bending resistance of maize (Zea mays L.). Field Crops Res. 2018, 215, 200–206. [Google Scholar] [CrossRef]
- Xue, J.; Gao, S.; Fan, Y.; Li, L.; Ming, B.; Wang, K.; Xie, R.; Hou, P.; Li, S. Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistant maize cultivars. Eur. J. Agron. 2020, 117, 126073. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Li, N.; Pei, Y.; Peng, J.; Wang, Z. An integrated strategy coordinating endogenous and exogenous approaches to alleviate crop lodging. Plant Stress 2023, 9, 100197. [Google Scholar] [CrossRef]
- Wisser, R.J.; Balint-Kurti, P.J.; Nelson, R.J. The genetic architecture of disease resistance in maize: A synthesis of published studies. Phytopathology 2006, 96, 120–129. [Google Scholar] [CrossRef]
- Chung, C.-L.; Longfellow, J.M.; Walsh, E.K.; Kerdieh, Z.; Van Esbroeck, G.; Balint-Kurti, P.; Nelson, R.J. Resistance loci affecting distinct stages of fungal pathogenesis: Use of introgression lines for QTL mapping and characterization in the maize—Setosphaeria Turcicapathosystem. BMC Plant Biol. 2010, 10, 103. [Google Scholar] [CrossRef]
- Jamann, T.M.; Luo, X.; Morales, L.; Kolkman, J.M.; Chung, C.-L.; Nelson, R.J. A remorin gene is implicated in quantitative disease resistance in maize. Theor. Appl. Genet. 2016, 129, 591–602. [Google Scholar] [CrossRef]
- Böhm, J.; Schipprack, W.; Utz, H.F.; Melchinger, A.E. Tapping the Genetic Diversity of landraces in allogamous crops with doubled haploid lines: A case study from European flint maize. Theor. Appl. Genet. 2017, 130, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, Q.; Wang, W.; Li, Y.; Guo, Y.; Zhang, D.; Ma, X.; Song, W.; Zhao, J.; Xu, M. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytol. 2017, 215, 1503–1515. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Yan, M.; Zhu, M.; Yang, J.; Li, Y.; Xu, M. ZmCCT Haplotype H5 improves yield, stalk-rot resistance, and drought tolerance in maize. Front. Plant Sci. 2022, 13, 984527. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, Y.; Guo, Y.; Yang, Q.; Ye, J.; Chen, S.; Xu, M. Fine-mapping of qRfg2, a QTL for resistance to Gibberella Stalk Rot in maize. Theor. Appl. Genet. 2012, 124, 585–596. [Google Scholar] [CrossRef]
- Du, F.; Tao, Y.; Ma, C.; Zhu, M.; Guo, C.; Xu, M. Effects of the quantitative trait Locus qPss3 on Inhibition of Photoperiod Sensitivity and Resistance to Stalk Rot Disease in Maize. Theor. Appl. Genet. 2023, 136, 126. [Google Scholar] [CrossRef]
- Torii, K.U. Leucine-Rich Repeat Receptor Kinases in Plants: Structure, Function, and Signal Transduction Pathways. In International Review of Cytology: A Survey of Cell Biology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 234, pp. 1–46. [Google Scholar]
- Liu, X.; Luo, M.; Zhang, W.; Zhao, J.; Zhang, J.; Wu, K.; Tian, L.; Duan, J. Histone acetyltransferases in rice (Oryza sativa L.): Phylogenetic analysis, subcellular localization and expression. BMC Plant Biol. 2012, 12, 145. [Google Scholar] [CrossRef]
- Zan, Y.; Ji, Y.; Zhang, Y.; Yang, S.; Song, Y.; Wang, J. Genome-wide identification, characterization and expression analysis of populusleucine-rich repeat receptor-like protein kinase genes. BMC Genom. 2013, 14, 318. [Google Scholar] [CrossRef]
- Williams, C.H.; Arscott, L.D.; Müller, S.; Lennon, B.W.; Ludwig, M.L.; Wang, P.; Veine, D.M.; Becker, K.; Schirmer, R.H. Thioredoxin reductase: Two modes of catalysis have evolved. Eur. J. Biochem. 2000, 267, 6110–6117. [Google Scholar] [CrossRef]
- Robatzek, S.; Chinchilla, D.; Boller, T. Ligand-induced endocytosis of the pattern recognition receptor Fls2 in Arabidopsis. Genes Dev. 2006, 20, 537–542. [Google Scholar] [CrossRef]
- Wang, F.; Sun, L.; Zhao, X.; Wang, J.; Song, X. Research progresses on plant NAC transcription factors. Biotechnol. Bull. 2019, 35, 88. [Google Scholar]
- Butrón, A.; Reid, L.M.; Santiago, R.; Cao, A.; Malvar, R.A. Inheritance of maize resistance to Gibberella and Fusarium ear rots and kernel contamination with deoxynivalenol and fumonisins. Plant Pathol. 2015, 64, 1053–1060. [Google Scholar] [CrossRef]
- Rahman, M.; Davies, P.; Bansal, U.; Pasam, R.; Hayden, M.; Trethowan, R. Marker-assisted recurrent selection improves the crown rot resistance of bread wheat. Mol. Breed. 2020, 40, 28. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; De Los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Miedaner, T.; Boeven, A.L.G.-C.; Gaikpa, D.S.; Kistner, M.B.; Grote, C.P. Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize. Int. J. Mol. Sci. 2020, 21, 9717. [Google Scholar] [CrossRef]
- Han, S.; Miedaner, T.; Utz, H.F.; Schipprack, W.; Schrag, T.A.; Melchinger, A.E. Genomic prediction and GWAS of Gibberella ear rot resistance traits in dent and flint lines of a public maize breeding program. Euphytica 2018, 214, 6. [Google Scholar] [CrossRef]
- Singh, B.D.; Singh, A.K. Marker-Assisted Plant Breeding: Principles and Practices, 1st ed.; Springer: New Delhi, India, 2015; pp. 207–208. [Google Scholar] [CrossRef]
- Heffner, E.L.; Lorenz, A.J.; Jannink, J.; Sorrells, M.E. Plant Breeding with Genomic Selection: Gain per unit time and cost. Crop Sci. 2010, 50, 1681–1690. [Google Scholar] [CrossRef]
Inoculation Method | Fusarium spp. | Inoculation Stage | Plant Material | Environments | Disease Rating | Reference |
---|---|---|---|---|---|---|
Needle injection | F. graminearum | V6 stage | 67 I-lines | 2 | 0–9 rating | [82] |
F. graminearum | VT stage | 165 I-lines, F2 pop. | 2 | 1–6 rating | [86] | |
F. graminearum | V6 stage | 97 I-lines | 2 | Disease severity index | [78] | |
F. graminearum | VT stage | 149 I-lines | 2 | Disease incidence | [87] | |
F. verticilliodes | 65 days after sowing | 339 DH lines | 3 | 1–9 rating | [88] | |
F. temperatum | 4-weeks old | 7 cultivars | 1 | Hooker’s scale | [64] | |
Toothpick | F. verticilliodes | 14 days after flowering | 562 tropical I-lines | 4 | FSR severity (0–100%) | [89] |
F. verticilliodes | VT stage | 342 tropical/subtropical I lines | 4 | Payak and Sharma scale | [90] | |
F. verticilliodes | VT stage | 54 I-lines, 3 hybrids, 1 OPV. | 4 | Hooker’s scale | [80] | |
Ball bearing pellet with a gas pistol | F.verticilliodes | 7–10 days after anthesis | 10 S1 lines | 12 | Hooker’s scale | [84] |
Root infection | F. graminearum | Silk emergence | BC1F1, F2 pop. | 1 | 1–9 rating | [91] |
Oat kernels in internode | F. graminearum | 12 days after flowering | 6 hybrids, 12 parental lines | 2 | Colim 4.0 image analysis software | [92] |
Disease Score | Degree of Infection | Disease Reaction |
---|---|---|
1 | 0 to 25% rot at the site of the inoculated internode | Highly resistant |
2 | 26 to 50% rot of the inoculated internode | Resistant |
3 | 51 to 75% rot of the inoculated internode | Moderately resistant |
4 | 76 to 100% rot of the inoculated internode | Moderately susceptible |
5 | 100% rot with infection extending into an adjacent internode | Susceptible |
Fusarium Species Target Region | Material | Pop. Size | No. Environments | H2 | Reference |
---|---|---|---|---|---|
Fusarium graminearum: | |||||
Temperate | F2:3-L | 150 | 1 | 0.37 | [113] |
F5:6-L | 199 | 3 | 0.86 | [81] | |
Temperate and tropical | I-lines F2-L | 165 350 | 2 | 0.60 | [86] |
F. graminearum and F. verticilliodes: | |||||
Tropical | Tuxpeño Non-Tuxpeño | 381 296 | 3 | 0.51 0.76 | [110] |
F. verticilliodes: | |||||
Tropical | CML lines DTMA lines | 280 282 | 4 | 0.77 0.55 | [89] |
I-lines FSR-1 F2:3-L FSR-2 F2:3-L | 342 256 166 | 4 | 0.51 0.40 0.48 | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asiedu, D.D.; Miedaner, T. Genetic and Genomic Tools in Breeding for Resistance to Fusarium Stalk Rot in Maize (Zea mays L.). Plants 2025, 14, 819. https://doi.org/10.3390/plants14050819
Asiedu DD, Miedaner T. Genetic and Genomic Tools in Breeding for Resistance to Fusarium Stalk Rot in Maize (Zea mays L.). Plants. 2025; 14(5):819. https://doi.org/10.3390/plants14050819
Chicago/Turabian StyleAsiedu, Desmond Darko, and Thomas Miedaner. 2025. "Genetic and Genomic Tools in Breeding for Resistance to Fusarium Stalk Rot in Maize (Zea mays L.)" Plants 14, no. 5: 819. https://doi.org/10.3390/plants14050819
APA StyleAsiedu, D. D., & Miedaner, T. (2025). Genetic and Genomic Tools in Breeding for Resistance to Fusarium Stalk Rot in Maize (Zea mays L.). Plants, 14(5), 819. https://doi.org/10.3390/plants14050819